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Abstract

1 Introduction

[ am grateful to the editors for inviting me to comment on the paper by Dawid,
Fienberg, and Faigman (2013) (henceforth DFF), in which they justifiably
emphasize the fundamental distinction between “Effect of Causes” (EoC) and
“Causes of Effect” (CoE).

My aim in this comment is to share with readers a progress report on what
has been accomplished on the question of “causes of effects,” CoE, how far we
have come in using population data to decide individual cases, and how well we
can answer questions that law makers ask about individual’s guilt or innocence.
I hope this account convinces readers that the analysis of “causes of effects,”
CoE, has not lagged behind that of EoC. Both modes of reasoning enjoy a solid
mathematical basis, endowed with powerful tools of analysis, and researchers
on both fronts now possess solid understanding of applications, identification
conditions, and estimation techniques.

2 The Logic of Counterfactuals

A good place to start is the mathematization of counterfactuals, a develop-
ment that is responsible, at least partially, for legitimizing counterfactuals in



scientific discourse,! and which has reduced the quest for “causes of effects”
to an exercise in logic.

At the center of this logic lies a model, M, consisting of a set of equa-
tions similar to those used by physicists, geneticists (Wright, 1921) economists
(Haavelmo, 1943) and social scientists (Duncan, 1975) to articulate scientific
knowledge in their respective domains. M consists of two sets of variables, U
and V, and a set F' of equations that determine how values are assigned to
each variable V; € V. Thus for example, the equation

Uy = fi(va U’)

describes a physical process by which Nature examines the current values, v
and u, of all variables in V' and U and, accordingly, assigns variable V; the value
v; = fi(v,u). The variables in U are considered “exogenous,” namely, back-
ground conditions for which no explanatory mechanism is encoded in model
M. Every instantiation U = u of the exogenous variables corresponds to defin-
ing a “unit,” or a “situation” in the model, and uniquely determines the values
of all variables in V. Therefore, if we assign a probability P(u) to U, it defines
a probability function P(v) on V. The probabilities on U and V' can best be
interpreted as the proportion of the population with a particular combination
of values on U and/or V.

The basic counterfactual entity in structural models is the sentence: “Y
would be y had X been z in situation U = u,” denoted Y, (u) = y, where Y and
X are any variables in V. The key to interpreting counterfactuals is to treat
the subjunctive phrase “had X been z” as an instruction to make a minimal
modification in the current model, so as to ensure the antecedent condition
X = x. Such a minimal modification amounts to replacing the equation for X
by a constant x, which may be thought of as an external action do(X = z),
not necessarily by a human experimenter, that imposes the condition X = =z.
This replacement permits the constant = to differ from the actual value of X
(namely f,(v,u)) without rendering the system of equations inconsistent, thus
allowing all variables, exogenous as well as endogenous, to serve as antecedents.

Letting M, stand for a modified version of M, with the equation(s) of X
replaced by X = x, the formal definition of the counterfactual Y, (u) reads
(Balke and Pearl, 1994a,b):

Ya(u) 2 Yag, (u). (1)

In words: The counterfactual Y, (u) in model M is defined as the solution for
Y in the “surgically modified” submodel M,. Galles and Pearl (1998) and

'DFF’s article makes generous use of counterfactuals, which attests to the impact of this
development. For discussions concerning the place of counterfactuals in science, including
their role in defining “causes of effects” see (Dawid, 2000; Pearl, 2000b).



Halpern (1998) have given a complete axiomatization of structural counter-
factuals, embracing both recursive and non-recursive models. (see also Pearl,
2009, Chapter 7). They showed that the axioms governing recursive structural
counterfactuals are identical to those used in the potential outcomes frame-
work, hence the two systems are logically identical — a theorem in one is a
theorem in the other. This means that relying on structural models as a basis
for counterfactuals does not impose additional assumptions beyond those rou-
tinely invoked by potential outcome practitioners. Consequently, going from
effects to causes does not require extra mathematical machinery beyond that
used in going from causes to effects.

Since our model M consists of a set of structural equations, it is possible
to calculate probabilities that might at first appear nonsensical. As noted
above the probability distribution on U, P(u), induces a well defined proba-
bility distribution on V', P(v). As such, it not only defines the probability of
any single counterfactual, Y, = y, but also the joint distribution of all coun-
terfactuals. As also noted above these probabilities refer to the proportion
of individuals in the population with specific counterfactual values that may
or may not be observed. Thus the probability of the Boolean combination,
“Y, =y AND Z, = 2” for variables Y and Z in V and two different values
of X, x and 2/, is well-defined even though it is impossible for both outcomes
to be simultaneously observed as X = z and X = 2/ cannot be concurrently
true.

To answer CoE type questions, such as “if X were x; would Y be y; for
individuals for whom in fact X is z¢ and Y is y,” we need to compute the
conditional probability P(Y,, = y1|Y = yo, X = 2¢). This probability, that
is the proportion of the population with this combination of counterfactual
values, is well-defined once the structural equations and the distribution of
exogenous variables, U, is known.

In general, the probability of the counterfactual sentence P(Y, = yle),
where e is any information about an individual, can be computed by the 3-
step process:

Step 1 (abduction): Update the probability P(u) to obtain P(ule).

Step 2 (action): Replace the equations corresponding to variables in set X
by the equations X = x.

Step 3 (prediction): Use the modified model to compute the probability of
Y =y.

In temporal metaphors, Step 1 explains the past (U) in light of the current
evidence e; Step 2 bends the course of history (minimally) to comply with the



hypothetical antecedent X = x; finally, Step 3 predicts the future (Y) based
on our new understanding of the past and our newly established condition,
X =ux.

Pearl (2009, pp. 296-299; 2012) gives several examples illustrating the
simplicity of this computation and how CoE-type questions can be answered
when the model M is known. If M is not known, but is assumed to take a
parametric form, one can use population data to estimate the parameters and,
subsequently, all counterfactual queries can be answered, including those that
pertain to causes of individual cases (Pearl, 2009, pp. 389-391; 2012). Thus
the challenge of reasoning from group data to individual cases has been met.

When the model M is not known, we can prove that, in general, proba-
bilities of causes are not identifiable from experimental, or observational data.
However, using group data with observations about an individual, tight bounds
can be derived, which can be quite informative.

We will illustrate these bounds it an example taken from judicial context
similar to the one considered by DFF.

3 Legal Responsibility from Experimental and
Nonexperimental Data

A lawsuit is filed against the manufacturer of drug z, charging that the drug
is likely to have caused the death of Mr. A, who took the drug to relieve back
pains. The manufacturer claims that experimental data on patients with back
pains show conclusively that drug x may have only minor effect on death rates.
However, the plaintiff argues that the experimental study is of little relevance
to this case because it represents average effects on all patients in the study,
not on patients like Mr. A who did not participate in the study. In particular,
argues the plaintiff, Mr. A is unique in that he used the drug on his own voli-
tion, unlike subjects in the experimental study who took the drug to comply
with experimental protocols. To support this argument, the plaintiff furnishes
nonexperimental data on patients who, like Mr. A, chose drug x to relieve
back pains, but were not part of any experiment. The court must now de-
cide, based on both the experimental and nonexperimental studies, whether it
is “more probable than not” that drug x was in fact the cause of Mr. A’s death.

This example falls under the category of “causes of effects” because it
concerns situation in which we observe both the effect, Y = y, and the putative
cause X = x and we are asked to assess, counterfactually, whether the former
would have occurred absent the latter.

Assuming binary events, with X = x and Y = y representing treatment
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and outcome, respectively, and X = 2/, Y = 3/ their negations, our target
quantity can be formulated directly from the English sentence:

“Find the probability that if X had been z’, Y would be 7/, given
that, in reality, X is x and Y is y.”

to give:
PN(z,y)=P(Yy =y |X =2, =y) (2)

This counterfactual quantity, which Robins and Greenland (1989) named
“probability of causation” and Pearl (2000a, p. 296) named “probability of
necessity” (PN), to be distinguished from two other nuances of “causation,”
captures the “but for” criterion according to which judgment in favor of a
plaintiff should be made if and only if it is “more probable than not” that the
damage would not have occurred but for the defendant’s action (Robertson,
1997). In contrast, the “probability of causation” (PC*) measure proposed by
Dawid, Fienberg, and Faigman:

PC* =P Y =9y|Y, =v)

represents the probability that a person who took the drug under experimental
conditions and died, Y, = y, would be alive had he not been assigned the drug,
Y, = 4/. It thus represents the probability that the drug was the cause of death
of a subject who died in the experimental setup. Very few court cases deal with
deaths under experimental circumstances; most deal with deaths, damage, or
injuries that took place under natural, every day conditions, for which the
DFF’s measure is inapplicable.

Having written a formal expression for PN, Eq. (2), we can move on to the
identification phase and ask what assumptions would permit us to identify PN
from empirical studies, be they observational, experimental or a combination
thereof.

This problem was analyzed in Pearl (2000a, Chapter 9) and yielded the
following results:

Theorem 1 IfY is monotonic relative to X, i.e., Y1(u) > Yo(u), then PN is
identifiable whenever the causal effect P(y|do(x)) is identifiable and, moreover,

P(y) — P(y|do(x"))
P(x,y) ®)

PN =

or,

_ P(ylz) — P(ylz") | P(yl2') — P(y|do(z'))
PN = ) Plry)

(4)

2Equation (4) is obtained from (3) by writing P(y) = P(y|z)P(z) + P(y|z')(1 — P(z)).
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The first term on the r.h.s. of (4) is the familiar excess risk ratio (ERR)
that epidemiologists have been using as a surrogate for PN in court cases
(Cole, 1997; Greenland, 1999; Robins and Greenland, 1989). The second
term represents a correction needed to account for confounding bias, that is,
P(y|do(z")) # P(y|x’) or, put in words, when the proportion of population for
whom Y = y when X is set to 2’ for everyone is not the same as the proportion
of the population for whom Y = y among those observed to acquire the value
X =2x.

Equation (4) thus provides a more refined measure of causation, which
can be used for monotonic Y, (u) whenever the causal effect P(y|do(x)) can
be estimated, from either randomized trials or graph-assisted observational
studies (e.g., through the back-door criterion (Pearl, 1993) or the do-calculus).
More significantly, it has also been shown (Tian and Pearl, 2000) that the
expression in (3) provides a lower bound for PN in the general, nonmonotonic
case. In particular, the tight upper and lower bounds on PN are given by:

P(y) — P(y|do(z")) : P(y'|do(z")) — P(z',y)
max {O, Plz.y) } < PN < min {1, Py }(5)

In drug-related litigation, it is not uncommon to obtain data from both
experimental and observational studies. The former is usually available at
the manufacturer or the agency that approved the drug for distribution (e.g.,
FDA), while the latter is easy to obtain by random surveys of the population. If
it is the case that the experimental and survey data have been drawn at random
from the same population, then the experimental data can be used to estimate
the counterfactuals of interest, e.g., P(Y, = y) for the observational as well as
experimental sampled populations. In such cases, the standard lower bound
used by epidemiologists to establish legal responsibility, the Excess Risk Ratio,
can be improved substantially using the corrective term of Eq. (4). Likewise,
the upper bound of Eq. (5) can be used to exonerate drug-makers from legal
responsibility. Cai and Kuroki (2006) analyzed the finite-sample properties of
PN. Yamamoto (2012) used instrumental variables to derive similar bounds
for subpopulations permitting effect identification.

4 Numerical Example

To illustrate the usefulness of the bounds in Eq. (5), consider the (hypothetical)
data associated with the two studies shown in Table 1. (In the analyses below,
we ignore sampling variability, that is, we assume that our population is of
infinite size.)



Experimental Nonexperimental

do(x) do(z') x x’

Deaths (y) 16 14 2 28

Survivals (y') 984 986 998 972
Table 1:

The experimental data provide the estimates

P(y|do(x)) = 16/1000 = 0.016, (6)
P(yldo(x")) = 14/1000 = 0.014; (7)

while the nonexperimental data provide the estimates

P(y) =30/2000 =0.015, (8)
P(y,z) =2/2000 = 0.001, (9)
P(ylz) =2/1000 = 0.002, (10)
P(yla’) =28/1000 = 0.028. (11)

Assuming that drug x can only cause (but never prevent) death, mono-
tonicity holds and Theorem 1 (Eq. 4) yields
_ / AN !
py = PWlw) = Plyle’) | Plyla’) — Pyldo(2')) _
P(y|x) P(z,y)
0.002 — 0.028  0.028 — 0.014
= =—-13+14=1 12
P(y|z) * 0.001 i (12)

We see that while the observational excess risk ratio ERR is negative (—13),
giving the impression that the drug is actually preventing deaths, the bias-
correction term (+14) rectifies this impression and sets the probability of ne-
cessity (PN) to unity. Moreover, since the lower bound of Eq. (5) becomes 1,
we conclude that PN = 1.00 even without assuming monotonicity. Thus, the
plaintiff was correct; barring sampling errors, the data provide us with 100%
assurance that drug = was in fact responsible for the death of Mr. A. Note that
DFF’s proposal of using the experimental excess risk ratio 1 — 1/RR would
yield a much lower result:

P(y|do(z)) — P(y|do(«'))  0.016 — 0.014
P(yldo(x)) 0016

= 0.125. (13)



which does not meet the “more probable than not” requirement.?

What the experimental study does not reveal is that, given a choice, termi-
nal patients tend to avoid drug x. That is, the 14 patients in the experimental
study who did not take the drug and died anyway would have avoided the
drug if they were in the nonexperimental study. In fact, as our analysis above
shows, there are no terminal patients who would choose x (given the choice).
If there were terminal patients that would choose x, given the choice, then by
randomization some of these patients (50% in our example) would be in the
control group in the experimental data. As a result, the proportion of deaths
in the control group in the experimental data, P(y,/) would be higher than
the proportion of terminal patients in the nonexperimental data, P(y,z’).
However, examining the data in our hypothetical example, we observe that
P(y») = P(y,2’) = .0014 implying that there are no terminal patients in the
nonexperimental data who choose the treatment condition. As such, any indi-
vidual in the nonexperimental data who choose the treatment and died, must
have died because of the treatment as they were not terminal.

The numbers in Table 1 were obviously contrived to represent an extreme
case and so facilitate a qualitative explanation of the validity of (12). Never-
theless, it illustrates decisively that a combination of experimental and nonex-
perimental studies may unravel what experimental studies alone will not reveal
and, in addition, that such combination may provide a necessary test for the
adequacy of the experimental procedures. For example, if the frequencies in
Table 1 were slightly different, they could easily yield a PN value greater than
unity in (12), thus violating consistency, P(y|do(x)) > P(z,y). Such violation
must be due to incompatibility of experimental and nonexperimental groups,
or an improperly conducted experiment.

This last point may warrant a word of explanation, lest the reader wonder
why two data sets—taken from two separate groups under different exper-
imental conditions—should constrain one another. The explanation is that
certain quantities in the two subpopulations are expected to remain invariant
to all these differences, provided that the two subpopulations were sampled
randomly from the population at large. These invariant quantities are simply

3The difference between DFF’s PC* and PN represents not merely an improvement of
bounds but a profound conceptual difference in what the correct question is for CoE. Using
DFF’s notation we have PC* = Pr(Ry = 0|R; = 1) and PN = Pr(Ry =0[A=1,R=1).
PC* is the wrong measure to use in legal context because it does not take into account the
possibility that plaintiffs who chose the treatment voluntarily are more likely to be in need of
such treatment, as well as more capable of obtaining it. The same goes for personal decision
making; PC* does not take into account the fact that, if I took aspirin and my headache
is gone, I am the type of person who takes aspirin when feeling headache. Formally, while
P =1and R=1imply R; =1 the converse does not hold; the former is the more specific
reference class.



the causal effects probabilities, P(y|do(x’)) and P(y|do(z)). Although these
probabilities were not measured in the observational group, they must nev-
ertheless be the same as those measured in the experimental group (ignoring
differences due to sampling variability). The invariance of these quantities
implies the inequalities of (5).

The example of Table 1 shows that combining data from experimental and
observational studies which, taken separately, may indicate no causal relations
between X and Y, can nevertheless bring the lower bound of Eq. (5) to unity,
thus implying causation with probability approaching one.

Such extreme results demonstrate that a counterfactual quantity PN which
at first glance appears to be hypothetical, ill-defined, untestable and, hence,
unworthy of scientific analysis is nevertheless definable, testable and, in certain
cases, e.g., when monotonicity holds, even identifiable. Moreover, the fact that,
under certain combinations of data, and making no assumptions whatsoever,
an important legal claim such as “the plaintiff would be alive had he not taken
the drug” can be ascertained with probability approaching one, is a remarkable
tribute to formal analysis.*

5 How informative are the PN bounds?

To see how informative the bounds are, and how sensitive they are to variations
in the experimental and observational data, consider the following example.
Assume that the population of patients contains a fraction r of individuals who
suffer from a certain death-causing syndrome Z, which simultaneously makes
it uncomfortable for them to take the drug. Referring to Fig. 1, let Z = 2
and Z = z; represent, respectively, the presence and absence of the syndrome,
Y =y, and Y = yy represent death and survival, respectively and X = x;
and X = x(, represent taking and not taking the drug. Assume that patients
carryingf the syndrome, Z = z;, are terminal cases, for whom death occurs
with probability 1, regardless of whether they take the drug. Patients not
carrying the syndrome, on the other hand, incur death with probability po if
they take the drug and with probability p; if the don’t. We will further assume

4Another counterfactual quantity that has been tamed by analysis is the Effect of Treat-
ment on the Treated (ETT): ETT = P(Y, = y|X = ). Shpitser and Pearl (2009) have
shown that despite its blatant counterfactual character (e.g., “I just took an aspirin, perhaps
I shouldn’t have?”), ETT can be evaluated from experimental studies in many, though not
all cases. It can also be evaluated from observational studies whenever a sufficient set of
covariates can be measured that satisfies the back-door criterion and, more generally, in a
wide class of graphs that permit the identification of conditional interventions. Numerical
example of these extreme cases, and the philosophical question they evoke, are discussed in
(Pearl, 2013).



Z (Syndrome)

(Treatment) X Y (Outcome)

Figure 1: Model generating the experimental and observational data of Egs.
(16) and (17). Z represents an unobserved confounder affecting both treatment
(X) and outcome (Y').

p2 > pp so that the drug appears to be a risk factor for ordinary patients, and
that patients having the syndrome are more likely to avoid the drug; that is,
¢ < q1 where q1 = P(x1|20) and o = p(21|21).

Based on this model, we can compute the causal effect of the drug on death
using:

P(y|do(x)) =Y " P(ylz,z)P(z) for all y and x (14)

and the joint distribution P(z,y) using:
P(y,x) = Z P(ylx,z)P(x|z)P(z) for all y,x (15)

Substituting the model’s parameters and assuming r = 1/2 gives:

Plntdote)) ={ G075 o 1o

(g2 + p2q1) /2 for =21 y=1u
l—qg+p(l—q)]/2 for z=20 y=u
Ply,x) = 17
(y [L’) [q2 + (1 — pg)ql} /2 for == T1 Y =1Yo ( )
(1_p1)(1_(h)/2 fOI‘ T =X Y = Yo
Accordingly, the bounds of Eq. (5) become:
(p2 - pl)/(p2 + Q2/QI) < PN <L (1 — p1)/(p2 + q2/q1) (18)

Equating the upper and lower bounds in (18) reveals that PN is identified
if and only if ¢1(1 — pa) = 0, namely, if patients carrying the syndrome either
do not take the drug or do not survive if they do. For intermediate value of py
and ¢, PN is constrained to an interval that depends on all four parameters.

Figure 2 displays the lower bound (red curve) as a function of the pa-
rameter = qo/qip2, for p; = 0 and the upper bounds (green curves) for
po = 1.00,0.5,0.33,0.25. We see that lower bound approaches 1 when ¢o ap-
proaches zero, while the upper bounds are situated a factor 1/ps above the
lower bound.,
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03
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Figure 2: Showing the lower bound of PN for p; = 1 (red curve) and several
upper bounds (blue curves).

6 Is “Guilty with Probability One” ever pos-
sible?

People tend to disbelieve this possibility for two puzzling aspects of the prob-
lem:

1. that a hypothetical, generally untestable quantity can be ascertained
with probability one under certain conditions;

2. that a property of an untested individual can be assigned a probability
one, on the basis of data taken from sampled population.

The first puzzle is not really surprising for students of science who take seri-
ously the benefits of logic and mathematics. Once we give a quantity formal
semantics we essentially define its relation to the data, and it not inconceivable
that data obtained under certain conditions would sufficiently constrain that
quantity, to a point where it can be determined exactly.

The second puzzle is the one that gives most people a shock of disbelief.
For a statistician, in particular, it is a rare case to be able to say anything
certain about a specific individual who was not tested directly. This emanates
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from two factors. First, statisticians normally deal with finite samples, the
variability of which rules out certainty in any claim, not merely about an indi-
vidual but also about any property of the underlying distribution. This factor,
however, should not enter into our discussion, for we have been assuming infi-
nite samples throughout. (Readers should imagine that the numbers in Table
1 stand for millions.)

The second factor emanates from the fact that, even when we know a
distribution precisely, we cannot assign a definite probabilistic estimate to a
property of a specific individual drawn from that distribution. The reason is, so
the argument goes, that we never know, let alone measure, all the anatomical
and psychological variables that determine an individual’s behavior, and, even
if we knew, we would not be able to represent them in the crude categories
provided by the distribution at hand. Thus, because of this inherent crudeness,
the sentence “Mr. A would be dead” can never be assigned a probability one
(or, in fact, any definite probability).

This argument, advanced by Freedman and Stark (1999) is incompatible
with the way probability statements are used in ordinary discourse, for it im-
plies that every probability statement about an individual would be reduced to
zero or one when all relevant details are accounted for. It is inconceivable that
this interpretation underlies the intent of judicial standards. By using the
wording “more probable than not,” lawmakers have instructed us to ignore
specific features for which data is not available, and to base our determina-
tion on the most specific features for which reliable data is available. In our
example, two properties of Mr. A were noted: (1) that he died and (2) that he
chose to use the drug; these were properly taken into account in bounding PN
as in Eq. (5). If additional properties of Mr. A become known, and deemed
relevant (e.g., that he had red hair, or was left-handed), these too could, in
principle, be accounted for by restricting the analysis to data representing
the appropriate subpopulations. However, in the absence of such data, and
knowing in advance that we will never be able to match all the idiosyncratic
properties of Mr. A, the lawmakers’ specification must be interpreted relative
to the properties at hand.

Conclusions

I agree with DFF that the issues surrounding reasoning from EoC to CoE in-
volve the challenge of reasoning from group data to individual cases. However,
the logical gulf between the two is no longer a hindrance to systematic analysis.
It has been bridged by the structural semantics of counterfactuals (Balke and
Pearl, 1994a,b) and now yields a coherent framework of fusing experimental
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and observational data to decide individual cases of all kinds, EoC included.
I invite Dawid, Fienberg, and Faigman to reap the benefits and opportu-
nities unleashed by the counterfactual theory of CoE.
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