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Abstract

In this paper, we address the problems of identifying linear structural equation
models and discovering the constraints they imply. We first extend the half-trek
criterion to cover a broader class of models and apply our extension to finding
testable constraints implied by the model. We then show that any semi-Markovian
linear model can be recursively decomposed into simpler sub-models, resulting
in improved identification and constraint discovery power. Finally, we show that,
unlike the existing methods developed for linear models, the resulting method
subsumes the identification and constraint discovery algorithms for non-parametric
models.

1 Introduction

Many researchers, particularly in economics, psychology, and the social sciences, use linear structural
equation models (SEMs) to describe the causal and statistical relationships between a set of variables,
predict the effects of interventions and policies, and to estimate parameters of interest. When modeling
using linear SEMs, researchers typically specify the causal structure (i.e. exclusion restrictions and
independence restrictions between error terms) from domain knowledge, leaving the structural
coefficients (representing the strength of the causal relationships) as free parameters to be estimated
from data. If these coefficients are known, then total effects, direct effects, and counterfactuals
can be computed from them directly (Balke and Pearl, 1994). However, in some cases, the causal
assumptions embedded in the model are not enough to uniquely determine one or more coefficients
from the probability distribution, and therefore, cannot be estimated using data. In such cases, we say
that the coefficient is not identified or not identifiable1.

In other cases, a coefficient may be overidentified in addition to being identified, meaning that there
are at least two minimal sets of logically independent assumptions in the model that are sufficient
for identifying a coefficient, and the identified expressions for the coefficient are distinct functions
of the covariance matrix (Pearl, 2004). As a result, the model imposes a testable constraint on the
probability distribution that the two (or more) identified expressions for the coefficient are equal.

As compact and transparent representations of the model’s structure, causal graphs provide a con-
venient tool to aid in the identification of coefficients. First utilized as a causal inference tool by
Wright (1921), graphs have more recently been applied to identify causal effects in non-parametric
causal models (Pearl, 2009) and enabled the development of causal effect identification algorithms
that are complete for non-parametric models (Huang and Valtorta, 2006; Shpitser and Pearl, 2006).
These algorithms can be applied to the identification of coefficients in linear SEMs by identifying
non-parametric direct effects, which are closely related to structural coefficients (Tian, 2005; Chen
and Pearl, 2014). Algorithms designed specifically for the identification of linear SEMs were de-

1We will also use the term “identified" with respect to individual variables and the model as a whole.
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veloped by Brito and Pearl (2002), Brito (2004), Tian (2005, 2007, 2009), Foygel et al. (2012), and
Chen et al. (2014).

Graphs have also proven to be valuable tools in the discovery of testable implications. It is well
known that conditional independence relationships can be easily read from the causal graph using d-
separation (Pearl, 2009), and Kang and Tian (2009) gave a procedure for linear SEMs that enumerates
a set of conditional independences that imply all others. In non-parametric models without latent
variables or correlated error terms, these conditional independence constraints represent all of the
testable implications of the model (Pearl, 2009). In models with latent variables and/or correlated
error terms, there may be additional constraints implied by the model. These non-independence
constraints, often called Verma constraints, were first noted by Verma and Pearl (1990), and Tian
and Pearl (2002b) and Shpitser and Pearl (2008) developed graphical algorithms for systematically
discovering such constraints in non-parametric models. In the case of linear models, Chen et al. (2014)
applied their aforementioned identification method to the discovery of overidentifying constraints,
which in some cases are equivalent to the non-parametric constraints enumerated in Tian and Pearl
(2002b) and Shpitser and Pearl (2008).

Surprisingly, naively applying algorithms designed for non-parametric models to linear models
enables the identification of coefficients and constraints that the aforementioned methods developed
for linear models are unable to, despite utilizing the additional assumption of linearity. In this paper,
we first extend the half-trek identification method of Foygel et al. (2012) and apply it to the discovery
of half-trek constraints, which generalize the overidentifying constraints given in Chen et al. (2014).
Our extensions can be applied to Markovian, semi-Markovian, and non-Markovian models. We then
demonstrate how recursive c-component decomposition, which was first utilized in identification
algorithms developed for non-parametric models (Tian, 2002; Huang and Valtorta, 2006; Shpitser
and Pearl, 2006), can be incorporated into our linear identification and constraint discovery methods
for Markovian and semi-Markovian models. We show that doing so allows the identification of
additional models and constraints. Further, we will demonstrate that, unlike existing algorithms, our
method subsumes the aforementioned identification and constraint discovery methods developed for
non-parametric models when applied to linear SEMs.

2 Preliminaries

A linear structural equation model consists of a set of equations of the form, X = ΛX + ε, where
X = [x1, ..., xn]t is a vector containing the model variables, Λ is a matrix containing the coefficients
of the model, which convey the strength of the causal relationships, and ε = [ε1, ..., εn]t is a vector
of error terms, which represents omitted or latent variables. The matrix Λ contains zeroes on the
diagonal, and Λij = 0 whenever xi is not a cause of xj . The error terms are normally distributed
random variables and induce the probability distribution over the model variables. The covariance
matrix of X will be denoted by Σ and the covariance matrix over the error terms, ε, by Ω.

An instantiation of a model M is an assignment of values to the model parameters (i.e. Λ and the
non-zero elements of Ω). For a given instantiation mi, let Σ(mi) denote the covariance matrix
implied by the model and λk(mi) be the value of coefficient λk.
Definition 1. A coefficient, λk, is identified if for any two instantiations of the model, mi and mj ,
we have λk(mi) = λk(mj) whenever Σ(mi) = Σ(mj).

In other words, λk is identified if it can be uniquely determined from the covariance matrix, Σ. Now,
we define when a structural coefficient, λk, is overidentified.
Definition 2. (Pearl, 2004) A coefficient, λk is overidentified if there are two or more distinct sets of
logically independent assumptions in M such that

(i) each set is sufficient for deriving λk as a function of Σ, λk = f(Σ),

(ii) each set induces a distinct function λk = f(Σ), and

(iii) each assumption set is minimal, that is, no proper subset of those assumptions is sufficient for
the derivation of λk.

The causal graph or path diagram of an SEM is a graph, G = (V,D,B), where V are vertices or
nodes, D directed edges, and B bidirected edges. The vertices represent model variables. Directed
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eges represent the direction of causality, and for each coefficient Λij 6= 0, an edge is drawn from
xi to xj . Each directed edge, therefore, is associated with a coefficient in the SEM, which we
will often refer to as its structural coefficient. The error terms, εi, are not represented in the graph.
However, a bidirected edge between two variables indicates that their corresponding error terms
may be statistically dependent while the lack of a bidirected edge indicates that the error terms are
independent. When the causal graph is acyclic without bidirected edges, then we say that the model
is Markovian. Graphs with bidirected edges are non-Markovian, while acyclic graphs with bidirected
edges are additionally called semi-Markovian.

We will use standard graph terminology with Pa(y) denoting the parents of y, Anc(y) denoting
the ancestors of y, De(y) denoting the descendants of y, and Sib(y) denoting the siblings of y, the
variables that are connected to y via a bidirected edge. He(E) denotes the heads of a set of directed
edges, E, while Ta(E) denotes the tails. Additionally, for a node v, the set of edges for which
He(E) = v is denoted Inc(v). Lastly, we will utilize d-separation (Pearl, 2009).

Lastly, we establish a couple preliminary definitions around half-treks. These definitions and
illustrative examples can also be found in Foygel et al. (2012) and Chen et al. (2014).
Definition 3. (Foygel et al., 2012) A half-trek, π, from x to y is a path from x to y that either begins
with a bidirected arc and then continues with directed edges towards y or is simply a directed path
from x to y.

We will denote the set of nodes that are reachable by half-trek from v htr(v).
Definition 4. (Foygel et al., 2012) For any half-trek, π, let Right(π) be the set of vertices in π that
have an outgoing directed edge in π (as opposed to bidirected edge) union the last node in the trek. In
other words, if the trek is a directed path then every node in the path is a member of Right(π). If the
trek begins with a bidirected edge then every node other than the first node is a member of Right(π).

Definition 5. (Foygel et al., 2012) A system of half-treks, π1, ..., πn, has no sided intersection if for
all πi, πj ∈ {π1, ..., πn} such that πi 6= πj , Right(πi)∩Right(πj)= ∅.
Definition 6. (Chen et al., 2014) For an arbitrary variable, v, let Pa1, Pa2, ..., Pak be the unique
partition of Pa(v) such that any two parents are placed in the same subset, Pai, whenever they are
connected by an unblocked path (given the empty set). A connected edge set with head v is a set of
directed edges from Pai to v for some i ∈ {1, 2, ..., k}.

3 General Half-Trek Criterion

The half-trek criterion is a graphical condition that can be used to determine the identifiability of
recursive and non-recursive linear models (Foygel et al., 2012). Foygel et al. (2012) use the half-trek
criterion to identify the model variables one at a time, where each identified variable may be able
to aid in the identification of other variables. If any variable is not identifiable using the half-trek
criterion, then their algorithm returns that the model is not HTC-identifiable. Otherwise the algorithm
returns that the model is identifiable. Their algorithm subsumes the earlier methods of Brito and Pearl
(2002) and Brito (2004). In this section, we extend the half-trek criterion to allow the identification
of arbitrary subsets of edges belonging to a variable. As a result, our algorithm can be utilized to
identify as many coefficients as possible, even when the model is not identified. Additionally, this
extension improves our ability to identify entire models, as we will show.
Definition 7. (General Half-Trek Criterion) Let E be a set of directed edges sharing a single head y.
A set of variables Z satisfies the general half-trek criterion with respect to E, if

(i) |Z| = |E|,

(ii) Z ∩ (y ∪ Sib(y)) = ∅,

(iii) There is a system of half-treks with no sided intersection from Z to Ta(E), and

(iv) (Pa(y) \ Ta(E)) ∩ htr(Z) = ∅.

A set of directed edges, E, sharing a head y is identifiable if there exists a set, ZE , that satisfies
the general half-trek criterion (g-HTC) with respect to E, and ZE consists only of “allowed” nodes.
Intuitively, a node z is allowed if Ezy is identified or empty, where Ezy ⊆ Inc(z) is the set of edges
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Figure 1: The above model is identified using the g-HTC but not the HTC.

belonging to z that lie on half-treks from y to z or lie on unblocked paths (given the empty set)
between z and Pa(y) \ Ta(E).2 The following definition formalizes this notion.
Definition 8. A node, z, is g-HT allowed (or simply allowed) for directed edges E with head y if
Ezy = ∅ or there exists sequences of sets of nodes, (Z1, ...Zk), and sets of edges, (E1, ..., Ek), with
Ezy ⊆ E1 ∪ ... ∪ Ek such that

(i) Zi satisfies the g-HTC with respect to Ei for all i ∈ {1, ..., k},

(ii) EZ1y1 = ∅, where yi = He(Ei) for all i ∈ {1, ..., k}, and

(iii) EZiyi ⊆ (E1 ∪ ... ∪ Ei−1) for all i ∈ {1, ...k}.

When a set of allowed nodes, ZE , satisfies the g-HTC for a set of edges E, then we will say that ZE
is a g-HT admissible set for E.
Theorem 1. If a g-HT admissible set for directed edges Ey with head y exists then Ey is g-HT
identifiable. Further, let ZEy

= {z1, ..., zk} be a g-HT admissible set for Ey , Ta(Ey) = {p1, ..., pk},
and Σ be the covariance matrix of the model variables. Define A as

Aij =

{
[(I − Λ)TΣ]zipj , Eziy 6= ∅
Σzipj , Eziy = ∅ (1)

and b as

bi =

{
[(I − Λ)TΣ]ziy, Eziy 6= ∅
Σziy, Eziy = ∅ (2)

Then A is an invertible matrix and A · ΛTa(Ey),y = b.

Proof. See Appendix for proofs of all theorems and lemmas.

The g-HTC impoves upon the HTC because subsets of a variable’s coefficients may be identifiable
even when the variable is not. By identifying subsets of a variable’s coefficients, we not only allow
the identification of as many coefficients as possible in unidentified models, but we also are able to
identify additional models as a whole. For example, Figure 1 is not identifiable using the HTC. In
order to identify Y , Z2 needs to be identified first as it is the only variable with a half-trek to X2

without being a sibling of Y . However, to identify Z2, either Y or W1 needs to be identified. Finally
to identify W1, Y needs to be identified. This cycle implies that the model is not HTC-identifiable.
It is, however, g-HTC identifiable since the g-HTC allows d to be identified independently of f ,
using {Z1} as a g-HT admissible set, which in turn allows {Y } to be a g-HT admissible set for W1’s
coefficient, a.

Finding a g-HT admissible set for directed edges, E, with head, y, from a set of allowed nodes, AE ,
can be accomplished by utilizing the max-flow algorithm described in Chen et al. (2014)3, which we
call MaxFlow(G,E,AE). This algorithm returns a maximal set of allowed nodes that satisfies (ii) -
(iv) of the g-HTC.

In some cases, there may be no g-HT admissible set for E
′

but there may be one for E ⊂ E
′
. In

other cases, there may be no g-HT admissible set of variables for a set of edges E but there may be a
2We will continue to use the EZy notation and allow Z to be a set of nodes.
3Brito (2004) utilized a similar max-flow construction in his identification algorithm.

4



(a) (b)

(c) (d)

Figure 2: (a) The graph is not identified using the g-HTC and cannot be decomposed (b) After
removing V6 we are able to decompose the graph (c) Graph for c-component, {V2, V3, V5} (d) Graph
for c-component, {V1, V4}

g-HT admissible set of variables for E
′

with E ⊂ E
′
. As a result, if a HT-admissible set does not

exist for Ey, where Ey = Inc(y) for some node y, we may have to check whether such a set exists
for all possible subsets of Ey in order to identify as many coefficients in Ey as possible. This process
can be somewhat simplified by noting that if E is a connected edge set with no g-HT admissible set,
then there is no superset E

′
with a g-HT admissible set.

An algorithm that utilizes the g-HTC and Theorem 1 to identify as many coefficients as possible in
recursive or non-recursive linear SEMs is given in the Appendix. Since we may need to check the
identifiability of all subsets of a node’s edges, the algorithm’s complexity is polynomial time if the
degree of each node is bounded.

4 Generalizing Overidentifying Constraints

Chen et al. (2014) discovered overidentifying constraints by finding two HT-admissible sets for
a given connected edge set. When two such sets exist, we obtain two distinct expressions for the
identified coefficients, and equating the two expressions gives the overidentifying constraint. However,
we may be able to obtain constraints even when |ZE | < |E| and E is not identified. The algorithm,
MaxFlow, returns a maximal set, ZE , for which the equations, A · ΛTa(E),y = b, are linearly
independent, regardless of whether |ZE | = |E| and E is identified or not. Therefore, if we are able
to find an allowed node w that satisfies the conditions below, then the equation aw · ΛTa(E),y = bw
will be a linear combination of the equations, A · ΛTa(E),y = b.
Theorem 2. Let ZE be a set of maximal size that satisfies conditions (ii)-(iv) of the g-HTC for a
set of edges, E, with head y. If there exists a node w such that there exists a half-trek from w to
Ta(E), w /∈ (y ∪ Sib(y)), and w is g-HT allowed for E, then we obtain the equality constraint,
awA−1rightb = bw, where A−1right is the right inverse of A.

We will call these generalized overidentifying constraints, half-trek constraints or HT-constraints. An
algorithm that identifies coefficients and finds HT-constraints for a recursive or non-recursive linear
SEM is given in the Appendix.

5 Decomposition

Tian showed that the identification problem could be simplified in semi-Markovian linear structural
equation models by decomposing the model into sub-models according to their c-components (Tian,
2005). Each coefficient is identifiable if and only if it is identifiable in the sub-model to which it
belongs (Tian, 2005). In this section, we show that the c-component decomposition can be applied
recursively to the model after marginalizing certain variables. This idea was first used to identify
interventional distributions in non-parameteric models by Tian (2002) and Tian and Pearl (2002a)
and adapting this technique for linear models will allow us to identify models that the g-HTC, even
coupled with (non-recursive) c-component decomposition, is unable to identify. Further, it ensures the
identification of all coefficients identifiable using methods developed for non-parametric models–a
guarantee that none of the existing methods developed for linear models satisfy.
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The graph in Figure 2a consists of a single c-component, and we are unable to decompose it.
As a result, we are able to identify a but no other coefficients using the g-HTC. Moreover,
f = ∂

∂v4
E[v5|do(v6, v4, v3, v2, v1)] is identified using identification methods developed for non-

parametric models (e.g. do-calculus) but not the g-HTC or other methods developed for linear
models.

However, if we remove v6 from the analysis, then the resulting model can be decomposed. Let M be
the model depicted in Figure 2a, P (v) be the distribution induced by M , and M

′
be a model that is

identical to M except the equation for v6 is removed. M
′

induces the distribution
∫
v6
P (V )dv6, and

its associated graph G
′

yields two c-components, as shown in Figure 2b.

Now, decomposing G
′

according to these c-components yields the sub-models depicted by Figures 2c
and 2d. Both of these sub-models are identifiable using the half-trek criterion. Thus, all coefficients
other than h have been shown to be identifiable. Returning to the graph prior to removal, depicted in
Figure 2a, we are now able to identify h because both v4 and v5 are now allowed nodes for h, and the
model is identified4.

As a result, we can improve our identification and constraint-discovery algorithm by recursively
decomposing, using the g-HTC and Theorem 2, and removing descendant sets5. Note, however,
that we must consider every descendant set for removal. It is possible that removing D1 will allow
identification of a coefficient but removing a superset D2 with D1 ⊂ D2 will not. Additionally, it is
possible that removing D2 will allow identification but removing a subset D1 will not.

After recursively decomposing the graph, if some of the removed variables were unidentified, we
may be able to identify them by returning to the original graph prior to removal since we may have a
larger set of allowed nodes. For example, we were able to identify h in Figure 2a by “un-removing"
v6 after the other coefficients were identified. In some cases, however, we may need to again
recursively decompose and remove descendant sets. As a result, in order to fully exploit the powers
of decomposition and the g-HTC, we must repeat the recursive decomposition process on the original
model until all marginalized nodes are identified or no new coefficients are identified in an iteration.

Clearly, recursive decomposition also aids in the discovery of HT-constraints in the same way that it
aids in the identification of coefficients using the g-HTC. However, note that recursive decomposition
may also introduce additional d-separation constraints. Prior to decomposition, if a node Z is d-
separated from a node V then we trivially obtain the constraint that ΣZV = 0. However, in some
cases, Z may become d-separated from V after decomposition. In this case, the independence
constraint on the covariance matrix of the decomposed c-component corresponds to a non-conditional
independence constraint in the original joint distribution P (V ). It is for this reason that we output
independence constraints in Algorithm 2 (see Appendix).

For example, consider the graph depicted in Figure 3a. Theorem 2 does not yield any constraints for
the edges of V7. However, after decomposing the graph we obtain the c-component for {V2, V5, V7},
shown in Figure 3b. In this graph, V1 is d-separated from V7 yielding a non-independence constraint
in the original model.

We can systematically identify coefficients and HT-constraints using recursive c-component decom-
position by repeating the following steps for the model’s graph G until the model has been identified
or no new coefficients are identified in an iteration:

(i) Decompose the graph into c-components, {Si}

(ii) For each c-component, utilize the g-HTC and Theorems 1 and 2 to identify coefficients and find
HT-constraints

(iii) For each descendant set, marginalize the descendant set and repeat steps (i)-(iii) until all
variables have been marginalized

4While v4 and v5 are technically not allowed according to Definition 8, they can be used in g-HT admissible
sets to identify h using Theorem 1 since their coefficients have been identified.

5Only removing descendant sets have the ability to break up components. For example, removing {v2} from
Figure 2a does not break the c-component because removing v2 would relegate its influence to the error term of
its child, v3. As a result, the graph of the resulting model would include a bidirected arc between v3 and v6, and
we would still have a single c-component.
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(a) (b)

Figure 3: (a) V1 cannot be d-separated from V7 (b) V1 is d-separated from V7 in the graph of the
c-component, {V2, V5, V7}

If a coefficient α can be identified using the above method (see also Algorithm 3 in the Appendix,
which utilizes recursive decomposition to identify coefficients and output HT-constraints), then we
will say that α is g-HTC identifiable.

We now show that any direct effect identifiable using non-parametric methods is also g-HTC identifi-
able.
Theorem 3. Let M be a linear SEM with variables V . Let M

′
be a non-parametric SEM with

identical structure to M . If the direct effect of x on y for x, y ∈ V is identified in M
′

then the
coefficient Λxy in M is g-HTC identifiable and can be identified using Algorithm 3 (see Appendix).

6 Non-Parametric Verma Constraints

Tian and Pearl (2002b) and Shpitser and Pearl (2008) provided algorithms for discovering Verma
constraints in recursive, non-parametric models. In this section, we will show that the constraints
obtained by the above method and Algorithm 3 (see Appendix) subsume the constraints discovered
by both methods when applied to linear models. First, we will show that the constraints identified in
(Tian and Pearl, 2002b), which we call Q-constraints, are subsumed by HT-constraints. Second, we
will show that the constraints given by Shpitser and Pearl (2008), called dormant independences, are,
in fact, equivalent to the constraints given by Tian and Pearl (2002b) for linear models. As a result,
both dormant independences and Q-constraints are subsumed by HT-constraints.

6.1 Q-Constraints

We refer to the constraints enumerated in (Tian and Pearl, 2002b) as Q-constraints since they are
discovered by identifying Q-factors, which are defined below.
Definition 9. For any subset, S ⊆ V , the Q-factor, QS , is given by

QS =

∫
εS

∏
i|Vi∈S

P (vi|pai, εi)P (εS)dεS , (3)

where εS contains the error terms of the variables in S.

A Q-factor, QS , is identifiable whenever S is a c-component (Tian and Pearl, 2002a).
Lemma 1. (Tian and Pearl, 2002a) Let {v1, ..., vn} be sorted topologically, S be a c-
component, V (i) = {v1, ..., vi}, and V (0) = ∅. Then QS can be computed as QS =∏
{i|vi∈S} P (vi|V (i−1)), j = 1, ..., k.

For example, consider again Figure 2b. We have that Q1 = P (v1)P (v4|v3, v2, v1) and Q2 =
P (v2|v1)P (v3|v2, v1)P (v5|v4, v3, v2, v1).

A Q-factor can also be identified by marginalizing out descendant sets (Tian and Pearl, 2002a).
Suppose that QS is identified and D is a descendant set in GS , then

QSi\D =
∑
D

QSi
. (4)

If the marginalization over D yields additional c-components in the marginalized graph, then we can
again compute each of them from QS\D (Tian and Pearl, 2002b).
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Figure 4: The above graph induces the Verma constraint,Q[v4] is not a function of v1, and equivalently,
v4 ⊥ v1|do(v3).

Tian’s method recursively computes the Q-factors associated with c-components, marginalizes
descendant sets in the graph for the computed Q-factor, and again computes Q-factors associated
with c-components in the marginalized graph. The Q-constraint is obtained in the following way.
The definition of a Q-factor, QS , given by Equation 3 is a function of Pa(S) only. However, the
equivalent expression given by Lemma 1 and Equation 4 may be functions of additional variables.

For example, in Figure 4, {v2, v4} is a c-component so we can identify Qv2v4 =
P (v4|v3, v2, v1)P (v2|v1). The decomposition also makes v2 a leaf node in Gv2v4 . As a result,
we can identify Qv4 =

∫
v2
P (v4|v3, v2, v1)P (v2|v1)dv2. Since v1 is not a parent of v4 in Gv4 , we

have that Qv4 =
∫
v2
P (v4|v3, v2, v1)P (v2|v1)dv2 ⊥ v1.

Theorem 4. Any Q-constraint, QS ⊥ Z, in a linear SEM, has an equivalent set of HT-constraints
that can be discovered using Algorithm 3 (see Appendix).

6.2 Dormant Independences

Dormant independences have a natural interpretation as independence and conditional independence
constraints within identifiable interventional distributions (Shpitser and Pearl, 2008). For example,
in Figure 4, the distribution after intervention on v3 can be represented graphically by removing
the edge from v2 to v3 since v3 is no longer a function of v2 but is instead a constant. In the
resulting graph, v4 is d-separated from v1 implying that v4 is independent of v1 in the distribution,
P (v4, v2, v1|do(v3)). In other words, P (v4|do(v3), v1) = P (v4|do(v3)). Now, it is not hard to show
that P (v4|v1, do(v3)) is identifiable and equal to

∑
v2
P (v4|v3, v2, v1)P (v2|v1) and we obtain the

constraint that
∑
v2
P (v4|v3, v2, v1)P (v2|v1) is not a function of v1, which is exactly the Q-constraint

we obtained above.

It turns out that dormant independences among singletons and Q-constraints are equivalent, as stated
by the following lemma.

Lemma 2. Any dormant independence, x |= y|w, do(Z), with x and y singletons has an equivalent
Q-constraint and vice versa.

Since pairwise independence implies independence in normal distributions, Lemma 2 and Theorem 4
imply the following theorem.

Theorem 5. Any dormant independence among sets, x |= y|W,do(Z), in a linear SEM, has an
equivalent set of HT-constraints that can be discovered by incorporating recursive c-component
decomposition with Algorithm 3 (see Appendix).

7 Conclusion

In this paper, we extend the half-trek criterion (Foygel et al., 2012) and generalize the notion of
overidentification to discover constraints using the generalized half-trek criterion, even when the
coefficients are not identified. We then incorporate recursive c-component decomposition and show
that the resulting identification method is able to identify more models and constraints than the
existing linear and non-parameteric algorithms.

Finally, we note that while an earlier version of this paper (Chen, 2015) was available in preprint,
Drton and Weihs (2016) independently introduced a similar idea to the recursive decomposition
discussed in this paper. Namely, they showed how to marginalize ancestral sets before applying
decomposition, thereby increasing the identification power of the half-trek criterion
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