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ABSTRACT

Online learning agents possess the capacity to learn from
both personalized experimentation as well as the observed
behaviors of other agents interacting with the environment.
However, data collected through these different modalities
may not be naively combined due to changes in the decision-
making context, including factors that may be unobserved.
The data-fusion problem addresses how information collected
under such disparate conditions (observationally, experimen-
tally, and counterfactually) can be combined to yield more
informative results than the independent datasets alone. The
present work provides a recipe for combining multiple datasets
to accelerate learning in a variant of the Multi-Armed Ban-
dit problem with Unobserved Confounders (MABUC). We
demonstrate this data-fusion approach through an enhanced
Thompson Sampling bandit player, and support its efficacy
with extensive simulations.
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1. INTRODUCTION

As active learning agents become increasingly integrated
into real-world environments, they gain new sources of in-
formation related to their tasks at hand. Not only do these
agents possess the ability to interact with their environ-
ments (choosing actions, receiving feedback on the quality
of their choices, and then modifying future actions accord-
ingly), they may also observe other agents doing the same.
However, with opportunities to adjust policies from sources
other than personal experimentation come new challenges of
“transfer” in learning. In particular, agents should be wary of
how observed behavior generalizes (i.e., transfers) to them,
how these observations should be combined with the agent’s
own experience, and how such a combination can be robustly
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maintained in the face of changing environmental factors.

In this work, we consider how data collected by an online
agent under various conditions (e.g., experimental vs. non-
experimental settings) can be combined to improve perfor-
mance in a reinforcement learning task. This challenge is
not without precedent, as recent studies have investigated
dataset transportability, though in offline domains [3]. Oth-
ers have studied scenarios in which agents learn from expert
teachers in the inverse reinforcement learning problems [1,
9]. Furthermore, recent results from causal analysis have ex-
plored personalized decision-making for agents in reinforce-
ment learning tasks [2, 18], but did not provide a complete
framework for fusing the disparate dataset classes that we
will introduce shortly.

Environments for which an agent (1) observes all state
variables and (2) possesses a fully specified model (in which
all factors relating contexts, actions, and their associated
rewards are known) are trivial from a learning transfer per-
spective; in such scenarios, collected data is homogeneous
because all factors that may introduce bias between samples
can be controlled. Conversely, in this paper, we focus on the
challenges that arise due to unobserved confounders (UCs),
namely, unmeasured variables that influence an agent’s nat-
ural action choice as well as the feedback from that action®.
Such factors are particularly subtle when left uncontrolled
due to their invisible nature and potential to introduce con-
founding bias [12, Chs. 3,6].

Because our agent’s goal is to quickly learn an optimal
policy by consolidating data collected from observing other
agents and data collected through its own experience, UCs
pose a fundamental challenge: the results from seeing an-
other agent performing an action are not necessarily inter-
changeable with those from doing the action itself. As such,
throughout this paper, we will differentiate three classes of
data that may be employed by an autonomous agent to in-
form its decision-making:

1. Observational data is gathered through passive ex-
amination of the actions and rewards of agents other
than the actor, but for whom the actor is assumed to
be exchangeable.

2. Experimental data is gathered through randomiza-
tion, or from fixed policies that are not reactive to the
environmental state.

!The natural (or "observational“) regime represents when
the agent is not influenced by external events and makes
decisions following her standard protocol [12, Ch. 3].
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Figure 1: Plots of M AB algorithms performance vs.
RDC in the Greedy Casino scenario. Note that all
algorithms but 7S®P° experience linear regret.

3. Counterfactual data represents the rewards associ-
ated with actions under a particular (or “personalized”)
configuration of the UCs.

In the remainder of this work, we demonstrate how these
data types can be fused to facilitate learning in a variant
of the Multi-Armed Bandit problem with Unobserved Con-
founders (MABUC), first discussed in [2]. In traditional
bandit instances (e.g., [14, 10, 6, 15, 4]), an agent is faced
with K € N, K > 2 discrete action choices (often called
“arms”), each with its own, independent, and initially un-
known reward distribution. The agent’s task is to maximize
cumulative rewards over a series of rounds, which requires
learning about the underlying reward distributions associ-
ated with each arm. In the MABUC (formalized shortly),
agents are faced with the same task, except that UCs mod-
ify the agent’s arm-choice predilections and payout rates at
each round, and the dimensionality and functional form of
the UCs are unknown.

Though the data-fusion problem is an ongoing exploration
in the data sciences [3, 11, 5], this paper is the first to study
online learning techniques in MABUC settings that combine
data sampled under disparate conditions. Specifically, our
contributions are as follows:

1. Using counterfactual calculus, we prove that counter-
factual quantities can be empirically estimated by ac-
tive agents (Sec. 4).

2. We demonstrate how observational, experimental, and
counterfactual datasets can be combined through a
heuristic for MABUC agents (Sec. 4).

3. We then develop a variant of the Thompson Sampling
algorithm that implements this new heuristic, and run
extensive simulations demonstrating its faster conver-
gence rates compared to the current state-of-the-art
(Sec. 5).

2. THE GREEDY CASINO REVISITED

In this section, we consider an expanded version of the
Greedy Casino problem introduced in [2]. In its new floor’s
configuration, the Greedy Casino is considering four new
themed slot-machines (instead of the two used in the previ-
ous version) and wishes to make them as lucrative as pos-
sible. After running a battery of preliminary tests, the

Table 1: (a) Payout rates decided by reactive slot
machines as a function of arm choice X, sobriety D,
and machine conspicuousness B. Players’ natural
arm choices (fz = B+2D) under D, B are indicated by
asterisks. (b) Payout rates according to the obser-
vational, F[y1|X], and experimental E[y:|do(X)], dis-
tributions, where Y = y; represents winning (shown
in the table).

casino executives discover that two traits in particular pre-
dict which of the four machines that a gambler is likely to
play: whether or not the machines are blinking (denoted
B € {0,1}), and whether or not the gambler is drunk (de-
noted D € {0,1}). After consulting with a team of psy-
chologists and statisticians, the casino learns that any arbi-
trary gambler’s natural machine choice can be modeled by
the structural equation [12]: X «+ fx(B,D) = B+ 2% D
if the four machines are indexed as X € {0,1,2,3}. The
casino also learns that its patrons have an equal chance of
being drunk or not (i.e., P(D = 1) = 0.5) and decide to
program their new machines to blink half of the time (i.e.,
P(B=1)=0.5).

To prevent casinos from exploiting their patrons, a new
gambling law stipulates that all slot machines in the state
must maintain a minimum 30% win rate. Wishing to lever-
age their new discovery about gamblers’ machine choice pre-
dilections while conscious of this law, the casino implements
a reactive payout strategy for their machines, which are
equipped with sensors to determine if their gambler is drunk
or not (assume that the sensors are perfect at making this de-
termination). As such, the machines are programmed with
the payout distribution illustrated in Table 1a.

After the launch of the new slot machines, some observant
gamblers note that players appear to be winning only 20% of
the time, and report their suspicions to the state gambling
commission. An investigator is then sent to the casino to de-
termine the merit of these complaints, and begins recruiting
random gamblers from the casino floor to play at randomly
selected machines, despite the players’ natural predilections.
Surprisingly, he finds that players in this experiment win
40% of the time, and declares that the casino has commit-
ted no crime. Meanwhile, the casino continues to exploit
players’ gambling predilections, paying them 10% less than
the law-mandated minimum. Plainly, gamblers are unaware
of being manipulated by the UCs B, D, and of the preda-
tory payout policy that the casino has constructed around
them. The collected data is summarized in Table 1b; the
second column (E[y1|X]) represents the observations drawn
from the casino’s floor while the third (E[y:1|do(X)]) rep-
resents the randomized experiment performed by the state



investigator (both with large sample sizes).

In an attempt to find a better gambling strategy, an obser-
vant habitué decides to run a battery of experiments using
standard MAB algorithms (e.g., e-greedy, UCB, Thomson
Sampling) as well as an algorithm following an approach pre-
sented in [2] known as the Regret Decision Criterion (RDC)
(reviewed in the next section). Importantly, the RDC agent
lacks the capability to identify and observe the UCs. The
results of her experiments are depicted in Fig. 1. She notes,
somewhat surprised, that all algorithms which ignore the in-
fluence of the UCs (i.e., all but RDC) perform equivalently
to the randomized experiment conducted by the investiga-
tor. Noting the differences in the payout rates between the
observational and experimental data, she ponders how this
can be the case and how she might use these datasets to
improve her gambling strategy and winnings.

3. BACKGROUND

In this section, we formalize the MABUC problem in the
language of Structural Causal Models (SCMs), which will
allow us to articulate the notions of observational, experi-
mental, and counterfactual distributions as well as formalize
the problem of confounding due to the influence of UCs.

Each SCM M is associated with a causal diagram G and
encodes a set of endogenous (or observed) variables V' and
exogenous (or unobserved) variables U; edges in G corre-
spond to functional relationships relative to each endoge-
nous variable V; € V., namely, V; « fi(PA;,U;), where
PA; CV\V;,and U; C U; and a probability distribution
over the exogenous variables P(U = u).

Each M induces a set of: (1) observational distributions
P(X = z) for X C V, which represent the “natural” world,
without external interventions; (2) experimental (a.k.a. in-
terventional) distributions P(Y = y|do(X = z)) for X,Y C
V', which represent the world in which X is forced to the
value = despite any causal influences that would otherwise
functionally determine its value in the natural setting; and
(3) cg)unterfactual distributions, defined next [12, pp. 203-
205].

Definition 3.1. (Counterfactual) [12, pp. 204] Let X
and Y be two subsets of endogenous variables in V. The
counterfactual sentence “Y would be y (in situation U = u),
had X been z” is interpreted as the equality with Y (u) =
y, where Yz (u) encodes the solution for Y in a structural
system where for every V; € X, the equation f; is replaced
with the constant x.

For example, the counterfactual expectation E[Y, = y|X =
2] is well-defined, even when = # ', and is read “The expec-
tation that Y = y had X been x given that X was observed
to be z’”. Despite being logically valid statements, counter-
factual quantities must be estimated from either a fully spec-
ified model, or, in the absence of such, from data. In offline
settings, however, counterfactual quantities are not empiri-
cally estimable (namely, when the antecedent of the coun-
terfactual contradicts the observed value), except in some
special cases [12, Ch. 9]. The reason is that if we submitted
the subject to condition X = z, we cannot go back in time
before exposure to treatment and submit the same subject
to a new condition X = 2’. As is well understood in the

2For a comprehensive review of SCMs, we refer readers to
[12, Ch. 7).

causal inference literature, this procedure is not the same as
first exposing a random unit to condition X = z’ since the
ones who initially were inclined to act as X = x are somehow
different than the randomly selected subject. That said, we
will prove (in Sec. 4) that online learning agents possess the
means to estimate counterfactuals directly.

In practice, the observational and experimental distribu-
tions can be estimated through procedures known as random
sampling and random experimentation, respectively. Con-
founding bias emerges when UCs are present and can be
seen through the difference between these two distributions,
P(Y|do(X = z)) — P(Y|X = z) [12, Ch. 6]. The absence of
UCs implies that P(Y |do(X = z)) = P(Y|X = z), which al-
lows random sampling (instead of a randomized experiment)
to estimate the experimental distribution.

The contrast between observational and experimental data
is mirrored in the distinction between actions (which rep-
resent reactive “choices” resulting from an agents’ environ-
ments, beliefs, and other causes) and acts (which represent
deliberate choices resulting from rational decision-making or
interventions that sever the causal influences of the system
[12, Sec. 4.1]). To tie these concepts to the MABUC prob-
lem, one important tool introduced in [2] is what is known
as the agent’s intent.

Definition 3.2. (Intent) Consider a SCM M and an en-
dogenous variable X € V that is amenable to external in-
terventions and is (naturally) determined by the structural
function f.(PAg,U,), where PA, C V represents the ob-
served parents of X, and U, C U are the UCs of X. After
realization PA, = pa, and U, = u, (without any external
intervention), the realization I = fy(pas,us) is called the
agent’s intent.

Thus, we can consider intent as an agent’s chosen action
before its execution, serving as a proxy for any influencing
UCs.® To ground these notions, consider again the Greedy
Casino example in which the gamblers’ intents are enacted
on the unperturbed casino floor, but are then averaged over
during the investigator’s randomized study.

We can now put these observations together and explicitly
define the MABUC problem:

Definition 3.3. (K-Armed Bandits with Unobserved
Confounders) A K-Armed bandit problem (K € N, K >
2) with unobserved confounders (MABUC, for short) is de-
fined as a model M with a reward distribution over P(u)
where, for each round 0 < t < T,t € N:

1. Unobserved confounders: Uy represents the unobserved
variable encoding the payout rate and unobserved in-
fluences to the propensity to choose arm x; at round
t.

2. Intent: I, € {i1,...,ir} represents the agent’s intended
arm choice at round ¢ (prior to its final choice, X¢)
such that Iy = fi(pas,,us).

3. Policy: m € {z1, ,mk} denotes the agent’s decision
algorithm as a function of its history (discussed shortly)

3Def. 3.2 does not require that all of the agent’s influencing
factors be measured or acknowledged. This definition acco-
modates the fact that an agent’s decisions can be influenced
by unknown factors, an observation that is not new to the
cognitive sciences [16].



Figure 2: Model for each round of the MABUC deci-
sion process. Solid nodes denote observed variables
and open nodes represent unobserved variables. The
square node indicates a decision point made by the
agent’s strategy.

and current intent, fr(hs, it)4.

4. Choice: Xy € {1, ..., xr} denotes the agent’s final arm
choice that is “pulled” at round ¢, x+ = fz (7).

5. Reward: Y: € {0, 1} represents the Bernoulli reward (0
for losing, 1 for winning) from choosing arm x; under
UC state u: as decided by y: = fy(z+, ut).

The graphical model in Fig. 2 represents a prototypical
MABUC (Def. 3.3). We also add a graphical representation
of the agent’s history H:, a data structure containing the
agent’s observations, experiments, and counterfactual expe-
riences up to time step t. The means by which these datasets
can be used in the agent’s decision-making are explored at
length in the next section. In summary, at every round ¢ of
MABUC, the unobserved state u; is drawn from P(u), which
then decides i¢, which is then considered by the strategy m:
in concert with the game’s history h:; the strategy makes a
final arm choice, which is then pulled, as represented by x¢,
and the reward y; is revealed.

Based on this definition, the regret decision criterion was
developed.

Definition 3.4. (Regret Decision Criterion (RDC))
[2] In a MABUC instance with arm choice X, intent I =
i, and reward Y, agents should choose the action a that
maximizes their intent-specific reward, or formally:

argmax E[Yx=q = 1|X =] (1)

In brief, RDC prescribes that the arm X = a that max-
imizes the expected value of reward Y having conditioned
on the intended arm X = ¢ should be selected, even when

a # i.
4. FUSING DATASETS

Suppose our agent assumes the role of a gambler in the
Greedy Casino (Sec. 2) and possesses (1) observations of

4This representation clearly distinguishes observational and
experimental settings — 7, copies i; in the former, but ignores
it and listens instead to a random device (e.g., a coin toss)
in the latter.

arm choices and payouts from other players in the casino, (2)
the randomized experimental results from the state investi-
gator, and (3) the knowledge to use intent in its decision-
making for choosing arms by the Regret Decision Crite-
rion (RDC). In other words, the agent begins the MABUC
problem with large samples of observations (E[Y|X]) and
experimental results (E[Y|do(X)]), and will maximize the
counterfactual RDC (E[Yx—=, = 1|X = i]) because it rec-
ognizes the presence of UCs (viz. E[Y|X] # E[Y|do(X)];
see Table 1b). We note that the observational and ex-
perimental data available to our agent contains informa-
tion about its environment, but cannot simply be incor-
porated into the counterfactual maximization criteria (viz.
E[Y|X] # E[Y|do(X)] # E[Yz|2']; see Table 1). So, the
agent can choose to either discard its observations and ex-
periments, and simply gamble by the tenets of RDC, or com-
bine them in an informative way. This section explores the
latter option.

Relating the Datasets

Note that we can write the experimental quantity E[Y|do(X =
z)] in the counterfactual notation E[Yx—.] = E[Yz] reading
“The expected value of Y had X been x.” Relating this
quantity to the RDC, by the law of total probability we can
write E[Y;] as a weighted average of the reward associated
with arm x across all intent conditions, namely:

E[Y:] = E[Yz|z1]P(z1) + ... + E[Yz|zr]|P(zx)  (2)

Examining Eq. 2, we see that the equation is composed of
expressions from our agent’s three datasets (observational,
experimental, and counterfactual). By definition, the LHS of
the equation (E[Y;]) is drawn from the experimental dataset.
On the RHS, we have two types of quantities. Expressions of
the form E[Y;|z'] for which x = 2’ are observational by the
consistency aziom[12, pp. 229], because, despite being writ-
ten in counterfactual notation, when the observation (z')
and antecedent (z) are the same, the counterfactual agrees
with what would have happened in the observational set-
ting; in other words, when the hypothesized action and ob-
served action are the same, the outcome Y does not change,
and so E[Y;|z] = E[Y |z]. However, expressions of the form
E[Y,|z'] for which = # 2’ are indeed counterfactual.

In general, evaluating counterfactuals empirically is not
possible, except for some special cases, such as when the ac-
tion X is binary [12, Ch. 9]. However, RDC asserts that if
one preempts the agent’s decision process when the intent
I = i is about to become a decision (X), ¢ still encodes infor-
mation about the UCs U; (because i = f;(PAx)). This im-
plies that randomizing within intent conditions can lead to
the computation of the counterfactual given by RDC, which
is a special counterfactual also called the effect of treatment
on the treated (ETT) [12, Ch. 7].

In order for us to exploit the properties of this equivalence
to improve the performance of RDC agents in the MABUC
setting, we first demonstrate that RDC indeed measures the
counterfactual quantity of the ETT.

Theorem 4.1. The counterfactual ETT is empirically es-
timable for arbitrary action-choice dimension (i.e., | X| =k
for k > 2) when agents condition on their intent I =i and
estimate the response Y to their final action choice X = a.

PRrROOF. We start by writing the corresponding ETT ex-



pansion and note that,
E[Yx—a|X =1 3)
=Y E[Yx=o|X =i,] =i|P(I =i'|X =) (4)

il

= ZE[YX:aH =i|P(I =i'|X =) (5)
= ZE[Y|do(X =a), I =7|P(I={|X=1i) (6)
= ZE[Y|do(X =a), I =41(i =) (7)

= E[Y|do(X = a),I =i (8)

Eq. (4) expands the ETT using the law of total probability
to sum over all intent conditions. Eq. (5) follows from the
conditional independence Y, L X|I that holds, allowing us
to remove X = i. Eq. (6) follows because intent, by def-
inition, satisfies the counterfactual back-door criterion [13,
Theorem 4.3.1]. Egs. (7,8) follow from the fact that, obser-
vationally, an agent’s final arm choice will always coincide
with their intent (i.e., P(i|z) = 1 Vi = z, 0 otherwise), which
nullifies all summed expressions where the two differ. O

Because Eq. (8) is an interventional quantity, we have
shown that the ETT, a counterfactual expression, can be es-
timated empirically through intent-specific randomization.®
The main advantages of this, now proven, equivalence are
threefold: (1) the empirical estimation of previously uniden-
tifiable counterfactual quantities presents opportunities for
further exploration in causal analysis, (2) the ETT’s pre-
scription for integrating experimental and observational data
(see Eq. 2) permits an interventional data-fusion strategy
when such data is available, and (3) data points sampled
by the agent using intent-specific decision-making are coun-
terfactual in nature, and should therefore be added to the
agent’s counterfactual history. As such, we now consider
that procedures implementing RDC-type randomization can
record intent-specific arm rewards in a data structure similar
to Fig. 3. A second consequence of recording arm-intent-
specific payouts in this fashion is that observational data
may be substituted directly into cells for which the final arm
choice and intent agree (see reference to consistency axiom
below Eq. 2).

Strategies for Online Agents

Having illustrated how the different datasets relate to our
agent in the MABUC setting, we now consider that the
counterfactual expressions in Eq. 2 must be learned by our
agent and are not known at the start of the game. Because of
this finite-sample concern, we propose several simple learn-
ing strategies that exploit the datasets’ relationship while
managing the uncertainty implicit in a MAB learning sce-
nario.

Strategy 1: Cross-Intent Learning. Consider Eq. 2
once more. This holds for every arm X = x, which induces
a system of equations as shown in Fig. 3. Consider a single
cell in this system, say E[Yz, |2w], which we can solve and

5Tt is understood that the ETT can be computed for binary
decisions or when the backdoor criterion holds [12], but it
was not believed to be estimable for arbitrary dimensions
prior to RDC-randomization.
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v
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Figure 3: Counterfactual reward-history table as a
cross of arm choice and intent.

rewrite as:

K
Exin[Ye, o] = [E[Ye,] = Y E[Ye,|2:]P(:)]/P(zw) (9)
iFw
This strategy provides a systematic way of learning about
arm payouts across intent conditions, which is desirable be-
cause an arm pulled under one intent condition provides
knowledge about the payouts of that arm under other in-
tent conditions. This can be depicted graphically, as shown
by row B in Fig. 3 —information about Y, flows from intent

conditions z; # T, to intent x,,.

Strategy 2: Cross-Arm Learning. Consider any three
arms, Tr,Ts, T, such that r # {s,w} and assume we are
interested in estimating the value of E[Yy, |z (our query,
for short). Considering again the equations induced by Eq.
(2), we have,

E[Y,.] = Z E[Yy, |z P(x;) (10)

ElY.,] = ZE[YzS |3 P(:) (11)

Note that each of Egs. (10, 11) share the same intent priors
on our query intent P(z.), so we can solve for P(z.,) in
both equations using simple algebra, which yields,

EYs,] = S5, E[Ye, |2 P(x:)

Plww) = EYa, 0] (12)
EY.) - XK, ElYe, e P(:)
- EVs, o] (13)

Using Eq. (12) and solving for the query in terms of our
paired arm x5, V r # s we have

[ElYe,] = 31 ElYa, 2] Pei)] E[Ya, |2u]

ElYz,] = Xi%, ElYa, |2i] P(x:)

(14)

Eq. (14) illustrates that any non-diagonal cell from the table
in Fig. 3 can be estimated through pairwise arm compar-
isons with the same intent. Put differently, Eq. (14) allows
our agent to estimate E[Yz, |Z] from samples in which any
arm x5 # x, was pulled under the same intent .

In practice, the online nature of the problem can make
some of these pairwise computations noisy due to sampling



variability when x, is an infrequently explored arm. To ob-
tain a more robust estimate of the target quantity, this pair-
wise comparison can be repeated between the query arm and
all other arms with the same intent, and then pooled to-
gether. (Graphically, this can be seen as information about
Yz, |zw flowing from arm zs # z, to z, (under intent z.,) —
column C in Fig. 3.)

One such pooling strategy is to take the inverse-variance-
weighted average.® Formally, we can consider a function
E[Yz, |Tw] = hxarm(Zr, Tw, xs) such that hxarm performs
the empirical evaluation of the RHS of Eq. (14). Addi-
tionally, let crfm- indicate the empirical payout variance for
each arm-intent condition (as from the reward successes and
failures captured by the agent in Table 3). To estimate
our query from all other arms in the same intent through
inverse-variance weighting, we have our now complete, sec-
ond heuristic:

Zf;T hx Arm (Tr, Tw, T3) /02, 20
K
Zi;&r 1/0-72%,1,1,

Strategy 3: The Combined Approach. The payout
estimates for a MABUC algorithm using RDC (Fig. 3) can
be estimated from three different sources:

EXATm[YrT|$w] - (15)

1. Esamp|Ys, |Tw], the sample estimates collected by the
agent during the execution of the algorithm.

2. Eximt[Ys, |Tw], the computed estimate using cross-intent

learning.

3. Exarm|Ys, |Tw], the computed estimate using cross-
arm learning.

Naturally, these three quantities can be combined to obtain
a more robust and stable estimate to the target query.

We employ an inverse-variance weighting scheme so as to
leverage these three estimators, and so we must formulate
a metric for the payout variance associated with each strat-
egy’s computed estimate. To do so, we define an average
variance for each strategy, which is the average over each
sample estimate’s variance (i.e., o2 ;) used in the computa-
tion. Specifically, for the cross-arm approach (Eq. 15), we
have two summations over sample payout estimates E[Y, |z;]
E|Ya,|zi] Vi # w which involve 2(K — 1) terms, plus the nu-
merator’s E[Ys,|zw], giving us a total of 2(K — 1) +1 =
2K — 1 variances to average. The same is true for the cross-
intent apprach (Eq. 9), which involves K — 1 sample vari-
ances to average. When estimating E[Y,, |z.], we can write
the corresponding variances:

1 K K
Farm = 5 ([ ] + [ o] + 0% ]
iFw iFw
1 K
Xint = =7 D e

Finally, to estimate E[Yz,|xw] using our combined ap-

5This strategy follows from the fact that we have Bernoulli
rewards for each arm-intent condition, and as the number
of samples increases for these distributions, the variance di-
minishes, meaning that arm-intent conditions with smaller
variances are more reliable than those with larger ones.
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Figure 4: Illustrated data-fusion process.

proach, we have:
a = Esamp [er ‘mw]/o-;%r,xw + EXInt [Ymr |xw]/0'§(]nt
+ EXA'r'm [Yr7 |xw}/0§(Arm

/B = 1/02,.@1” + 1/0-§(Int + 1/o—§(Ar'm

«a
Ecombo [er |xw] B

To visualize this data-fusion process in the context of a re-
inforcement learning problem, consider the diagram in Fig-
ure 4. (1) In this scenario, we consider that our agent has
collected large samples of experimental and observational
data from its environment (e.g., in the Greedy Casino, the
agent might observe other gamblers to comprise its observa-
tional data and incorporate experimental findings from the
state investigator’s report). (2) Unobserved confounders are
realized in the environment, though their labels and val-
ues are unknown to the agent. (3) From these UCs and
any other observed features in the environment, the agent’s
heuristics suggest an action to take, i.e., its intent. With
its intent known, the agent combines the data in its history
(in this work, by the prescription of Strategy 3 above) to
better inform its decision-making. (4) Based on its intent
and combined history, the agent commits to a final action
choice. (5) The action’s response in the environment (i.e., its
reward) is observed, and the collected data point is added
to the agent’s counterfactual history (as a consequence of
Theorem 4.1).

S. SIMULATIONS & RESULTS

In this section, we study the efficacy of the strategies
discussed previously through simulations. To make a fair
comparison to previous MABUC bandit players, we will fol-
low the first implementation of RDC that used Thompson
Sampling (TS) as its basis, embedding the strategies de-
scribed in the previous section within a TS player called

(16)



(TSHEPC+). We note that after moving from traditional to
counterfactual-based decision-making we moved from opti-
mal arm-choice nonconvergence to convergence in the MABUC
setting (e.g., Fig. 1); now, the goal is to accelerate conver-
gence.

In brief, TSTPC* agents perform the following at each
round:

1. Observe the intent 7; from the current round’s realiza-
tion of UCs, u:.

2. Sample Esamp [Yz, |i¢] from each arm’s (z,) correspond-
ing intent-specific beta distribution 8(sz, i, , fz,.i,)" in
which s, ., is the number of successes (wins) and
far, i is the number of failures (losses).

3. Compute each arm’s i;-specific score using the com-
bined datasets via Strategy 3 (Eq. 16).

4. Choose the arm, x,, with the highest score computed
in previous step.

5. Observe result (win / loss) and update Esamp[Ya, |it].

Procedure. Simulations were performed on the 4-arm
MABUC problem, with results averaged across N = 1000
Monte Carlo repetitions, each T" = 3000 rounds in dura-
tion. To illustrate the robustness of each proposed strategy,
we performed simulations spanning across a wide range of
payout parameterizations (see Appendix A for a complete
report of experimental results).

Compared Algorithms. Each simulation compares the
performance of four variants of Thompson Sampling: (1)
TS is the TS bandit algorithm that attempts to maximize
E[y|do(z)], and does not condition on intent; (2) TS is
a contextual TS player that uses intent as a context; (3)
TSRPC is the approach produced by [2], which conditions on
intent and employs observational data, but does not incorpo-
rate experimental data nor exploit the relationship between
data types detailed in the previous section; (4) TSEPC+
follows the algorithm described above.

Evaluation. Each algorithm’s performance is evaluated
using two standard metrics: (1) the probability of optimal
arm choice and (2) cumulative regret, both as a function of
t averaged across all N Monte Carlo Simulations. However,
unlike in the traditional MAB literature, we compare each
algorithm’s choice to the optimal choice of an omniscient
oracle that knows the value of any UCs in any given round
of any MC repetition (indicated as z, ;). Formally, for all
0 <t <T we evaluate (1) as + >, 1(z5,; = 2n,) and (2)
as v 20, 24 Ynii — B[Yar | |un,i]-

Experiment 1: “Greedy Casino.” The Greedy Casino
parameterization as, described in Table 1, exemplifies the
scenario where all arms are both observationally equiva-
lent (E[Y|z] = E[Y|2],Vz,z’) and experimentally equiv-
alent (E[Y|do(z)] = E[Y|do(z")],Vz,z"), but distinguish-
able within intent conditions (E[Yz|2']). In this reward pa-
rameterization, TSTPC+ experienced significantly less re-
gret (M = 42.23) than its chief competitor, TS®PC (M =
65.04), t(1998) = 13.25,p < .001.

"The parameters for these distributions are decided by the
agent’s counterfactual data history (see Figure 4), includ-
ing contributions from observational data for cells in which
action and intent agree.
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Figure 5: Plots of TS variant performances in
the Greedy Casino [Ex1] and Paradoxical Switching
[Ex2] scenarios.

Experiment 2: “Paradoxical Switching.” The Para-
doxical Switching parameterization (see Table 2) exemplifies
a curious scenario wherein E[Y;,] = 0.5 > E[Y,/],Vx' # x4,
but for which z; is the optimal arm choice in only one intent
condition (I = z1). Agents unempowered by RDC will face
a paradox in that the arm with the highest experimental
payout is not always optimal. Again, TSFPC+ experienced
significantly less regret (M = 36.91) than its chief competi-
tor, TSRPC (M = 64.70), $(1998) = 22.43,p < .001.

The accelerated learning enjoyed by RDC+ is not local-
ized to these parameter choices alone. In Appendix A (Sup-
plemental Material), we show that T'S RDC+ consistently ex-
periences significantly less regret than its competitors across
a wide range of parametrizations that encode qualitatively
different relationships between the observational, experimen-
tal, and counterfactual distributions.

6. DISCUSSION

This work fits into the broader literature of autonomous
agent design that will require more generalized actors to dis-
tinguish between the sources, semantics, and personalized
decision-making implications of the data that they collect.
In particular, the Regret Decision Criterion (and counterfac-
tual data, more generally) serves as a meta-decision-making
tool (i.e., a tool used by an agent to reflect upon its own
decision-making processes) for evaluating policy efficacy and
how well an agent’s heuristics generalize across different en-
vironments.

Various meta-analytic approaches for tuning Al systems
have begun to appear in the literature, not only corrobo-
rating merit for such approaches, but also suggesting fu-
ture applications of RDC. For instance, upcoming studies



(a) D= D=1
Ew[X,B,D] |[B=0[B=1|B=0|B=1
X=0 ¥0.00 | 020 045 0.45
X=1 0.30 | *0.40 | 0.50 | 0.40
X=2 0.10 | 0.35| *0.60 | 0.35
X=3 010 0.10| 0.30| *0.60
[ () [ ElnX] [ Elyildo(X)] |
X=0 0.90 0.50
X=1 0.40 0.40
X =2 0.60 0.35
X=3 0.60 0.20

Table 2: (a) Paradoxical switching scenario payout
rates decided by reactive slot machines as a function
of arm choice X, sobriety D, and machine conspicu-
ousness B. Players’ natural arm choices under D, B
are indicated by asterisks. (b) Payout rates accord-
ing to the observational, E[y:|X], and experimental
Elyi|do(X)], distributions, where Y = y; represents
winning (shown in the table).

have sought to increase the longevity or generalization ca-
pacities of legacy information systems as aging applications
must adapt to changes in their environments that may have
been overlooked during development [8]. Others have begun
exploring “deep-meta-reinforcement learning” for recurrent
neural networks in reinforcement learning domains [17].
More akin to the present work, other research has begun to
address the data-fusion problem from a causal perspective,
though without a focus on the effects of UCs on personalized
decision-making as presented herein [7]. We forecast that ac-
tive reinforcement learners of the adjacent future will place
greater emphases on concerting data-fusion with personal-
ized decision-making in the face of UCs, and that the present
work begins to bridge these previously separate topics.

7. CONCLUSION

The present work addresses the challenges faced by on-
line learning agents that gain access to increasingly diverse,
and qualitatively different, sources of information implicit
in real-world environments, and how these sources can be
meaningfully synthesized to accelerate learning. This data-
fusion problem is complicated by the presence of unobserved
confounders (UCs), whose identities and influences are un-
known to the actor. In response, we present a novel, coun-
terfactual method by which online agents may combine their
observations, experiments, and counterfactual (i.e., person-
alized) experiences to more quickly learn about their envi-
ronments, even in the presence of UCs. This method is fa-
cilitated by our proof that agents practicing intent-specific
experimentation can measure counterfactual quantities that
were previously thought to be unidentifiable in the absence
of a fully-specified model. We illustrate the efficacy of this
approach in the Multi-Armed Bandit problem with Unob-
served Confounders (MABUC), and demonstrate how a tra-
ditional bandit algorithm (Thompson Sampling) may be im-
proved by its application. Simulations suggest that our data-
fusion approach generalizes across reward parameterizations
and results in significantly less regret (in some cases, as much
as half) than other competitive MABUC algorithms.
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