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To students of causality, the writings of William Cochran provide an excellent and intrigu-
ing vantage point for studying how statistics, lacking the necessary mathematical tools, man-
aged nevertheless to cope with increasing demands for policy evaluation from observational
studies. Cochran met this challenge in the years 1955-1980, when statistics was preparing for
a profound, albeit tortuous transition from a science of data, to a science of data generating
processes. The former, governed by Fisher’s dictum (1922) “the object of statistical methods
is the reduction of data” was served well by the traditional language of probability theory.
The latter, on the other hand, seeking causal effects and policy recommendations, required
an extension of probability theory to facilitate mathematical representations of generating
processes.

No such representation was allowed into respectable statistical circles in the 1950-60s,
when Cochran started looking into the social effects of public housing in Baltimore. While
data showed improvement in health and well-being of families that moved from slums to
public housing, it soon became obvious that the estimated improvement was strongly biased;
Cochran reasoned that in order to become eligible for public housing the parent of a family
may have to possess both initiative and some determination in dealing with the bureaucracy,
thus making their families more likely to obtain better healthcare than non-eligible families.!
This led him to suggest “adjustment for covariates” for the explicit purpose of reducing this
causal effect bias. While there were others before Cochran who applied adjustment for
various purposes, Cochran is credited for introducing this technique to statistics (Salsburg,
2002) primarily because he popularized the method and taxonomized it by purpose of usage.

Unlike most of his contemporaries, who considered cause-effect relationships “ill-defined”
outside the confines of Fisherian experiments, Cochran had no qualm admitting that he
sought such relationships in observational studies. He in fact went as far as defining the ob-
jective of an observational study: “to elucidate causal-and-effect relationships” in situations
where controlled experiments are infeasible (Cochran, 1965). Indeed, in the paper before us,
the word “cause” is used fairly freely, and other causal terms such as “effect,” “influence,”
and “explanation” are almost as frequent as “regression” or “variance.” Still, Cochran was
well aware that he was dealing with unchartered extra-statistical territory and cautioned us:

INarrated in Cochran (1983, p. 24).



“Claim of proof of cause and effect must carry with it an explanation of the
mechanism by which this effect is produced.”

Today, when an analyst declares that a claim depends on “the mechanism by which
an effect is produced” we expect the analyst to specify what features of the mechanism
would make the claim valid. For example, when Rosenbaum and Rubin (1983) claimed that
propensity score methods may lead to unbiased estimates of causal effects, they conditioned
the claim on a counterfactual assumption named “strong ignorability.” Such identifying
assumptions, though cognitively formidable, provided a formal instrument for proving that
some adjustments can yield unbiased estimates. Similarly, when a structural analyst makes
the claim that an “indirect effect” is estimable from observational studies, the claim must
follow assumptions about the structure of the underlying graph which, again, assures us of
zero-bias estimates (see Pearl (2014b)).

Things were quite different in Cochran’s era; an appeal to “a mechanism,” like an ap-
peal to “subject matter information” stood literally for a confession of helplessness, since
“mechanisms” and causal relationships had no representation in statistics. Structural equa-
tion models (SEM), the language used by economists to represent mechanisms, were deeply
mistrusted by statisticians, who could not bring themselves to distinguish structural from
regression models (Guttman, 1977; Freedman, 1987; Cliff, 1983; Wermuth, 1992; Holland,
1995).2 Counterfactuals, on the other hand, were still in the embryonic state that Neyman
left them in — symbols with no model, no formal connection to realizable variables, and no
inferential machinery with which to support or refute claims.® Fisher’s celebrated advice:
“make your theories elaborate” was no help in this transitional era of pre-formal causation;
there is no way to elaborate on a theory that cannot be represented in some language.

It is not surprising, therefore, that Cochran’s conclusions are quite gloomy:

“It is well known that evidence of a relationship between z and y is no proof
that = causes y. The scientific philosophers to whom we might turn for expert
guidance on this tricky issue are a disappointment. Almost unanimously and
with evident delight they throw the idea of cause and effect overboard. As the
statistical study of relationships has become more sophisticated, the statistician
might admit, however, that his point of view is not very different, even if he
wishes to retain the terms cause and effect.”

It is likewise not surprising that in the present article, Cochran does not offer readers
any advice on which covariates are likely to reduce bias and which would amplify bias. Any
such advice, as we know today, requires a picture of reality, which Cochran understood to be
both needed and lacking at his time.? On the positive side, though, he did have the vision to
anticipate the emergence of a new type of research paradigm within statistics, a paradigm
centered on mechanisms:

2This mistrust persists to some degree even in our century, see Berk (2004) or Sobel (2008).

3These had to wait for Rubin (1974), Robins (1986), and the structural semantics of Balke and Pearl
(1994).

4To the best of my knowledge, the only adjustment-related advice in the entire statistics literature prior
to 1980 was Cox’s warning that “the concomitant observations be quite unaffected by the treatments” (Cox,
1958, p. 48); an exceptional defiance of an unwritten taboo against the use of data-generating models.



“A claim of proof of cause and effect must carry with it an explanation of the
mechanism by which the effect is produced. Except in cases where the mechanism
is obvious and undisputed, this may require a completely different type of research
from the observational study that is being summarized.”

I believe the type of research we see flourishing today, based on a symbiosis between
the graphical and counterfactual languages (Morgan and Winship, 2014; VanderWeele, 2015;
Bareinboim and Pearl, 2015) would perfectly meet Cochran’s vision of a “completely different
type of research.” This research differs fundamentally from the type of research conducted in
Cochran’s generation. First, it commences with a commitment to understanding what reality
must be like for a statistical routine to succeed and, second, it represents reality in terms of
data-generating models (read: “mechanisms”), rather than probability distributions.

Encoded as nonparametric structural equations, these models have led to a fruitful sym-
biosis between graphs and counterfactuals and have unified the potential outcome framework
of Neyman, Rubin, and Robins with the econometric tradition of Haavelmo, Marschak, and
Heckman. In this symbiosis, counterfactuals (potential outcomes) emerge as natural byprod-
ucts of structural equations and serve to formally articulate research questions of interest.
Graphical models, on the other hand, are used to encode scientific assumptions in a qualita-
tive (i.e., nonparametric) and transparent language and to identify the logical ramifications
of these assumptions, in particular their testable implications.?

A summary of results emerging from this symbiotic methodology is given in Pearl (2014a)
and includes complete solutions® to several long-standing problem areas, ranging from policy
evaluation (Tian and Shpitser, 2010) and selection bias (Bareinboim et al., 2014) to external
validity (Bareinboim and Pearl, 2015; Pearl and Bareinboim, 2014) and missing data (Mohan
et al., 2013).

This development has not met with universal acceptance. Cox and Wermuth (2015), for
example, are still reluctant to endorse the tools that this symbiosis has spawned, questioning
in essence whether interventions cannot be mathematized.” Others regard the symbiosis as
unscientific (Rubin, 2008) or less than helpful (Imbens and Rubin, 2015, p. 22), insisting for
example that investigators should handle ignorability judgments by unaided intuition.

I strongly believe, however, and I say it with a deep sense of responsibility, that future
explorations of observational studies will rise above these inertial barriers and take full
advantage of the tools that the graphical-counterfactual symbiosis now offers.

5Note that the potential outcome framework alone does not meet these qualifications. Scientific assump-
tions must be converted to conditional ignorability statements (Rosenbaum and Rubin, 1983; Imbens and
Rubin, 2015) which, being cognitively formidable, escape the scrutiny of plausibility judgment and impede
the search for their testable implications.

6By “complete solution” I mean a method of producing consistent estimates of (causal) parameters of
interests, applicable to any hypothesized model, and accompanied by a proof that no other method can do
better except by strengthening the model assumptions.

"Unwittingly, the very calculus that they reject happens to resolve the problem that they pose (“indirect
confounding”) in just four steps (Pearl, 2015a, http://www.mii.ucla.edu/causality /; Pearl, 2015b).



References

BALKE, A. and PEARL, J. (1994). Counterfactual probabilities: Computational methods,

bounds, and applications. In Uncertainty in Artificial Intelligence 10 (R. L. de Mantaras
and D. Poole, eds.). Morgan Kaufmann, San Mateo, CA, 46-54.

BAREINBOIM, E. and PEeArL, J. (2015). Causal inference from big data:
Theoretical foundations and the data-fusion problem. Tech. Rep. R-450,
<http://ftp.cs.ucla.edu/pub/stat_ser/r450.pdf>, Department of Computer Science,
University of California, Los Angeles, CA. Forthcoming, Proceedings of the National
Academy of Sciences.

BAREINBOIM, E., TIAN, J. and PEARL, J. (2014). Recovering from selection bias in

causal and statistical inference. In Proceedings of the Twenty-eighth AAAI Conference on

Artificial Intelligence (C. E. Brodley and P. Stone, eds.). AAAI Press, Palo Alto, CA.
Best Paper Award, <http://ftp.cs.ucla.edu/pub/stat_ser/r425.pdf>.

BERK, R. (2004). Regression Analysis: A Constructive Critique. Sage, Thousand Oaks,
CA.

CLIFF, N. (1983). Some cautions concerning the application of causal modeling methods.
Multivariate Behavioral Research 18 115-126.

COCHRAN, W. (1965). The planning of observational studies of human population. Journal
of the Royal Statistical Society (Series A) 128 234-255.

CocHRAN, W. G. (1983). Planning and Analysis of Observational Studies. Wiley, New
York.

Cox, D. (1958). The Planning of Experiments. John Wiley and Sons, NY.

Cox, D. and WERMUTH, N. (2015). Design and interpretation of studies: Relevant concepts
from the past and some extensions. Observational Studies, to appear.
URL http://arxiv.org/pdf/1505.02452v1.pdf

FISHER, R. (1922). On the mathematical foundations of theoretical statistics. Philosophical
Transactions of the Royal Society of London, Series A 222 311.

FREEDMAN, D. (1987). As others see us: A case study in path analysis (with discussion).
Journal of Educational Statistics 12 101-223.

GUTTMAN (1977). What is not what in statistics. The Statistician 26 81-107.

HorLLAND, P. (1995). Some reflections on Freedman’s critiques. Foundations of Science 1
20-57.

IMBENS, G. W. and RUBIN, D. B. (2015). Causal Inference for Statistics, Social, and
Biomedical Sciences: An Introduction. Cambridge University Press, New York, NY.



MonAN, K., PEARL, J. and TIAN, J. (2013). Graphical models for inference with missing
data. In Advances in Neural Information Processing Systems 26 (C. Burges, L. Bottou,
M. Welling, Z. Ghahramani and K. Weinberger, eds.). Curran Associates, Inc., 1277-1285.
URL http://papers.nips.cc/paper/4899-graphical-models-for-inference-with-missing-data.

MORGAN, S. L. and WinsHIP, C. (2014). Counterfactuals and Causal Inference: Meth-
ods and Principles for Social Research (Analytical Methods for Social Research. 2nd ed.
Cambridge University Press, New York, NY.

PEARL, J. (2014a). The deductive approach to causal inference. Journal of Causal Inference
2 115-129.

PEARL, J. (2014b). Interpretation and identification of causal mediation. Psychological
Methods 19 459-481.

PEARL, J. (2015a). Indirect Confounding and Causal Calculus (On three papers by Cox
and Wermuth). Blog entry: http://www.mii.ucla.edu/causality/.

PEARL, J. (2015b). Indirect Confounding and Causal Calculus (On three papers by Cox
and Wermuth). Tech. Rep. R-457, <http://ftp.cs.ucla.edu/pub/stat_ser/r457.pdf>, De-
partment of Computer Science, University of California, Los Angeles, CA.

PEARL, J. and BAREINBOIM, E. (2014). External validity: From do-calculus to transporta-
bility across populations. Statistical Science 29 579-595.

RoBINS, J. (1986). A new approach to causal inference in mortality studies with a sus-
tained exposure period — applications to control of the healthy workers survivor effect.
Mathematical Modeling 7 1393-1512.

ROSENBAUM, P. and RUBIN, D. (1983). The central role of propensity score in observational
studies for causal effects. Biometrika 70 41-55.

RUBIN, D. (1974). Estimating causal effects of treatments in randomized and nonrandomized
studies. Journal of Educational Psychology 66 688-701.

RuBIN, D. (2008). Author’s reply (to lan Shrier’s Letter to the Editor). Statistics in
Medicine 27 2741-2742.

SALSBURG, D. (2002). The Lady Tasting Tea: How Statistics Revolutionized Science in the
Twentieth Century. Henry Holt and Company, LLC, New York, NY.

SOBEL, M. (2008). Identification of causal parameters in randomized studies with mediating
variables. Journal of Educational and Behavioral Statistics 33 230-231.

TiAN, J. and SHPITSER, . (2010). On identifying causal effects. In Heuristics, Probability
and Causality: A Tribute to Judea Pearl (R. Dechter, H. Geffner and J. Halpern, eds.).
College Publications, UK, 415-444.

VANDERWEELE, T. (2015). Ezplanation in Causal Inference: Methods for Mediation and
Interaction. Oxford University Press, New York, NY.

5



WERMUTH, N. (1992). On block-recursive regression equations. Brazilian Journal of Prob-
ability and Statistics (with discussion) 6 1-56.





