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ABSTRACT

Ever since McCarthy and Hayes proclaimed probabilities "epistemologically inadequate"”
for reasoning with partial beliefs, research in this area has consisted primarily of nonnumerical
approaches, attempting to enrich first-order logic with modal operators that capture the notions
of default, likelihood, and knowledge. This paper addresses the problem from the opposite ex-
treme: devising new representations to probabilistic models that emphasize the qualitative as-
pects of the reasoning process and minimize its sensitivity to numerical inputs. We find that,
although numbers per se are bad summarizers of implicit knowledge, they can be very useful in
processing that which has been explicated. Probabilistic networks of conceptually related pro-
positions, where the numbers serve to regulate and propel the flow of information, allow reason-
ing about uncertainty to be as knowledge-intensive, accurate, and psychologically plausible as

the level of details we care to explicate.

The paper describes a mechanism for maintaining and propagating beliefs in such net-
works, which facilitates concurrent, distributed, and coherent inferences, and fully conforms to
the axioms of probability theory. Using this mechanism as a model of reasoning we find that
many arguments against the use of probabilities are no longer valid, while others expose a core

of problems that must eventually be confronted by every formalism of partial beliefs.



1. INTRODUCTION

Probability theory is shunned by most researchers in Artificial Intelligence. New calculi,
claimed to better represent human reasoning under uncertainty, are being invented and reinvent-
ed at an ever-increasing rate. A major reason for the emergence of this phenomenon has been
the objective of making reasoning systems transparent, i.e., capable of producing psychological-
ly meaningful explanations for every intermediate step used in deriving the conclusion. Admit-
tedly, traditional probability theory has erected cultural barriers against meeting this require-
ment. For example, scholarly textbooks on probability theory create an impression that to con-
struct an adequate representation of probabilistic knowledge we must literally start by defining a
joint distribution function P (x 1, . . ., x,) on all propositions and their combinations, and that
this function should serve as the sole basis for all inferred judgments. As a result, even simple

tasks such as computing the impact of an evidence ¢ on a hypothesis & via
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appear to require a horrendous number of meaningless arithmetic operations, unsupported by
familiar mental processes. Another example is the striking disparity between traditional numeri-
cal definitions of independence (e.g. P (k,e) =P (h) " P(e))and the ease and conviction with
which people identify conditional independencies, being so unwilling to provide precise numeri-

cal estimates of probabilities.

However, other representations of uncertain knowledge are available, which provide a

more faithful model of human reasoning, and still comply with the basic tenets of probability



theory. Dependency-graph representations, in which the links signify direct probabilistic depen-
dencies among semantically-related propositions, are the most appealing candidates because
they are robust to numerical imprecisions. They permit people to express essential qualitative
relationships and preserve them despite sloppy assignment of numerical estimates. An integral
part of dependency-graph models of reasoning is the assumption that the basic steps invoked
while people query and update their knowledge correspond to local mental tracings of links in
these graphs and this, in turn, determines what kind of operations people consider "psychologi-
cally meaningful”. Bayesian nerworks offer an effective formalism for describing and control-

ling such graph operations.

Section 2 summarizes the properties of Bayesian networks and of a Belief Maintenance
System (BMS) that performs inferences within such networks [Pearl, 1985a]. The impact of
each new evidence is viewed as a perturbation that propagates through the network via local
communication among neighboring concepts. We show that in reasonably sparse networks such
autonomous propagation mechanism can support both predictive and diagnostic inferences, that
it is guaranteed to converge in time proportional to the network’s diameter, and that every pro-
position is eventually accorded a measure of belief consistent with the axioms of probability

theory.

Section 3 shows that the current trend of abandoning probability theory as the standard
formalism for managing uncertainty is grossly premature--taking graph propagation as the basis
for probabilistic reasoning nullifies most objections against the use of probabilities in reasoning

systems. For example, the graph representation allows us to:



Construct consistent probabilistic knowledge-bases without collecting “massive amounts

of data".
Admit judgmental evidence at any level of abstraction.

Ensure that evidence in favor of a hypothesis not be construed as partially supporting its

negation.

Postpone judgement.

Distinguish between various types of uncertainty.

Trace back the sources of beliefs and produce sound explanations.

Optimize the acquisition of data.



2. BELIEF MAINTENANCE USING PROBABILITIES
2.1  Bayesian Networks

Bayesian Networks are directed acyclic graphs in which the nodes represent propositions
(or variables), the arcs signify the existence of direct causal influences between the linked pro-

positions, and the strengths of these influences are quantified by conditional probabilities (Figure

1).

Figure 1

Thus, if the graph contains the variables x|, . . . ,x,, and S; is the set of parents for variable x;,
then a complete and consistent quantification can be attained by specifying, for each node x;, an
assessment P '(x; | ;) of P(x; | S;). The product of all these assessments,

Py, -, %) =TTP(%1S) (1)
constitutes a join.t-probability model which supports the assessed quantities. That is, if we com-
pute the conditional probabilities P (x; | S;) dictated by P (x4, . . ., x,), the original assessments
are recovered. Thus, for example, the distribution corresponding to tHe graph of Figure 1 can be

written by inspection:

P (x1,X0%3X4.x5%6) = P (x| x5) P(x5|x2x3) P(xg|x1x2) P(x3]x1) Px2]x1) P(xy)-



An important feature of Bayes network is that it provides a clear graphical representation
for the essential independence relationships embedded in the underlying model. The criterion
for detecting these independencies is based on graph separation: namely, if all paths between x;
and x; are "blocked" by a a subset S of variables, then x; is independent of x; given the valués
of the variables in §. Thus, each variable x; is independent of both its siblings and its
grandparents, given the values of the variables in its parent set S;. A path is "blocked" if it con-
tains an instantiated variable between two diverging or two cascaded arrows. A different cri-
terion holds for converging arrows: the connection between two arrows converging at node x;
is normally "blocked", unless x; or any of its descendants is instantiated. In Figure I, for exam-
ple, x5 and x5 are independent given S| = {x} or S, = {x ,x4}, because the two paths between
x4 and x 5 are blocked by either one of these sets. However, x, and x3 may not be independent
given $3 = {x,x4}; because x ¢, as a descendant of x 5, "unblocks” the head-to-head connection

at x 5, thus opening a pathway between x, and x 5.
2.2  Belief Propagation in Bayesian Networks

Once a Bayesian network is constructed, it can be used to represent the generic causal
knowledge of a given domain, and can be consulted to reason about the interpretation of specific
input data. The interpretation process involves instantiating a set of variables £ corresponding
to the available evidence and calculating its impact on the probabilities of a set of variables H
designated as hypotheses. In principle, this process can be executed by an external interpreter
who may have access to all parts of the network and may use its own computational facilities to
store and manipulate intermediate results. An extreme example would be to calculate P (H | E)

using the ratio definition P (H, E )/P (E)) (see Introduction). However, the sequence of steps fol-



lowed by such an interpreter would seem foreign to human reasoning, and would not be defensi-

ble by a psychologically meaningful explanation.

A more transparent interpretation process results when we restrict the computation to
take place at the knowledge level itself, not external to it. That means that the links in the net-
work are the only pathways and activation centers that direct and propel the flow of data in the
process of querying and updating beliefs. Accordingly, we imagine that each node in the net-
work is designated a separate processor which both maintains the parameters of belief for the
host variable and manages the communication links to and from the set of neighboring, logically
related, variables. The communication lines are assumed to be open at all times, i.e., each pro-
cessor may at any time examine the messages received from its neighbors and compare them to
its own parameters. If the compared quantities satisfy some local constraints, no activity takes
place. However, if any of these constraints is violated, the responsible node is activated to revise
its violating parameter and transmit new messages to its neighbors. This, of course, will ac-
tivate similar revisions at the neighboring nodes and will set up a multidirectional propagation

process, until equilibrium is reached.

The fact that evidential reasoning involves both top-down (predictive) and bottom-up
(diagnostic) inference‘s has caused apprehensions that, once we allow the propagation process to
run its course unsupervised, pathological cases of instability, deadlock, and circular reasoning
will develop [Lowrance, 1982]. Indeed, if a stronger belief in a given hypothesis means a greater
expectation for the occurrence of its various manifestations and if, in turn, a greater certainty in
the occurrence of these manifestations adds further credence to the hypothesis, how can one

avoid infinite updating loops when the processors responsible for these propositions begin to



communicate with one another asynchronously?

The key to maintaining stability in bi-directional inference systems lies in storing with
each proposition an explicit record of the sources of its belief. Thus, in addition to its measure
of total belief, each proposition also maintains a list of parameters, called support list, each

representing the degree of support that the host proposition obtains from one of its neighbors.
2.3  Maintaining The Support List

The problems associated with asynchronous propagation of beliefs, have simple solu-
tions if the network is singly connected, namely, if there is one underlying path between any pair
of nodes. These include trees, where each node has a single parent [Pearl, 1982], as well as
graphs with multi-parent nodes, representing events with several causal factors {Kim and Pearl,
1983]. We shall first describe the propagation scheme in singly connected networks and then

show how it can be modified to handle loops.

Consider a fragment of a singly connected Bayesian network, as depicted in Figure 2.
Let variable names be denoted by capital letters, e.g., A, B, X, Y, and their associated values by

subscripted lower case letters, e.g., @, @, -+ - . With each variable A we store the following

three parameter lists:

1. P(A |B, C) -- The fixed conditional probability matrix which relates the variable A to

its immediate causes (parents).

2. 14 (B) -- The current strength of causal (or prospective support, contributed by each in-



coming link, e.g., from B to A, where:
T4 (B) = P (B=b;|evidence connected to A via B) Jj=12,... (1)
3. Ay (A) -- The current strength of diagnostic (or retrospective) support contributed by
each outgoing link, e.g., from A to X, where:

Ax(A) = P (evidence connected to A via X |A=a;) i=12,.. )

Ry '
@ f 7@\

/N

Figure 2

The absolute magnitudes of the elements in each of the A vectors are arbitrary; only their ratios
count. In the case of bivalued (propositional) variables, only a single parameter, the likelihood

ratio, is needed.

The ®—A parameters are delivered to each node by the corresponding neighbors and are
sufficient for calculating the current belief over the values of A:

Bel (A) =P (A=q;|all evidence)

=fp [P(A|B,C), Ay(A), Ay(A), ma (B), 14 (C)]. 3

Similarly, the n—A parameters stored at A are sufficient for calculating the appropriate messages
(also w—)\ parameters) that A should deliver to its corresponding neighbors. These calculations

involve all the stored parameters except the one obtained from the port receiving the message.
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For example:

AMB)=FP(AIB,C) A x(A), hy(A), iy (C)), (4)
Ty(A)=fP(A|B,C), Ay(A), ma(B), My (C)]. &)

The combining functions £}, f , and f , involve only inner products and component-by-

component products [Kim, 1983].

The impact of new evidence propagates through the network by uniform local computa-
tions which may be concurrent, asynchronous, or activated by some goal-oriented strategy.
Upon receiving an activation signal, each processor examines the R—A parameters stored, then
recomputes and transmits the t—A messages for its neighbors. Eqs. (4) and (5) demonstrate that
a perturbation of the causal parameter, 7, will not affect the diagnostic parameter, A, on the same
link and vice versa. The two are orthogonal to each other since they depend on two disjoint sets
of data. Therefore, any perturbation of beliefs due to new evidence propagates through the net-
work and is absorbed at the boundary without reflection. A new equilibrium state is reached

after a finite number of updates which, in the worst case, is equal to the diameter of the network.

This architecture lends itself naturally to hardware implementation capable of real-time
interpretation of rapidly changing data. It also provides a reasonable model of neural nets in-
volved in cognitive tasks such as visual recognition, reading comprehension, and associative re-

trieval, where unsupervised parallelism is an uncontested mechanism.

Special provisions are necessary to support propagation in networks containing loops
(like the one in Figure 1), where parents of common children also possess common ancestors. If

we ignore the existence of loops and permit the nodes to continue communicating with each oth-
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er as if the network was singly-connected, it will set up messages circulating indefinitely around

the loops and the process will not converge to a coherent equilibrium.

The method that we found most promising, called conditioning [Pearl, 1985b], is based
on the ability to change the connectivity of a network and render it singly connected by instan-
tiating a selected group of variables. In Figure 1, instantiating x | to some value would block the
pathway x», x 1, x5 and would render the rest of the network singly connected, where the propa-
gation techniques of the preceding paragraphs are applicable. Thus, if we wish to propagate the
impact of an observed data, say at x g, to the entire network, we first assume x| = 0, propagate
the impact of x ¢ to the variables x», . . ., x5, repeat the propagation under the assumption x; = 1
and, finally, linearly combine the two results weighed by the posterior probability P {x]x¢). It
can also be executed in parallel by letting each node receive, compute, and transmit several sets
of parameters, one for each value of the conditioning variable. This mode of propagation is not
foreign to human reasoning. The terms "hypothetical" or "assumption-based” reasoning, "rea-
soning by cases,” and "envisioning" all refer to the same basic mechanism of selecting a key
variable, binding it to some of its values, deriving the consequences of each binding separately,

and integrating these consequences together.
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3. PROBABILITY IN SELF DEFENSE

3.1  Constructing Consistent Probabilistic Knowledge-Bases Without Collecting " Mas-

sive Amounts of Data"

The stigma of "requiring massive amounts of data" has remained with probabilistic
models since the dark ages of statistical tyranny, when probability was perceived to be primarily
a measure of relative frequency, supported solely by statistical tests. With the advent of the sub-
jective views of probability and the increased awareness in the informational value of expert
opinion, the charge has been somewhat reduced. It was replaced by "requiring an overwhelm-
ingly large number of expert judgments" which, practically speaking, may be as unattainable.
Indeed, if one takes the view that every variable in the Bayes network may depend on all the
other variables, a complete graph ensues, and the number of parémeters required for quantifying

a graph with n binary variables is O (2").

Fortunately, people do not perceive the world to be that cruel and unmanageable but,
rather, adapt internal representations which constitute workable approximations in certain
domains. No expertise could otherwise be developed. Thus, the quélstion of whether probability
theory is appropriate for capturing human expertise depends not on whether the world actually
complies with the approximations made by the probabilistic model builder, but rather on wheth-
er the language of probability permits the model builder to express his/her approximations in a

natural and consistent way.
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The incremental process by which Bayesian networks are constructed is ideal for this
modelling task. It permits people to express explicitly those qualitative relationships perceived
to be essential, and helps preserve these qualities despite the sloppy assignments of numerical
estimates. The addition of any new node x; to the network only requires that the expert identify
a set S; of variables, which "directly bear” on x;, quantify the strength of this local relation, and
make no commitment regarding the effect of x; on other variables, outside S;. Even though

each judgment is preformed locally, their sum total is guaranteed to be consistent.

In many domains the resulting graphs are sparse, (i.e., each variable having a small
number of parents), because people conceptualize causal relationships by forming hierarchies of
small clusters of causal factors. But even in cases where the number of parents & is sizable, es-
timating P (x; | S;) usually requires less than the theoretical number of 2% parameters. This is
because the interactions among the factors in each cluster are normally perceived to fall into one
of a few prestored, prototypical structures, each requiring about k£ parameters. Common exam-
ples of such prototypical structures are: noisy OR gates (i.c., any one of the factors is likely to
trigger the effect), noisy AND gates, and various enabling mechanisms (i.e., factors identified as

having no influence of their own except enabling other influences to become effective).

Admittedly, when an interaction is so complex that it cannot be approximated by any of
the restored prototypes, then 2k parameters are required for specifying P (x; | S;). In such cases,
the same number of parameters would also be needed in any uncertainty formalism, no matter

how clever (unless, of course, it serves to hide the existence of other approximations).

14



3.2  Admitting Judgmental Evidence at All Levels of Abstraction

Imagine having constructed a complex Bayes network representing all factors and beliefs
in an intricate murder trial, then a pathological report R arrives stating that "there is probably an
80% chance that the victim was indeed murdered”. How can this judgmental statement be incor-
porated into the existing knowledge base, assuming that the network already contains the propo-
sition & = "the victim was murdered”, but does not contain any of the pathological findings upon
which the report was based. The difficulty in admitting R stems from the need to reconcile two
apparently conflicting statements: the evidence obtained prior to R may have impartedon /# a
belief P (k) while the report R states P (k) = .80. What should the updated value of P (k) be,

and how should it affect the rest of the network?

This difficulty was one of the motivations behind the development of the Certainty Fac-
tors (CF) formalism [Shortliffe and Buchanan 1975] and made the designer of PROSPECTOR
[Duda et al., 1976] resort to various interpolation techniques. The Bayesian solution to this
problem is rather simple: the impact of new evidence e on a proposition s inside the network

should not be expressed in terms of absolute probability but, rather, as a likelihood ratio.

_ P(elh)
" Pe|~h)

The reason is that in order to properly assimilate an absolute-probability report we must know
exactly how much of the knowledge contained in the network (e.g., crime rate information, wit-
ness testimonies, etc.) was also consulted in the preparation of that report. The likelihood ratio

A, on the other hand, being a truly local relation between e and 4, is independent of any such

consideration.
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If the report is phrased as a likelihood ratio statement, we simply incorporate it by ad-
ding a ﬁew link pointing from & to a "virtual" variable e, quantify the link by A, and propagate
its impact as if ¢ was a confirmed propositional statement. If the report is phrased in terms of
absolute probabilities we must extract from it the value of A by either asking the reporter to re-
veal his starting probability P (k) prior to observing e, or by assuming that the reporter starts the

observations at some standard prior, say P (k) = 1/2. In our case, this assumption leads to

8
A= > =4,

It is interesting to note that an identical assumption has tacitly been incorporated into the
calculus of certainty factors if one interprets CF to stand for (A~1)/(A+1) [Heckerman, 1985;

Grosof, 1985].

3.3  Ensuring That Evidence in Favor of a Hypothesis Would Not Be Construed as Par-

tially Supporting Its Negation

Such apprehensions were part of the desiderata in the development of the CF model.
Shortliffe & Buchanan [1976] observed that an expert who provides the rule R: e => h(0.7)
"may well agree that P (h |e) = 0.7, but he becomes uneasy when he attempts to follow the logi-
cal conclusion that therefore P (not & |e) =0.3". The expert claimed that the observations were
evidence (to degree 0.7) in favor of & and should not be construed as evidence (to degree 0.3)

against /.

This paradox, like the problem of the preceding section, stems from an attempt to give

the rule R ;: e ==> k (0.7) an absolute probability interpretation instead of extracting from it

16



likelihood-ratio information. Probability theory dictates that if the rule R is to be treated as a
stable, modular relationship between e and A, invariant to other information in the system, then
it may only convey likelihood-ratio information. The posterior probability P (k |e), by contrast,
is also sensitive to the prior probability P (4 ) just before observing e. Accordingly, the Baye-
sian practitioner will attempt to explicate the meaning of R in terms of A, hoping to uncover the

invariant relations intended by the expert.

The reason that the example seems paradoxical is that by the phrase: "evidence in favor
of a hypothesis”, we expect to see an increase in the probability of the hypothesis from P (k) to
P(hle) (with P (h |e) > P (h)). On the other hand, viewing the absolute probability
P (not h |e)=0.3 as a fixed property of the rule R somehow conveys the false picture that
P (not k) should increase by some positive factor no matter what its initial value was. No ex-
pert would construe a dramatic drop of P (not k) from, say, 0.99 to 0.3 as supporting the nega-
tion of & [Cheeseman,1985]; however, an increase from P (not k) = 0.01 to 0.3 would rightly
be perceived as contrary to the spirit of the rule R. The likelihood ratio formulation has a built-
in protection against such confusion because it conveys only change information; evidence in
favor of A(i.e., A > 1) will always produce P (% |e) > P (h) while evidence opposing k will be

characterized by A < 1 and result in P (h |e) < P (h).

3.4  Postponing Judgment

People often perceive of a piece of evidence as supporting a set of hypotheses S without
providing any information concerning the relative likelihood of the individual hypotheses in the

set. The need to express an increase of belief in S, while postponing judgment regarding S’s

17



constituents, a major force in the development of the theory of Belief Functions (BF) [Shafer,
1976], has been cited repeatedly as a unique feature of the BF approach [Barnett, 1981] [Gordon
and Shortliffe, 1985] and, unfortunately, has led people to ignore the fact that probability theory

proper is equipped with identical, if not superior, capabilities.

In Sections 3.1 and 3.2, we emphasized the fact that in the Bayes-network formulation
the statement "evidence e bears directly on 4" simply means that ¢ is connected to the network
via a single link, between 4 and e . Thus to specify the effect of e on the entire knowledge base,
the expert need only quantify the relation between e and / (using the likelihood ratio) but, oth-
erwise, make no judgment whatsoever regarding other propositions in the system. It is hard to

imagine a more extreme form of noncommitment.

Critics have sometimes claimed that probabilistic formalisms are incapable of represent-
ing the notions of "total ignorance" or "non-commitment” because an even distribution of proba-
bilities among elements implies an uneven distribution among sets of these elements, and this,
presumably, reflects more knowledge than one is willing to admit. The likelihood-ratio formula-
tion, though, escapes this criticism and captures many of the properties we normally attribute to
the notion of "no commitment”. For example, if an evidence e imparts a likelihood-ratio A to a
set S of mutually exclusive hypotheses, then the probability of every proper subset S” of §
should be modified by the same multiplicative factor. Therefore, if we take the view that the
conversational utterance "commuitting weight" refers to deciding the factors by which the
probabilities are to be modified, a different picture emerges. Unlike absolute probabilities which
are additively conserved, the modifying factors (or weights) are not conserved; we may have a

situation where each singleton hypothesis in S is accorded the weight w and, simultaneously,
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every set of hypotheses (in §) also draws the weight w, perfectly reflecting the notion of neu-
trality. Thus, equal distribution of likelihood-ratio weights amounts to giving complete freedom
to other evidence (as well as to the evidence summarized by prior probabilities) to shape the

final beliefs accorded the subsets of §.

3.5 Distinguishing Various Types of Uncertainty
Consider the following three statements [Raiffa, 1968]:

S 1 - I do not know anything about Baseball.

S, - Both teams are strong, and I know Baseball.

S 5 - Either team has equal chance (50%) of winning tomorrow’s game.

S 1 and S, reflect totally different types of knowledge, yet when it comes to summarizing that
knowledge in probabilistic terms they seem to be encoded by the same lifeless quantifier: 50%,

as in §3. Such realizations have caused many researchers to seek richer representations of un-

certainty outside the framework of probability theory.

These attempts are equivalent to someone rejecting logic because the proposition A is
true” does not, in itself, tell you how the truth of A was established. Logic, however, does not
prevent us from attaching to each proposition in the system a proof which substantiates its truth
value, or, at least, pointers to the key steps in the proof. Doing so is a matter of implementation,

but would not amount to rejecting logic as a guardian of consistency.
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Similar considerations apply to the representation of uncertainty. A detailed description
of the nature and origin of the uncertainty in a proposition Q can, but need not be attached
directly to Q. A portion of the description may be stored with , another portion may reside in
the neighboring propositions and yet another portion may be traced back to remote sections of
the network. Once we have an effective mechanism of passing information through the net-
work, it can be readily fetched from various locations and used to reconstruct the description
whenever the need arises, and at whatever level of detail. The important thing is that all mes-
sages retain their probabilistic meaning, so that they can be manipulated in accordance with the

consistency-guarding rules of probability calculus.

Let us be more specific about these possibilities. In our Baseball example, the network
underlying S ; would be totally different from that supporting S,. Even though the total belief
calculated for the proposition S 5 attains the value of 0.5 in both cases. The n—A parameters
entering the calculations would be totally different, and these are stored explicitly, to attest the
nature of the difference. In the case of §,, Bel (S ;) would most likely be composed of T = .5
and A = 1, indicating no evidential support. In the case of §,, on the other hand, the proposition
S 3 would most likely be imbedded in a rich network of arguments and indicators which balance
each other out, namely, many of §4’s successors will contribute A’s greater than unity (favoring

S 1) and many A’s smaller than unity (opposing S 3).

In light of the capability of Bayes networks to maintain and update an explicit list of
source-identifying parameters (% and A) it is hard to understand statements such as [Quinlan
1982]: "It is only in systems using a two-valued approach where the values are probabilities that

there is a firm basis for detecting general inconsistency”, {presumably because} "the single value
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combines the evidence for and against A without indicating how much there is of each”. True,
"the probability of A in the light of £ might have the same value when no evidence in E is

relevant to A as when E contains strong but counterbalancing arguments for A and against A".
However, given that a Bayes network also maintains the 1—A support list, it becomes extremely

easy to tell these two situations apart.

3.6  Tracing Back the Origin of Belief to Produce Sound Explanations

The message-passing operations of BMS have a clear intuitive appeal and, therefore, can
be directly translated into meaningful linguistic descriptions. For example, if proposition X (see
Figure 2) delivers a message Ay'(A) to A that is significantly larger than the previous message
Ax(A), it is an easy matter to generate the statement: "the belief in A has increased due to new
evidence in favor of X". If the user insists on further identifying the evidence responsible for

the change in Bel (A), it is possible to trace back the support parameters down to the bare data.

When a recommendation is finally issued by the system, it can be justified by a similar
process, tracing the skeleton of an explanation subtree only along the parameters indicating sub-
stantial amounts of accumulated support. In general, such an explanation subtree may have
disconnected components (i.e., a forest) indicating the existence of conflicting evidence which
cancel each other’s impact at higher levels of the graph. In such a case, it would be easy to coin
the sentence: "Even though the occurrence of E | constitutes a strong indication for A, having

’

observed E , sheds serious doubt on its significance in determining B ".
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The profile of the support list surrounding a given proposition can also be used to make a
proper distinction between the terms: "probable", "plausible, and "possible". Event A is prob-
able if Bel (A ) is sufficiently high. "A is plausible” usually means that there are strong argu-
ments in favor of A but not a strong evidence supporting it. Since the T parameters indicate the
degree of causal support, and since causal dependence is normally associated with predictive ar-
guments based on "first-principles”, a plausible event will be characterized by high ’s and low
A’s. A "possible" event is one that has the potential of being confirmed by some conceivable but
yet unobserved evidence. Such event can be readily identified either by simulating the effect of
future observations, or by explicitly maintaining with each proposition a parameter indicating its

potential for increased (or decreased) belief due to pending future evidence.

3.7  Optimizing the Acquisition of Data and Recommending Actions with Meaningful

Guarantees

Techniques for accomplishing these two objectives are thoroughly discussed in the litera-
ture on Pattern-Recognition (under the category "feature-selection”) and Decision Analysis [Ho-
ward, 1984], and will not be repeated here. It should be noted, though, that any formalism
which supports these tasks must also permit inferences to flow both ways: from hypotheses to
evidence as well as from evidence to hypothesis. In MYCIN, for example, where only the latter
is activated, the control strategy cannot distinguish between a prénu'sé likely to be confirmed and
a premise likely to be refuted; both are pursued with equal vigor. On the other hand, systems
like PROSPECTOR [Duda et al., 1976] and MEDAS [Ben-Bassat, 1980], both based on proba-

bility calculus, were successful in employing economical data-acquisition strategies.
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CONCLUSIONS

Probability theory is known to have the following unique features: 1) The basic assump-
tions and proposed approximations are psychologically meaningful. 2) It supports bi-
directional inferences. 3) It employs parameters that, at least in principle, can be submitted to
empirical tests. 4) It provides prescriptive guidance for decisions, with meaningful guarantees.
In this paper we examined whether probability calculus can also meet the computational objec-

tives of intelligent reasoning systems:
1. Knowledge-based modularity
2. Intuitive transparency of the elementary inference steps

3. Flexibility of control

The Belief Maintenance System described is shown to meet these objectives. We suggest that
the next uncertainty calculus the reader is tempted to adopt or to invent be subjected to similar

examinations.
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