
8 Appendix
8.1 Proof of Theorem 1
We first prove three lemmas.
Lemma 5. The z-specific PNS P (yx, y

′
x′ |z) are bounded as

follows:

max


0

P (yx|z)− P (yx′ |z)
P (y|z)− P (yx′ |z)
P (yx|z)− P (y|z)

 ≤ z-PNS (5)

min


P (yx|z)
P (y′x′ |z)

P (y, x|z) + P (y′, x′|z)
P (yx|z)− P (yx′ |z)+

+P (y, x′|z) + P (y′, x|z)

 ≥ z-PNS (6)

Proof. Since for any three events A, B and C, we have

P (A,B|C) ≥ max[0, P (A|C) + P (B|C)− 1] (7)

therefore, we have

z-PNS ≥ max[0, P (yx|z) + P (y′x′ |z)− 1]

= max[0, P (yx|z)− P (yx′ |z)]

Also,

z-PNS = P (yx, y
′
x′ , x|z) + P (yx, y

′
x′ , x′|z)

= P (y, y′x′ , x|z) + P (yx, y
′, x′|z) (8)

= P (x, y|z)− P (x, y, yx′ |z) + P (yx, y
′, x′|z)

= P (x, y|z)− P (y, yx′ |z) +
P (x′, y, yx′ |z) + P (yx, y

′, x′|z)
= P (x, y|z)− P (y, yx′ |z) +

P (x′, y|z) + P (yx, y
′, x′|z)

= P (y|z)− P (y, yx′ |z) + P (x′, y′, yx|z) (9)
= P (y|z)− P (y, yx′ |z) +

P (y′, yx|z)− P (x, y′, yx|z)
= P (y|z)− P (y, yx′ |z) +

P (y′, yx|z)− P (x, y′, y|z)
= P (y|z)− P (y, yx′ |z) + P (y′, yx|z) (10)

By (10),

z-PNS ≥ P (y|z)− P (y, yx′ |z)
≥ P (y|z)− P (yx′ |z)

Also by (10) and (7),

z-PNS ≥ P (y|z)− P (y|z) + P (y′, yx|z)
≥ P (y′|z)− P (y′x|z)
= P (yx|z)− P (y|z)

Thus, the lower bounds are proved.
And since for any three events A, B and C, we have

P (A,B|C) ≤ min[P (A|C), P (B|C)] (11)

therefore, we have

z-PNS ≤ min[P (yx|z), P (y′x′ |z)]
Also, by (8),

z-PNS ≤ P (x, y|z) + P (x′, y′|z)
Similarly to (9), we have

z-PNS = P (y′|z)− P (y′, y′x|z) + P (x, y, y′x′ |z)
= P (y′, yx|z) + P (x, y, y′x′ |z)
= P (yx|z)− P (y, yx|z) + P (x, y, y′x′ |z)
= P (yx|z)− P (y, yx|z) +

P (x, y|z)− P (x, y, yx′ |z)
= P (yx|z)− P (y, yx|z) + P (x, y|z)−

P (yx′ |z) + P (x′, y, yx′ |z) +
P (x, y′, yx′ |z) + P (x′, y′, yx′ |z)

= P (yx|z)− P (y, yx|z) +
P (x, y|z)− P (yx′ |z) +
P (x′, y|z) + P (x, y′, yx′ |z)

= P (yx|z)− P (yx′ |z) + P (x′, y|z) +
P (x, y|z)− P (y, yx|z) + P (x, y′, yx′ |z)

= P (yx|z)− P (yx′ |z) + P (x′, y|z) +
P (x, y|z)− P (x, y, yx|z)− P (x′, y, yx|z) +
P (x, y′|z)− P (x, y′, y′x′ |z)

= P (yx|z)− P (yx′ |z) + P (x′, y|z) +
P (x, y′|z)− P (x, y′, y′x′ |z)− P (x′, y, yx|z)

≤ P (yx|z)− P (yx′ |z) + P (x′, y|z) + P (x, y′|z)
Thus, the upper bounds are proved.

Lemma 6.
P (yx, y

′
x′ |z)− P (y′x, yx′ |z)

= P (yx|z)− P (yx′ |z) (12)

Proof.

P (yx, y
′
x′ |z)− P (yx′ , y′x|z)

= P (yx, y
′
x′ , x|z) + P (yx, y

′
x′ , x′|z)−

P (yx′ , y′x, x|z)− P (yx′ , y′x, x
′|z)

= P (y, y′x′ , x|z) + P (yx, y
′, x′|z)−

P (yx′ , y′, x|z)− P (y, y′x, x
′|z)

= P (y, y′x′ , x|z)− P (yx′ , y′, x|z) +
P (yx, y

′, x′|z)− P (y, y′x, x
′|z)

= P (x, y|z)− P (y, yx′ , x|z)− P (yx′ , y′, x|z) +
P (yx, y

′, x′|z) + P (y, yx, x
′|z)− P (x′, y|z)

= P (x, y|z)− P (yx′ , x|z) + P (yx, x
′|z)− P (x′, y|z)

= P (x, y|z)− P (yx′ |z) + P (yx′ , x′|z) +
P (yx|z)− P (yx, x|z)− P (x′, y|z)

= P (x, y|z)− P (yx′ |z) + P (y, x′|z) +
P (yx|z)− P (y, x|z)− P (x′, y|z)

= P (yx|z)− P (yx′ |z)
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Lemma 7. The counterfactual expression f(α) =
αP (yx, y

′
x′ |z) − (1 − α)P (yx′ , y′x|z) for any real num-

ber α are bounded as follows.
Case 1: α ∈ (−∞, 0.5)

max



αP (yx|z)− (1− α)P (yx′ |z)

(1− α)P (yx|z) + αP (y′x′ |z) + α− 1

(2α− 1)P (y, x|z)+
+(2α− 1)P (y′, x′|z)]+

+(1− α)[P (yx|z)− P (yx′ |z)]

α[P (yx|z)− P (yx′ |z)]+
+(2α− 1)P (y, x′|z)+
+(2α− 1)P (y′, x|z)


≤ f(α) (13)

min



(1− α)[P (yx|z)− P (yx′ |z)]

α[P (yx|z)− P (yx′ |z)]

(2α− 1)P (y|z)+
+(1− α)P (yx|z)− αP (yx′ |z)

αP (yx|z)−
−(1− α)P (yx′ |z)− (2α− 1)P (y|z)


≥ f(α) (14)

Case 2: α ∈ [0.5,∞)

max



(1− α)[P (yx|z)− P (yx′ |z)]

α[P (yx|z)− P (yx′ |z)]

(2α− 1)P (y|z)+
+(1− α)P (yx|z)− αP (yx′ |z)

αP (yx|z)−
−(1− α)P (yx′ |z)− (2α− 1)P (y|z)


≤ f(α) (15)

min



αP (yx|z)− (1− α)P (yx′ |z)

(1− α)P (yx|z) + αP (y′x′ |z) + α− 1

(2α− 1)P (y, x|z)+
+(2α− 1)P (y′, x′|z)]+

+(1− α)[P (yx|z)− P (yx′ |z)]

α[P (yx|z)− P (yx′ |z)]+
+(2α− 1)P (y, x′|z)+
+(2α− 1)P (y′, x|z)



≥ f(α) (16)

Proof. By lemma 6,

f(α)

= αP (yx, y
′
x′ |z)− (1− α)P (yx′ , y′x|z)

= αP (yx, y
′
x′ |z)−

(1− α)(P (yx, y
′
x′ |z)− P (yx|z) + P (yx′ |z))

= (2α− 1)P (yx, y
′
x′ |z) +

(1− α)(P (yx|z)− P (yx′ |z)) (17)

By lemma 5, substituting (5) and (6) into (17), case 1 and 2
in lemma 7 hold.

Now, let’s prove theorem 1.

Proof.

f(β, γ, θ, δ)

= βP (yx, y
′
x′ |z) + γP (yx, yx′ |z) +

θP (y′x, y
′
x′ |z) + δP (y′x, yx′ |z)

= βP (yx, y
′
x′ |z) + γ[P (yx|z)− P (yx, y

′
x′ |z)] +

θ[P (y′x′)− P (yx, y
′
x′ |z)] + δP (y′x, yx′ |z)

= γP (yx|z) + θP (y′x′ |z) +
(β − γ − θ)P (yx, y

′
x′ |z)− (−δ)P (y′x, yx′ |z) (18)

By lemma 7, let α = β−γ−θ
β−γ−θ−δ , substituting (13) to (16) into

(18), theorem 1 hold.

8.2 Proof of Theorem 4
Lemma 8. If Y is monotonic relative to X , z-specific
PNS = P (yx, y

′
x′ |z) is identifiable whenever the causal

effects P (yx|z) and P (yx′ |z) are identifiable:

PNS = P (yx, y
′
x′ |z)

= P (yx|z)− P (yx′ |z).
Proof. Since yx′ and y′x′ are complementary, so yx′ ∨ y′x′ =
true, therefore, we have

yx = yx ∧ (yx′ ∨ y′x′) = (yx ∧ yx′) ∨ (yx ∧ y′x′) (19)

Similarly,

yx′ = yx′ ∧ (yx ∨ y′x)

= (yx′ ∧ yx) ∨ (yx′ ∧ y′x)

= yx′ ∧ yx (20)

Since monotonicity entails that yx′ ∧ y′x = false.
Substituting (20) into (19) yields

yx = yx′ ∨ (yx ∧ y′x′)

Thus, for any z, we have,

yx ∧ z = (yx′ ∧ z) ∨ (yx ∧ y′x′ ∧ z) (21)

Taking the probability of (21) and using the disjointness of
yx′ and y′x′ , we obtain

P (yx, z) = P (yx′ , z) + P (yx, y
′
x′ , z)



Therefore,

P (yx|z) = P (yx′ |z) + P (yx, y
′
x′ |z)

or

P (yx, y
′
x′ |z) = P (yx|z)− P (yx′ |z) (22)

Now, let’s prove Theorem 4.

Proof.

f(β, γ, θ, δ)

= βP (yx, y
′
x′ |z) + γP (yx, yx′ |z) +

θP (y′x, y
′
x′ |z) + δP (y′x, yx′ |z)

= β[P (yx|z)− P (yx, yx′ |z)] +
γ[P (yx′ |z)− P (y′x, yx′ |z)] +
θ[P (y′x|z)− P (y′x, yx′ |z)] + δP (y′x, yx′ |z)

= β[P (yx|z)− P (yx′ |z) + P (y′x, yx′ |z)] +
γ[P (yx′ |z)− P (y′x, yx′ |z)] +
θ[P (y′x|z)− P (y′x, yx′ |z)] + δP (y′x, yx′ |z)

= βP (yx|z) + (γ − β)P (yx′ |z) + θP (y′x|z) +
(β + δ − γ − θ)P (y′x, yx′ |z)

Thus, with β + δ = γ + θ, theorem 4 hold.
Also if monotonicity, we have,

P (yx′ , y′x|z) = 0 (23)

By lemma 8, substituting (23) and (22) into (18), theorem 4
holds.
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