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Appendix
Proof of Theorems

First, we have the following Lemmas 4 and 5 from (Li and
Pearl 2019).

Lemma 4. The c-specific PNS P(y,y..|c) is bounded as
follows:

P(yzlc),
P(y./|c
min P(y,z|c) + P(y '), > c-PNS.
P(yz|c) — (yx'|C)+
+P(y,'e) + P(y', z|c)
Lemma 5.
P(yz,yprlc) = P(Yy, Yarl€)

= P(yzlc) — P(yar|c).

Lemma 6. Given a causal diagram G and distribution com-
patible with G, let Z U C be a set of variables that does
not contain any descendant of X in G, then c-specific PNS
P(ys, y..|c) is bounded as follows:

0,
P(yz|z,¢) = P(yar|2, c),
zz:max P(ylz,¢) = P(yar|2, ),
P(yz|z,c) = P(ylz,c)
x P(z|¢) < c-PNS, )
P(yx|270)7
P(yi.|2,¢),
S min{  Ply.xlz.0) + Py 2|z ),
: P(yalz,0) — Plyslz o+
+P(y,a'|z,c) + P(y, x|z, c)
x P(z|¢) > c-PNS. “
Proof.
¢-PNS = P(ys,yhlc)

= ZP(ym,y;,|z,c) x P(z|c). 5)

From Lemma 4, replace ¢ with (z, ¢), we have the following:

0,
P(yﬂ?|zvc) - P(yr’|zvc)7
N P(ylz,0) — Plywz,c),
P(yﬁlzac) - P(y|Z,C)
S P(ymay/z"zvc)7 (6)
(y2]2, ¢)
(yx’lz7c ’
min P(y"r|z’ C) + P(y/7x/‘z7 C))
P(ym‘zvc) —P(yz/\z,c)-i-

+P(y,2'[2,¢) + P(y', x|z, ¢)
> P(ya, Yy |2, ). @)

Substituting Equations 6 and 7 into Equation 5, Lemma 6
holds.
Note that since we have,

Z max{0,

P(y$|Z,C) - P(ym’lzyc)>
P(y\z,c) - P(yz"z»c)ﬂ
P(yz|z,¢) — P(ylz,c)} x P(z|c)
> ZO x P(z|e
_ 0.
Zmax{O,
P(Z/xlz c (y:r |Z c
P(ylz,c) = (yz |2, C)
P(yz|z,¢) — P(y|z,¢)} x P(z|c)
> Y [P(yslz,¢) — Plyw|z,0)] x P(z|c)
= P(yzlc) — P(yalc),
Zmax{(),
P(yx|Z C) (ym’|z C)v
P(ylz,¢) = P(yar|z, ),
P(yz|z,¢) — P(y|z,c)} x P(z|c)
> SOIP(lz0) — Plylz,0)] x Pl

z

= P(ylc) — P(yaulc),
ZmaX{O,

P(yT|Z c) = P(yu|z,¢),
P(ylz, ¢) = P(ya|z, ),
P(ys|z,¢) = P(y|z, ¢)} x P(z|c)

> S [P(lz) -

= P(yzlc) = P(ylo),

then the lower bound in Lemma 6 is guaranteed to be no
worse than the lower bound in Lemma 4. Similarly, the upper
bound in Lemma 6 is guaranteed to be no worse than the
upper bound in Lemma 4. Also note that, since Z U C' does
not contain a descendant of X, the term P(y,|z, ¢) refers to
experimental data under population z, c.

P(ylz, ¢)] x P(z]c)

Lemma 7.
fle) = BP(ya,Yplc) + VP (Ya, yurlc) +
+0P(ys, Yo lc) + OP(yur, Y |c)
= WH0P(Ye,yulc). (8)



where,

W = (y = 0)P(yalc) + 6P (yarlc) + 0P (yslc),
c=0—-v—-0+0.

Proof.
f(e)
= ﬁp(yxvy;/|c) +’YP( mvyx/|c) +
= BPYu, Yo le) + V[P (yzle) = P(ya, Yy lc)] +

+0[P(y,) — Py, Yo |€)] + 0P (Yh, Yo |€)
= YP(yzlc) + 0Py |c) +
+(B =7 = 0)P(Ya, Y lc) + 6P (Y, yar ). (9)

By Lemma 5, we have,

P(y;wyw'|c) = P(ywvy;’|c) _P(ym|c) “!‘P(yw"c)- (10)

Substituting Equation 10 into Equation 9, we have,

f(c)
YP(yz|c) + OP(yg|c) +
+(B =7 = O)P(yz, Yo |¢) + P (Y, yar|c)
= YP(yzle) + 0P(yylc) +
+(B =7 = 0)P(yz, yylc) +
[P (Y, Yy |c) — P(yzlc) + P(yar|c)]
= (v = 0)P(yslc) + 0P (ywrlc) + 0P (yg|c) +
+(B =7 =0+ 0)P(Yz, Yy |c).
0

Theorem 1. Given a causal diagram G and distribution com-
patible with G, let Z U C' be a set of variables that does not
contain any descendant of X in G, then the benefit function
f(e) = BP(ya,yplc) + YP (Y, yarle) + 0P (ys, vy lc) +
SP(ysr, y,|c) is bounded as follows:

W+oULf<W+oL
WHoL< f<W+oU

ifo <0,
ifo >0,

where o, W, L, U are given by,

c=B—7—0+0,
W = (v = 0)P(yxle) + 0P (ywrlc) + 0P (yzc),

07
— P(ys|z,c) = P(ya|z,c),
L =2 max 0 Pyl c) — Pl |=.0)
: P(yz|z,¢) = P(ylz, )
< P(a]e),
P(yz|2,c)
P(yylz,c
U= Zmin (y,z|z,c) + Py, 2|z, c)
z P(yT|Z,C) N ]D(yr/|zvc)+

+P(y,2'|z,¢) + Py, 2]z, ¢)
x P(z|c).

Proof. By Lemmas 6 and 7,
substituting Equations 3 and 4 into Equation 8, Theorem 1
holds.

Note that, if we substituting Lemma 4 into Lemma 7, we
have the same results as in Li-Pearl’s Theorem. We showed
that in Lemma 6 that the bounds in Lemma 6 is guaranteed
to be no worse than the bounds in Lemma 4, therefore, the
bounds in Theorem 1 is guaranteed to be no worse than the
bounds in Li-Pearl’s Theorem. O

Lemma 8. Given a causal diagram G and distribution com-

patible with G, let Z U C be a set of variables such that

Vel € X cx # 2/, (Y, L XUZy | Z,,C)in G, then
the c-PNS P(yg, y..|c) is bounded as follows:

0,
P(yz|c) = P(yar|c),
Y P(yle) — Plyar|o),
P(yz|c) — P(ylc)

P(yz|c),

P(y;

P(y, z|c) +

)

< c¢-PNS, arn

’|C 9
P(y',x'|c),
P(yac|C) P(y$/‘6)+
+P(y.a'le) + Py, ale), (=N
> >, min{P(y|z, z,c¢),
P(y'| 2", c)}
x min{ P(z;|c), P(z,]c)}

min

12)

Proof.

c-PNS

Py, Yo lc)

S22 P(Yas Yo Zas 2 [€)

S50 P(Yay Yot |22, 2y €) X P24, 20 |C)
.5, min{ P(ye|2e, 2hrs )y P(Yhr| 22, 200, €) }
x min{ P(z;|c), P(z]c)}

IA

NS min{ Pl ), Pl |, )

x min{P(z;c), P(z|c)} (13)
= 2.% /mm{P(y|zz,x c), P(y|z, 2", c)}

x min{ P(z,|c), P(z./|c)} (14)

= 2,3, min{P(y|z7 z,c),
x min{ P(z;|c), P(zL/|c)}.
Combined with the bounds in Lemma 4, Lemma 8 holds.

Note that Equation 13 isdueto Y, 1 Z,/ | Z;,C and Y, L
Zy | Zy, C. Equation 14isdueto Vo € XY, L X |Z,,C.
O

P(y|2', 2, c)}

Theorem 2. Given a causal diagram G and distribution
compatible with G, let Z be a set of variables such that
Ve, € X rx £ 2, (Y, L XUZy | Z,,C) in G, and
C does not contain any descendant of X in G, then the
benefit function f(c) = BP(Yy, yolc) + YP(Yz, Yar|c) +
OP(y.,,y./|c) + 0P (Y, yy|c) is bounded as follows:
W+oUL f<W+oL ifo <0,

W+oL< f<W+0oU ifo>0,



where o, W, L, U are given by,
c=0—-v—-0+9,
W = (v = 6)P(yalc) + 0P (yar|c) + 0P (yylc),

L = max

Y
Py a')e).

P(yzlc) — Py |e)+
+P(y, 2'[c) + P(y', zc),
Zz Zz’ min{P(y|Z) I? C)7

P(y'|2',a, c)}
x min{ P(z;|c), P(z.|c)}
Proof. By Lemmas 8 and 7,
substituting Equations 11 and 12 into Equation 8, Theorem 2
holds.

Note that, if we substituting Lemma 4 into Lemma 7, we
have the same results as in Li-Pearl’s Theorem. From the
proof of Lemma 8, we know that the lower bound in Lemma
8 is the same as in Lemma 4 and the upper bound in Lemma
8 is no worse than the upper bound in Lemma 4. Therefore,
the lower bound in Theorem 2 is the same as in Li-Pearl’s
Theorem, and the upper bound in Theorem 2 is guaranteed to
be no worse than the upper bound in Li-Pearl’s Theorem. [

P(y,z|c

U = min

Lemma 9. Given a causal diagram G in Figure 9 and distri-
bution that compatible with G, and C' is not a descendant of
X, then c-PNS P(ya, Y., |c) is bounded as follow:

Figure 9: Mediator Z with no direct effects of X on Y.

0,
P(yz|c) = P(ya|c),
MY Plyle) - Plygle), (PN (9
P(yz|c) — P(yle)
P(y/m|c),
P(yz"c)7
P(y,z|c) + P(y', 2'[c),
: P(ym|c) P(yz/|0)+
MY Py, ale) + Py ale), (7PN
Zzzz’yéz min{P(y|z,c),
P(y'|z',c)}
x min{P(z|z, c), P(z'|2/,¢)}

(16)

Proof. First we show that in graph G, if an individual
is a c-complier from X to Y, then Z,|c and Z,/|c must
have the different values. This is because the structural
equations for Y and Z are fy(z,uy,c) and f.(z,u.,c),
respectively. If an individual has the same Z,|c and
Z,|c value, then f,(x,u,,c) = f,(2’,u,,c). This means
Sy(fo(@,uz,0) uy, ) = fy(fa(a),uz, ) uy, 0), ie., Yale
and Y, |c must have the same value. Thus this individual is
not a c-complier. Therefore,

c-PNS

Py, Yorlc)

= 2.5, Py, yl|c) x P(zs, 2 ]c)
3.5 min{ P(y:le), Py |o)}

x min{ P(z,|c), P(z5/|c)}

Ezzz’#z mlD{P(g\z, C)a P(y/|zlv C)}

x min{ P(z|z, c), P(z'|z’,c)}.

Combined with the bounds in Lemma 4, Lemma 9 holds. [

IN

Theorem 3. Given a causal diagram G in Figure 9
and distribution compatible with G, and C does not
contain any descendant of X, then the benefit function
fle) = BP(ys,yplc) + YP(Ya, yarlc) + OP(ys, yolc) +
OP(ysr, yl|c) is bounded as follows:

W4+oUL f<W+0oL
WH+oL< f<W+oU

ifo <0,
ifo>0,
where o, W, L, U are given by,

o=0—-—vy—-0+,

W = (y = 0)P(yalc) + 0P (yarlc) + 0P (yzIc),

0,
_ P(yzle) — P(yar|c),
L=maxy “plyle) — Plyale),
P(yz|c) — P(yle)
P(yele),
P(yx’|c)7/ ,
(z{,wllc))Jr]f((y |33)| ¢),
I Yz |C)F
U=ming L ply.ale) + Py, xle),
Ezzz’#z min{P(y|z,c),
P(y'|z',c)}
x min{ P(z|z, ¢), P(z'|2’,¢)}

Proof. By Lemmas 9 and 7,
substituting Equations 15 and 16 into Equation 8, Theorem 3
holds.

Note that, if we substituting Lemma 4 into Lemma 7, we
have the same results as in Li-Pearl’s Theorem. From the
proof of Lemma 9, we know that the lower bound in Lemma
9 is the same as in Lemma 4 and the upper bound in Lemma
9 is no worse than the upper bound in Lemma 4. Therefore,
the lower bound in Theorem 3 is the same as in Li-Pearl’s
Theorem, and the upper bound in Theorem 3 is guaranteed to
be no worse than the upper bound in Li-Pearl’s Theorem. [



Calculation in the Examples P(rq|c),
P(r!|c),
In order to clearly see the calculation steps, we list an equiva- U = min{ P(ralc)+ P(r',d'|c)
lent form of Li-Pearl’s Theorem as following (see the proof (T |C/) — P(ra |/c)+
in the previous section for the equivalence): +P(r,d'lc) + P(1', alc)
0.83729,
Theorem 10. Given a causal diagram G and distribution 1 — 0.52595,
compatible with G, let C be a set of variables that does not = min 0.35286 + 0.20143,
contain any descendant of X in G, then the benefit function 0.83729 — 0.52595+
f(e) = BP(ya,yule) + YP(ya, yarle) + OP(ys, yyle) + +0.35428 + 0.09143
SP(ysr, y.|c) is bounded as follows: —  0.47405
W4oU< fle)<W4+0oL  ifo<0,
W+4oL < fle) <W+0oU ifo >0,
where o, W, L, U are given by,
c=B—~v—0+34, Therefore,
W = (v = 0)P(yalc) + 6P (yarlc) + 0P (yyIc),
0,
P(yz|c) = P(ya|c)
L= ’
Y Plyle) = Plyarlo),
P(y,|c) — P(ylc) W+oL < f(c) <W +oU,
P(yxlc), —6.64980 + 20 x 0.31134 < f(c)
U—minl Pl I|P)(_yF ILC()y . < —6.64980 + 20 x 0.47405,
P(Z’/m‘ ) (yI/|C)_’_ —0.423 < f(C) < 2.832.

+P(y,x'[c) + P(y', z|c)

Company Selection First, we apply Li-Pearl’s Theorem
(Theorem 10) to the data in Tables 1 and 2. The benefit vector
is (100, —60, 0, —140).

We have, Then, we apply Theorem 1 to the data in Tables 1 and 2. o
and W are the same as above.
o = f-y-0+9 And we have,
= 100 — (—60) — 0+ (—140)
20
W = (y—=208)P(ralc) + 6P(ra|c) + 0P(rl|c) 0,
= (=60 — (—140)) x 0.83729 + 0 x 0.47405 + I — Zmax P(ra|z,c) — P(ra|2, c),
+(—140) x 0.52595 P(r|z,c) = P(ra|z,c),
? P(ra|z,c)—P(T|z,c)
= —6.64980
x P(z|c)
0,
0, _ 0.44600 — 0.05000,
= MAXQ 049010 — 0.05000, ( < 0-28857
I — max P(ry|c) — P(rae),
P(rlc) — P(ra|c), 0.44600 — 0.49010
P(rq|c) — P(r[c) 0,
0, 0.99600 — 0.71900,
0.83729 — 0.52595, Fmax g 79518 — 0.71900, ( < 0-7H43
= MAXY0.70714 — 0.52595, 0.99600 — 0.79518
0.83729 — 0.70714 = 0.44010 x 0.28857 + 0.27700 x 0.71143

= 0.31134 = 0.32407



P(Ta‘Z,C),
P(rl.|z,c),
U = Zmin P(r,alz,¢) + P(r',d'|z, ),
2 P(rqlz,¢) — P(re)z, o)+
+P(r,d|z,c) + P(r',alz,c)
X P(z|c)
0.44600,
1 —0.05000,
= min 0.44555 + 0.20297, x 0.28857
0.44600 — 0.05000+
+0.04455 + 0.30693
0.99600,
1 —0.71900,
+ min 0.31526 + 0.20080, x 0.71143

0.99600 — 0.71900+
+0.47992 + 0.00402

0.44600 x 0.28857 4+ 0.28100 x 0.71143
0.32862
Therefore,
W+oL < f(e) <W 40U,
—6.64980 + 20 x 0.32407 < f(c)
< —6.64980 + 20 x 0.32862,
—0.168 < f(c) < —0.077.

Effective Patients of a Drug First, the set {C'} satisfied
the back-door criterion for both (A,Z7) and (A4, R). B
Pearl’s adjustment formula, the experimental data needed
are:

P(rq|c) = P(r|a,c) = 0.66666,
P(rq/|c) = P(r|a’, c) = 0.33265,
P(z4|c) = P(z|a, c) = 0.68878,
P(z),]c) = P(2'|d’,c) = 0.01232.

Then, we apply Li-Pearl’s Theorem (Theorem 10) to the data
in Table 3 and the above experimental data. The benefit vector
is (1,-1,-1,-1).
We have,
o = B—y—04+9

=)= (=D+(=1)
2
W = (y—=208)P(rylc) + 6P (rq|c) + 0P(r),|c)

(=14 1)P(rqle) = P(rarlc) = P(rylc)
-1

0,
_ P(ralc) = P(ra|c),
L= maxy pie) - Plygle),
P(ralc) — P(r|c)

0,
0.66666 — 0.33265,
0.51535 — 0.33265,
0.66666 — 0.51535

= 0.33401

= maXx

U = min{ P(r.alc

+P(r,d’|c) + P(r',alc)
0.66666,

1 —0.33265,
0.36465 + 0.30233,
0.66666 — 0.33265+
-+0.15070 4 0.18232

= min

= 0.66666

Therefore,

W+ oL < f(e) <W 40U,
—142x0.33401 < f(c)

< —14 2 x 0.66666,
—0.3320 < f(c) < 0.3333.

Then, we apply Theorem 2 to the data in Table 3 and the
above experimental data. o, W, and L are the same as above.
And we have,

P(rqle),
P(r(/z"C)?
P(r,alc) + P(r, dlc),
P(rqlc) — P(ra|c)+
+P(r,a’'lc) + P(r', alc),
>, > min{P(r|z,a,c),
P(r'|Z',d,e)}

x min{ P (z,|c), P(z./|c)}
0.66666,

1 —0.33265,
0.36465 + 0.30233,
0.66666 — 0.33265+
40.15070 + 0.18232,
min{0.92593, 0.66944} x
min{0.68878,0.98768}+
min{0.92593, 0.50000} x
min{0.68878,0.01232}+
min{0.09290, 0.66944} x
min{0.31122, 0.98768} +
min{0.09290, 0.50000} x
min{0.31122,0.01232}

U = min

= min

= 0.49731
Therefore,
W+oL < f(c) <W 40U,
—142x0.33401 < f(c)

< —1+2x0.49731,
—0.3320 < f(c) < —0.0054.



Algorithm 1: Generate sample distributions for non-
descendant covariates

Algorithm 2: Generate sample distributions for partial media-
tors

Input: n, number of sample distributions needed.
Output: n sample distributions (observational data and ex-
perimental data).

1: fori=1tondo

2:  /lrand(0,1) is the function that random uniformly
generate a number from O to 1.

3: [/l t1,to,t3, and t4 can be interpreted as the number of

individuals such that z A z, 2’ Az, x A 2’, and ' A 2’

respectively.

t; = rand(0,1) x 1000;

to = rand(0,1) x (1000 — #1);

t3 = mmd(O, 1) X (1000 — 1 — tg);

t4 = 1000 — tl — t2 —t3;

/I 01,09, 03, and o4 can be interpreted as the number

of individuals such that z Az Ay, ' Az Ay, A2 Ay,

and ' A 2’ A y respectively.

9: o1 =rand(0,1) X t1;

10: 09 = rand(0,1) X ta;

11: o3 =rand(0,1) X ts;

12: o4 = rand(0,1) X t4;

13:  // Each ¢; corresponding to a sample distribution.

14:  // The following are experimental data that satisfied
the general bounds provided by Tlan and Pearl.

AN A

15:  P(yldo(x), z,¢;) = rand(0,1) x t1+t2 + t10+1t2;

16:  P(y|ldo(z'),2,¢;) = rand(0,1) x e +tz + tltft2;
17:  P(y|do(x), 7', c;) = rand(0,1) x = +t4 + tgofu;
18:  P(yldo(z'),2’,¢;) = rand(0,1) x o +t4 + tﬁm;

19:  // The following are observational data.
20:  P(x,y, z|cz) = 07,/1000;
21:  P(=, Y,z 2'|ei) = 03/1000;

22:  P(z, y z|cz) (t1 — 01)/1000;

23:  P(x,y’,2'|¢;) = (t3 — 03),/1000;
24:  P(a, y,z|('z) = 02/1000;

25:  P(2',y,7'|c;) = 04/1000;

26:  P(a y z|cl) (ta — 02)/1000;
27: P(x’,y’,z’|c ) = (t4 — 04)/1000;
28: end for

Distribution Generating Algorithms

Here, the sample distribution generating algorithms in simu-
lated studies are presented.

Non-descendant Covariates The Algorithm 1 is the sam-
ple distribution generating algorithm in the simulated study of
non-descendant covariates case. It generated both experimen-
tal and observational data compatible with Figure 5 (X,Y, Z
are binary) that satisfy the general relation provided by Tian
and Pearl (i.e., the general relation between experimental and
observational data).

Partial Mediators The observational data compatible with
Figure 1 (X, Y, Z are binary) in the simulated study of partial
mediators case was generated by Algorithm 2. The experi-
mental data needed was computed via adjustment formula
because the set {C'} satisfied the back-door criterion for both

Input: n, number of sample distributions needed.
Output: n sample distributions (observational data in condi-
tional probability tables).

1: fori=1tondo
2: /lrand(0,1) is the function that random uniformly
generate a number from O to 1.
/I Each ¢; corresponding to a sample distribution.
P(z|¢;) = rand(0,1);
P(z|z,¢;) = rand(0,1);
z|l2', ¢;) = rand(0,1);
ylx, z,¢;) = rand(0,1);
yla', z, ¢;) = rand(0,1);
y\m,z',cl) = rand(0,1);
P(yla', 2, ¢;) = rand(0,1);
end for

Algorithm 3: Generate sample distributions for pure media-
tors
Input: n, number of sample distributions needed.
Output: n sample distributions (observational data in condi-
tional probability tables).
1: for:=1tondo
2: /lrand(0,1) is the function that random uniformly
generate a number from O to 1.
/I Each ¢; corresponding to a sample distribution.
P(z|c;) = rand(0,1);
P(z|x,¢;) = rand(0,1);
P(z|2',¢;) = rand(0,1);
P(y|z,c;) = rand(0,1);
(y‘zla Ci) = Tan’d(oa 1)’
: end for

(X,Z)and (X,Y).

Pure Mediators The observational data compatible with
Figure 2 (X, Y, Z are binary) in the simulated study of pure
mediators case was generated by Algorithm 3. The experi-
mental data needed was computed via adjustment formula
because the set {C'} satisfied the back-door criterion for
(X,Y).
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