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Abstract

In this paper, we address the problems of identifying linear structural equation models and discover-
ing the constraints they imply. We first extend the half-trek criterion to cover a broader class of models
and apply our extension to finding testable constraints implied by the model. We then show that any
semi-Markovian linear model can be recursively decomposed into simpler sub-models, resulting in im-
proved identification and constraint discovery power. Finally, we show that, unlike the existing methods
developed for linear models, the resulting method subsumes the identification and constraint discovery
algorithms for non-parametric models.

1 Introduction

Many researchers, particularly in economics, psychology, and the social sciences, use linear structural equa-
tion models (SEMs) to describe the causal and statistical relationships between a set of variables, predict
the effects of interventions and policies, and to estimate parameters of interest. When modeling using lin-
ear SEMs, researchers typically specify the causal structure (i.e. exclusion restrictions and independence
restrictions between error terms) from domain knowledge, leaving the structural coefficients (representing
the strength of the causal relationships) as free parameters to be estimated from data. If these coefficients
are known, then total effects, direct effects, and counterfactuals can be computed from them directly (Balke
and Pearl, 1994). However, in some cases, the causal assumptions embedded in the model are not enough
to uniquely determine one or more coefficients from the probability distribution, and therefore, cannot be
estimated using data. In such cases, we say that the coefficient is not identified or not identifiable1.

In other cases, a coefficient may be overidentified in addition to being identified, meaning that there are
at least two minimal sets of logically independent assumptions in the model that are sufficient for identifying
a coefficient, and the identified expressions for the coefficient are distinct functions of the covariance matrix
(Pearl, 2004). As a result, the model imposes a testable constraint on the probability distribution that the
two (or more) identified expressions for the coefficient are equal.

As compact and transparent representations of the model’s structure, causal graphs provide a convenient
tool to aid in the identification of coefficients. First utilized as a causal inference tool by Wright (1921),
graphs have more recently been applied to identify causal effects in non-parametric causal models (Pearl,
2009) and enabled the development of causal effect identification algorithms that are complete for non-
parametric models (Huang and Valtorta, 2006; Shpitser and Pearl, 2006). These algorithms can be applied
to the identification of coefficients in linear SEMs by identifying non-parametric direct effects, which are
closely related to structural coefficients (Tian, 2005; Chen and Pearl, 2014). Algorithms designed specifically
for the identification of linear SEMs were developed by Brito and Pearl (2002), Brito (2004), Tian (2005,
2007, 2009), Foygel et al. (2012), and Chen et al. (2014).

1We will also use the term “identified” with respect to individual variables and the model as a whole.
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Graphs have also proven to be valuable tools in the discovery of testable implications. It is well known that
conditional independence relationships can be easily read from the causal graph using d-separation (Pearl,
2009), and Kang and Tian (2009) gave a procedure for linear SEMs that enumerates a set of conditional
independences that imply all others. In non-parametric models without latent variables or correlated error
terms, these conditional independence constraints represent all of the testable implications of the model
(Pearl, 2009). In models with latent variables and/or correlated error terms, there may be additional
constraints implied by the model. These non-independence constraints, often called Verma constraints, were
first noted by Verma and Pearl (1990), and Tian and Pearl (2002b) and Shpitser and Pearl (2008) developed
graphical algorithms for systematically discovering such constraints in non-parametric models. In the case
of linear models, Chen et al. (2014) applied their aforementioned identification method to the discovery of
overidentifying constraints, which in some cases are equivalent to the non-parametric constraints enumerated
in Tian and Pearl (2002b) and Shpitser and Pearl (2008).

Surprisingly, naively applying algorithms designed for non-parametric models to linear models enables the
identification of coefficients and constraints that the aforementioned methods developed for linear models
are unable to, despite utilizing the additional assumption of linearity. In this paper, we first extend the
half-trek identification method of Foygel et al. (2012) and apply it to the discovery of half-trek constraints,
which generalize the overidentifying constraints given in Chen et al. (2014). Our extensions can be applied to
Markovian, semi-Markovian, and non-Markovian models. We then demonstrate how recursive c-component
decomposition, which was first utilized in identification algorithms developed for non-parametric models
(Tian, 2002; Huang and Valtorta, 2006; Shpitser and Pearl, 2006), can be incorporated into our linear
identification and constraint discovery methods for Markovian and semi-Markovian models. We show that
doing so allows the identification of additional models and constraints. Further, we will demonstrate that,
unlike existing algorithms, our method subsumes the aforementioned identification and constraint discovery
methods developed for non-parametric models when applied to linear SEMs.

2 Preliminaries

A linear structural equation model consists of a set of equations of the form, X = ΛX + ε, where X =
[x1, ..., xn]t is a vector containing the model variables, Λ is a matrix containing the coefficients of the model,
which convey the strength of the causal relationships, and ε = [ε1, ..., εn]t is a vector of error terms, which
represents omitted or latent variables. The matrix Λ contains zeroes on the diagonal, and Λij = 0 whenever
xi is not a cause of xj . The error terms are normally distributed random variables and induce the probability
distribution over the model variables. The covariance matrix of X will be denoted by Σ and the covariance
matrix over the error terms, ε, by Ω.

An instantiation of a model M is an assignment of values to the model parameters (i.e. Λ and the
non-zero elements of Ω). For a given instantiation mi, let Σ(mi) denote the covariance matrix implied by
the model and λk(mi) be the value of coefficient λk.

Definition 1. A coefficient, λk, is identified if for any two instantiations of the model, mi and mj, we have
λk(mi) = λk(mj) whenever Σ(mi) = Σ(mj).

In other words, λk is identified if it can be uniquely determined from the covariance matrix, Σ. Now, we
define when a structural coefficient, λk, is overidentified.

Definition 2. (Pearl, 2004) A coefficient, λk is overidentified if there are two or more distinct sets of
logically independent assumptions in M such that

(i) each set is sufficient for deriving λk as a function of Σ, λk = f(Σ),

(ii) each set induces a distinct function λk = f(Σ), and

(iii) each assumption set is minimal, that is, no proper subset of those assumptions is sufficient for the
derivation of λk.

The causal graph or path diagram of an SEM is a graph, G = (V,D,B), where V are vertices or nodes, D
directed edges, and B bidirected edges. The vertices represent model variables. Directed eges represent the

2



direction of causality, and for each coefficient Λij 6= 0, an edge is drawn from xi to xj . Each directed edge,
therefore, is associated with a coefficient in the SEM, which we will often refer to as its structural coefficient.
The error terms, εi, are not represented in the graph. However, a bidirected edge between two variables
indicates that their corresponding error terms may be statistically dependent while the lack of a bidirected
edge indicates that the error terms are independent. When the causal graph is acyclic without bidirected
edges, then we say that the model is Markovian. Graphs with bidirected edges are non-Markovian, while
acyclic graphs with bidirected edges are additionally called semi-Markovian.

We will use standard graph terminology with Pa(y) denoting the parents of y, Anc(y) denoting the
ancestors of y, De(y) denoting the descendants of y, and Sib(y) denoting the siblings of y, the variables
that are connected to y via a bidirected edge. He(E) denotes the heads of a set of directed edges, E, while
Ta(E) denotes the tails. Additionally, for a node v, the set of edges for which He(E) = v is denoted Inc(v).
Lastly, we will utilize d-separation (Pearl, 2009).

Lastly, we establish a couple preliminary definitions around half-treks. These definitions and illustrative
examples can also be found in Foygel et al. (2012) and Chen et al. (2014).

Definition 3. (Foygel et al., 2012) A half-trek, π, from x to y is a path from x to y that either begins with
a bidirected arc and then continues with directed edges towards y or is simply a directed path from x to y.

We will denote the set of nodes that are reachable by half-trek from v htr(v).

Definition 4. (Foygel et al., 2012) For any half-trek, π, let Right(π) be the set of vertices in π that have an
outgoing directed edge in π (as opposed to bidirected edge) union the last node in the trek. In other words,
if the trek is a directed path then every node in the path is a member of Right(π). If the trek begins with a
bidirected edge then every node other than the first node is a member of Right(π).

Definition 5. (Foygel et al., 2012) A system of half-treks, π1, ..., πn, has no sided intersection if for all
πi, πj ∈ {π1, ..., πn} such that πi 6= πj, Right(πi)∩Right(πj)= ∅.

Definition 6. (Chen et al., 2014) For an arbitrary variable, v, let Pa1, Pa2, ..., Pak be the unique partition
of Pa(v) such that any two parents are placed in the same subset, Pai, whenever they are connected by an
unblocked path (given the empty set). A connected edge set with head v is a set of directed edges from Pai
to v for some i ∈ {1, 2, ..., k}.

3 General Half-Trek Criterion

The half-trek criterion is a graphical condition that can be used to determine the identifiability of recursive
and non-recursive linear models (Foygel et al., 2012). Foygel et al. (2012) use the half-trek criterion to identify
the model variables one at a time, where each identified variable may be able to aid in the identification of
other variables. If any variable is not identifiable using the half-trek criterion, then their algorithm returns
that the model is not HTC-identifiable. Otherwise the algorithm returns that the model is identifiable.
Their algorithm subsumes the earlier methods of Brito and Pearl (2002) and Brito (2004). In this section,
we extend the half-trek criterion to allow the identification of arbitrary subsets of edges belonging to a
variable. As a result, our algorithm can be utilized to identify as many coefficients as possible, even when
the model is not identified. Additionally, this extension improves our ability to identify entire models, as we
will show.

Definition 7. (General Half-Trek Criterion) Let E be a set of directed edges sharing a single head y. A set
of variables Z satisfies the general half-trek criterion with respect to E, if

(i) |Z| = |E|,

(ii) Z ∩ (y ∪ Sib(y)) = ∅,

(iii) There is a system of half-treks with no sided intersection from Z to Ta(E), and

(iv) (Pa(y) \ Ta(E)) ∩ htr(Z) = ∅.
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Figure 1: The above model is identified using the g-HTC but not the HTC.

A set of directed edges, E, sharing a head y is identifiable if there exists a set, ZE , that satisfies the
general half-trek criterion (g-HTC) with respect to E, and ZE consists only of “allowed” nodes. Intuitively,
a node z is allowed if Ezy is identified or empty, where Ezy ⊆ Inc(z) is the set of edges belonging to z that
lie on half-treks from y to z or lie on unblocked paths (given the empty set) between z and Pa(y) \ Ta(E).2

The following definition formalizes this notion.

Definition 8. A node, z, is g-HT allowed (or simply allowed) for directed edges E with head y if Ezy = ∅
or there exists sequences of sets of nodes, (Z1, ...Zk), and sets of edges, (E1, ..., Ek), with Ezy ⊆ E1 ∪ ...∪Ek
such that

(i) Zi satisfies the g-HTC with respect to Ei for all i ∈ {1, ..., k},

(ii) EZ1y1 = ∅, where yi = He(Ei) for all i ∈ {1, ..., k}, and

(iii) EZiyi ⊆ (E1 ∪ ... ∪ Ei−1) for all i ∈ {1, ...k}.

When a set of allowed nodes, ZE , satisfies the g-HTC for a set of edges E, then we will say that ZE is a
g-HT admissible set for E.

Theorem 1. If a g-HT admissible set for directed edges Ey with head y exists then Ey is g-HT identifiable.
Further, let ZEy = {z1, ..., zk} be a g-HT admissible set for Ey, Ta(Ey) = {p1, ..., pk}, and Σ be the covariance
matrix of the model variables. Define A as

Aij =

{
[(I − Λ)TΣ]zipj , Eziy 6= ∅
Σzipj , Eziy = ∅

(1)

and b as

bi =

{
[(I − Λ)TΣ]ziy, Eziy 6= ∅
Σziy, Eziy = ∅

(2)

Then A is an invertible matrix and A · ΛTa(Ey),y = b.

Proof. See Appendix for proofs of all theorems and lemmas.

The g-HTC impoves upon the HTC because subsets of a variable’s coefficients may be identifiable even
when the variable is not. By identifying subsets of a variable’s coefficients, we not only allow the identification
of as many coefficients as possible in unidentified models, but we also are able to identify additional models
as a whole. For example, Figure 1 is not identifiable using the HTC. In order to identify Y , Z2 needs to be
identified first as it is the only variable with a half-trek to X2 without being a sibling of Y . However, to
identify Z2, either Y or W1 needs to be identified. Finally to identify W1, Y needs to be identified. This
cycle implies that the model is not HTC-identifiable. It is, however, g-HTC identifiable since the g-HTC
allows d to be identified independently of f , using {Z1} as a g-HT admissible set, which in turn allows {Y }
to be a g-HT admissible set for W1’s coefficient, a.

2We will continue to use the EZy notation and allow Z to be a set of nodes.
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Finding a g-HT admissible set for directed edges, E, with head, y, from a set of allowed nodes, AE ,
can be accomplished by utilizing the max-flow algorithm described in Chen et al. (2014)3, which we call
MaxFlow(G,E,AE). This algorithm returns a maximal set of allowed nodes that satisfies (ii) - (iv) of the
g-HTC.

In some cases, there may be no g-HT admissible set for E
′

but there may be one for E ⊂ E
′
. In other

cases, there may be no g-HT admissible set of variables for a set of edges E but there may be a g-HT
admissible set of variables for E

′
with E ⊂ E

′
. As a result, if a HT-admissible set does not exist for Ey,

where Ey = Inc(y) for some node y, we may have to check whether such a set exists for all possible subsets
of Ey in order to identify as many coefficients in Ey as possible. This process can be somewhat simplified

by noting that if E is a connected edge set with no g-HT admissible set, then there is no superset E
′

with
a g-HT admissible set.

An algorithm that utilizes the g-HTC and Theorem 1 to identify as many coefficients as possible in
recursive or non-recursive linear SEMs is given in the Appendix. Since we may need to check the identifiability
of all subsets of a node’s edges, the algorithm’s complexity is polynomial time if the degree of each node is
bounded.

4 Generalizing Overidentifying Constraints

Chen et al. (2014) discovered overidentifying constraints by finding two HT-admissible sets for a given
connected edge set. When two such sets exist, we obtain two distinct expressions for the identified coefficients,
and equating the two expressions gives the overidentifying constraint. However, we may be able to obtain
constraints even when |ZE | < |E| and E is not identified. The algorithm, MaxFlow, returns a maximal set,
ZE , for which the equations, A · ΛTa(E),y = b, are linearly independent, regardless of whether |ZE | = |E|
and E is identified or not. Therefore, if we are able to find an allowed node w that satisfies the conditions
below, then the equation aw ·ΛTa(E),y = bw will be a linear combination of the equations, A ·ΛTa(E),y = b.

Theorem 2. Let ZE be a set of maximal size that satisfies conditions (ii)-(iv) of the g-HTC for a set of edges,
E, with head y. If there exists a node w such that there exists a half-trek from w to Ta(E), w /∈ (y ∪Sib(y)),
and w is g-HT allowed for E, then we obtain the equality constraint, awA−1rightb = bw, where A−1right is the
right inverse of A.

We will call these generalized overidentifying constraints, half-trek constraints or HT-constraints. An
algorithm that identifies coefficients and finds HT-constraints for a recursive or non-recursive linear SEM is
given in the Appendix.

5 Decomposition

Tian showed that the identification problem could be simplified in semi-Markovian linear structural equation
models by decomposing the model into sub-models according to their c-components (Tian, 2005). Each
coefficient is identifiable if and only if it is identifiable in the sub-model to which it belongs (Tian, 2005).
In this section, we show that the c-component decomposition can be applied recursively to the model after
marginalizing certain variables. This idea was first used to identify interventional distributions in non-
parameteric models by Tian (2002) and Tian and Pearl (2002a) and adapting this technique for linear
models will allow us to identify models that the g-HTC, even coupled with (non-recursive) c-component
decomposition, is unable to identify. Further, it ensures the identification of all coefficients identifiable using
methods developed for non-parametric models–a guarantee that none of the existing methods developed for
linear models satisfy.

The graph in Figure 2a consists of a single c-component, and we are unable to decompose it. As a result,
we are able to identify a but no other coefficients using the g-HTC. Moreover, f = ∂

∂v4
E[v5|do(v6, v4, v3, v2, v1)]

is identified using identification methods developed for non-parametric models (e.g. do-calculus) but not the
g-HTC or other methods developed for linear models.

3Brito (2004) utilized a similar max-flow construction in his identification algorithm.
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(a) (b)

(c) (d)

Figure 2: (a) The graph is not identified using the g-HTC and cannot be decomposed (b) After removing
V6 we are able to decompose the graph (c) Graph for c-component, {V2, V3, V5} (d) Graph for c-component,
{V1, V4}

However, if we remove v6 from the analysis, then the resulting model can be decomposed. Let M be the
model depicted in Figure 2a, P (v) be the distribution induced by M , and M

′
be a model that is identical to

M except the equation for v6 is removed. M
′

induces the distribution
∫
v6
P (V )dv6, and its associated graph

G
′

yields two c-components, as shown in Figure 2b.
Now, decomposing G

′
according to these c-components yields the sub-models depicted by Figures 2c and

2d. Both of these sub-models are identifiable using the half-trek criterion. Thus, all coefficients other than
h have been shown to be identifiable. Returning to the graph prior to removal, depicted in Figure 2a, we
are now able to identify h because both v4 and v5 are now allowed nodes for h, and the model is identified4.

As a result, we can improve our identification and constraint-discovery algorithm by recursively decom-
posing, using the g-HTC and Theorem 2, and removing descendant sets5. Note, however, that we must
consider every descendant set for removal. It is possible that removing D1 will allow identification of a
coefficient but removing a superset D2 with D1 ⊂ D2 will not. Additionally, it is possible that removing D2

will allow identification but removing a subset D1 will not.
After recursively decomposing the graph, if some of the removed variables were unidentified, we may be

able to identify them by returning to the original graph prior to removal since we may have a larger set of
allowed nodes. For example, we were able to identify h in Figure 2a by “un-removing” v6 after the other
coefficients were identified. In some cases, however, we may need to again recursively decompose and remove
descendant sets. As a result, in order to fully exploit the powers of decomposition and the g-HTC, we must
repeat the recursive decomposition process on the original model until all marginalized nodes are identified
or no new coefficients are identified in an iteration.

Clearly, recursive decomposition also aids in the discovery of HT-constraints in the same way that it
aids in the identification of coefficients using the g-HTC. However, note that recursive decomposition may
also introduce additional d-separation constraints. Prior to decomposition, if a node Z is d-separated from
a node V then we trivially obtain the constraint that ΣZV = 0. However, in some cases, Z may become
d-separated from V after decomposition. In this case, the independence constraint on the covariance matrix
of the decomposed c-component corresponds to a non-conditional independence constraint in the original
joint distribution P (V ). It is for this reason that we output independence constraints in Algorithm 2 (see
Appendix).

For example, consider the graph depicted in Figure 3a. Theorem 2 does not yield any constraints for the
edges of V7. However, after decomposing the graph we obtain the c-component for {V2, V5, V7}, shown in
Figure 3b. In this graph, V1 is d-separated from V7 yielding a non-independence constraint in the original
model.

4While v4 and v5 are technically not allowed according to Definition 8, they can be used in g-HT admissible sets to identify
h using Theorem 1 since their coefficients have been identified.

5Only removing descendant sets have the ability to break up components. For example, removing {v2} from Figure 2a does
not break the c-component because removing v2 would relegate its influence to the error term of its child, v3. As a result, the
graph of the resulting model would include a bidirected arc between v3 and v6, and we would still have a single c-component.
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(a) (b)

Figure 3: (a) V1 cannot be d-separated from V7 (b) V1 is d-separated from V7 in the graph of the c-component,
{V2, V5, V7}

We can systematically identify coefficients and HT-constraints using recursive c-component decomposition
by repeating the following steps for the model’s graph G until the model has been identified or no new
coefficients are identified in an iteration:

(i) Decompose the graph into c-components, {Si}

(ii) For each c-component, utilize the g-HTC and Theorems 1 and 2 to identify coefficients and find HT-
constraints

(iii) For each descendant set, marginalize the descendant set and repeat steps (i)-(iii) until all variables have
been marginalized

If a coefficient α can be identified using the above method (see also Algorithm 3 in the Appendix, which
utilizes recursive decomposition to identify coefficients and output HT-constraints), then we will say that α
is g-HTC identifiable.

We now show that any direct effect identifiable using non-parametric methods is also g-HTC identifiable.

Theorem 3. Let M be a linear SEM with variables V . Let M
′

be a non-parametric SEM with identical
structure to M . If the direct effect of x on y for x, y ∈ V is identified in M

′
then the coefficient Λxy in M

is g-HTC identifiable and can be identified using Algorithm 3 (see Appendix).

6 Non-Parametric Verma Constraints

Tian and Pearl (2002b) and Shpitser and Pearl (2008) provided algorithms for discovering Verma constraints
in recursive, non-parametric models. In this section, we will show that the constraints obtained by the above
method and Algorithm 3 (see Appendix) subsume the constraints discovered by both methods when applied
to linear models. First, we will show that the constraints identified in (Tian and Pearl, 2002b), which we call
Q-constraints, are subsumed by HT-constraints. Second, we will show that the constraints given by Shpitser
and Pearl (2008), called dormant independences, are, in fact, equivalent to the constraints given by Tian and
Pearl (2002b) for linear models. As a result, both dormant independences and Q-constraints are subsumed
by HT-constraints.

6.1 Q-Constraints

We refer to the constraints enumerated in (Tian and Pearl, 2002b) as Q-constraints since they are discovered
by identifying Q-factors, which are defined below.

Definition 9. For any subset, S ⊆ V , the Q-factor, QS, is given by

QS =

∫
εS

∏
i|Vi∈S

P (vi|pai, εi)P (εS)dεS , (3)

where εS contains the error terms of the variables in S.
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Figure 4: The above graph induces the Verma constraint, Q[v4] is not a function of v1, and equivalently,
v4 ⊥ v1|do(v3).

A Q-factor, QS , is identifiable whenever S is a c-component (Tian and Pearl, 2002a).

Lemma 1. (Tian and Pearl, 2002a) Let {v1, ..., vn} be sorted topologically, S be a c-component, V (i) =
{v1, ..., vi}, and V (0) = ∅. Then QS can be computed as QS =

∏
{i|vi∈S} P (vi|V (i−1)), j = 1, ..., k.

For example, consider again Figure 2b. We have thatQ1 = P (v1)P (v4|v3, v2, v1) andQ2 = P (v2|v1)P (v3|v2, v1)P (v5|v4, v3, v2, v1).
A Q-factor can also be identified by marginalizing out descendant sets (Tian and Pearl, 2002a). Suppose

that QS is identified and D is a descendant set in GS , then

QSi\D =
∑
D

QSi
. (4)

If the marginalization over D yields additional c-components in the marginalized graph, then we can again
compute each of them from QS\D (Tian and Pearl, 2002b).

Tian’s method recursively computes the Q-factors associated with c-components, marginalizes descendant
sets in the graph for the computed Q-factor, and again computes Q-factors associated with c-components
in the marginalized graph. The Q-constraint is obtained in the following way. The definition of a Q-factor,
QS , given by Equation 3 is a function of Pa(S) only. However, the equivalent expression given by Lemma 1
and Equation 4 may be functions of additional variables.

For example, in Figure 4, {v2, v4} is a c-component so we can identify Qv2v4 = P (v4|v3, v2, v1)P (v2|v1).
The decomposition also makes v2 a leaf node inGv2v4 . As a result, we can identifyQv4 =

∫
v2
P (v4|v3, v2, v1)P (v2|v1)dv2.

Since v1 is not a parent of v4 in Gv4 , we have that Qv4 =
∫
v2
P (v4|v3, v2, v1)P (v2|v1)dv2 ⊥ v1.

Theorem 4. Any Q-constraint, QS ⊥ Z, in a linear SEM, has an equivalent set of HT-constraints that can
be discovered using Algorithm 3 (see Appendix).

6.2 Dormant Independences

Dormant independences have a natural interpretation as independence and conditional independence con-
straints within identifiable interventional distributions (Shpitser and Pearl, 2008). For example, in Figure
4, the distribution after intervention on v3 can be represented graphically by removing the edge from v2
to v3 since v3 is no longer a function of v2 but is instead a constant. In the resulting graph, v4 is d-
separated from v1 implying that v4 is independent of v1 in the distribution, P (v4, v2, v1|do(v3)). In other
words, P (v4|do(v3), v1) = P (v4|do(v3)). Now, it is not hard to show that P (v4|v1, do(v3)) is identifiable and
equal to

∑
v2
P (v4|v3, v2, v1)P (v2|v1) and we obtain the constraint that

∑
v2
P (v4|v3, v2, v1)P (v2|v1) is not

a function of v1, which is exactly the Q-constraint we obtained above.
It turns out that dormant independences among singletons and Q-constraints are equivalent, as stated

by the following lemma.

Lemma 2. Any dormant independence, x |= y|w, do(Z), with x and y singletons has an equivalent Q-
constraint and vice versa.

Since pairwise independence implies independence in normal distributions, Lemma 2 and Theorem 4
imply the following theorem.

Theorem 5. Any dormant independence among sets, x |= y|W,do(Z), in a linear SEM, has an equivalent set
of HT-constraints that can be discovered by incorporating recursive c-component decomposition with Algorithm
3 (see Appendix).
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7 Conclusion

In this paper, we extend the half-trek criterion (Foygel et al., 2012) and generalize the notion of overiden-
tification to discover constraints using the generalized half-trek criterion, even when the coefficients are not
identified. We then incorporate recursive c-component decomposition and show that the resulting identifi-
cation method is able to identify more models and constraints than the existing linear and non-parameteric
algorithms.

Finally, we note that while we were preparing this manuscript for submission, Drton and Weihs (2016)
independently introduced a similar idea to the recursive decomposition discussed in this paper, which they
called ancestor decomposition. While ancestor decomposition is more efficient, recursive decomposition is
more general in that it enables the identification of a larger set of coefficients.
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