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Abstract

Recent advances in causal reasoning have given rise to a computational model that emulates

the process by which humans generate, evaluate, and distinguish counterfactual sentences. Con-

trasted with the “possible worlds” account of counterfactuals, this “structural” model enjoys the

advantages of representational economy, algorithmic simplicity, and conceptual clarity. This intro-

duction traces the emergence of the structural model and gives a panoramic view of several appli-

cations where counterfactual reasoning has benefited problem areas in the empirical sciences.
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1. Introduction

One of the most striking phenomena in the study of conditionals is the ease and unifor-

mity with which people evaluate counterfactuals. To witness, the majority of people

would accept the statement: S1: “If Oswald did not kill Kennedy, someone else did,” but

few, if any, would accept its subjunctive version: S2: “If Oswald had not killed Kennedy,

someone else would have.” For students of conditionals, these canonical examples (attrib-

uted to Ernst Adams [1975)] represent a compelling proof of the ubiquity of the indica-

tive/subjunctive distinction, and of the amazing capacity of humans to process, evaluate,

and form consensus about counterfactuals.

Yet not many students of conditionals asked the next question: How do we, humans,

reach such consensus? More concretely, what mental representation permits such consen-

sus to emerge from the little knowledge we have about Oswald, Kennedy, and 1960s

Texas, and what algorithms would need to be postulated to account for the swiftness,

comfort, and confidence with which such judgments are issued.

The basic thesis of structural counterfactuals (Balke & Pearl, 1995; Pearl, 2000) is that

counterfactuals are generated and evaluated by symbolic operations on a model that
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represents an agent’s beliefs about functional relationships in the world. The procedure

can be viewed as a concrete implementation of Ramsey’s idea (Ramsey, 1929), according

to which a conditional is accepted if the consequent is true after we add the antecedent

(hypothetically) to our stock of beliefs and make whatever minimal adjustments are

required to maintain consistency (Arlo-Costa, 2009). In the indicative case, we simply

add the antecedent A as if we received a new evidence that affirms its truth and discredits

whatever previous evidence we had for its negation. In the subjunctive case, we establish

the truth of A by changing the model itself.

Taking Kennedy’s assassination as a working example, the distinction is as follows:

To evaluate the indicative conditional S1 (“If Oswald did not kill Kennedy, someone

else did”), we start by assigning truth values to variables that are known (or believed) to

be true in the story. In our case, we start with the common knowledge that Kennedy was

in fact killed, so, adding the hypothetical fact that Oswald did not kill Kennedy, it must

be that someone else killed him.

The evaluation of the subjunctive conditional S2 (“If Oswald had not killed Kennedy,

someone else would have”) demands a different procedure. S2 calls for rolling back

history as we know it, and rerunning it under different conditions where, for some

unknown reason, Oswald refrains from shooting Kennedy. The key difference between

the two procedures lies in holding Kennedy’s death true in the indicative case but leaving

it uncommitted in the subjunctive case.

In Section 2 of this article, I will present simple algorithms that reliably interpret sub-

junctive conditionals, and cast these algorithms in the context of the general theory of

structural counterfactuals. I will briefly compare the structural account of counterfactuals

to the “possible worlds” account of Lewis (1973) and defend my preference of the for-

mer. In Section 3, I will demonstrate how this model has given rise to an effective meth-

odology of causal inference in several of the empirical sciences, and how it has helped

resolve practical questions, from policy evaluation to mediation analysis to generalizing

conclusions across experimental studies.

2. An outline of the structural theory

The distinctions illustrated in the preceding section are part of a general theory of

counterfactuals that I named “structural” (Pearl, 2000, Chapter 7) in honor of its origin in

the structural equation models developed by econometricians in the 1940–50s (Haavelmo,

1943; Hurwicz, 1950; Marschak, 1953; Simon, 1953).

At the center of the theory lies a “structural model,” M, consisting of two sets of vari-

ables, U and V, and a set F of functions that determine how values are assigned to each

variable Vi 2 V . Thus, for example, the equation

vi ¼ fiðv; uÞ
describes a physical process by which Nature examines the current values, v and u, of all
variables in V and U and, accordingly, assigns variable Vi the value vi ¼ fiðv; uÞ. The
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variables in U are considered “exogenous,” namely, background conditions for which no

explanatory mechanism is encoded in model M. Every instantiation U = u of the exoge-

nous variables uniquely determines the values of all variables in V and, hence, if we

assign a probability P(u) to U, it defines a probability function P(v) on V.
The basic counterfactual entity in structural models is the sentence: “Y would be y had

X been x in situation U = u,” denoted YxðuÞ ¼ y. The key to interpreting counterfactuals

is to treat the subjunctive phrase “had X been x” as an instruction to make a “minimal”

modification in the current model, so as to ensure the antecedent condition X = x. Such a

minimal modification amounts to replacing the equation for X by a constant x. This

replacement permits the constant x to differ from the actual value of X (namely fXðv; uÞ)
without rendering the system of equations inconsistent, thus allowing all variables, exoge-

nous as well as endogenous, to serve as antecedents.

Letting Mx stand for a modified version of M, with the equation(s) of X replaced by

X = x, the formal definition of the counterfactual YxðuÞ reads

YxðuÞ,DYMx
ðuÞ: ð1Þ

In words, the counterfactual YxðuÞ in model M is defined as the solution for Y in the

“surgically modified” submodel Mx.
1 Galles and Pearl (1998) and Halpern (1998) have

given a complete axiomatization of structural counterfactuals, embracing both recursive

and non-recursive models (see also Pearl, 2009a, Chapter 7).

Since the distribution P(u) induces a well-defined probability on the counterfactual

event Yx ¼ y, it also defines a joint distribution on all Boolean combinations of such

events, for instance “Yx ¼ y AND Zx0 ¼ z,” which may appear contradictory, if x 6¼ x0.
For example, to answer retrospective questions, such as whether Y would be y1 if X were

x1, given that in fact Y is y0 and X is x0, we need to compute the conditional probability

PðYx1 ¼ y1jY ¼ y0;X ¼ x0Þ; which is well defined once we know the forms of the

structural equations and the distribution of the exogenous variables in the model.

In general, the probability of the counterfactual sentence PðYx ¼ yjeÞ, where e is any

propositional evidence, can be computed by the three-step process (illustrated in Pearl,

2009a, p. 207):

Step 1 (abduction): Update the probability P(u) to obtain P(u|e).
Step 2 (action): Replace the equations corresponding to variables in set X by the equa-

tions X = x.
Step (prediction): Use the modified model to compute the probability of Y = y.

In temporal metaphors, Step 1 updates the past (U) in light of the current evidence e;
Step 2 bends the course of history (minimally) to comply with the hypothetical anteced-

ent X = x; finally, Step 3 predicts the future (Y) based on our new understanding of the

past and our newly established condition, X = x.
It can be shown (Pearl, 2000, p. 76) that this procedure can be given an interpretation in

terms of “imaging” (Lewis, 1973)—a process of “mass-shifting” among possible worlds—
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provided that (a) worlds with equal histories should be considered equally similar; and (b)

equally similar worlds should receive mass in proportion to their prior probabilities (Joyce,

2009; Pearl, 2000, p. 76; Pearl, 2010). Because “similarities” are thus shaped by causal-tem-

poral priorities, the structural account does not suffer from classical paradoxes that plague

“similarity by appearance” (Taylor & Dennett, 2011). For example, the sentence “Had Nixon

pressed the button, a nuclear war would have started” is accepted as true, despite Fine’s

(1975) “more similar” scenario in which someone had disconnected the switch. Fine’s sce-

nario is not minimally sufficient to ensure the antecedent “pressed the button.”

In (Pearl, 2000, p. 239), I remarked the following: “In contrast with Lewis’s theory,

[structural] counterfactuals are not based on an abstract notion of similarity among hypo-

thetical worlds; instead, they rest directly on the mechanisms (or ‘laws,’ to be fancy) that

govern those worlds and on the invariant properties of those mechanisms. Lewis’s elusive

‘miracles’ are replaced by principled mini-surgeries, do(X = x), which represent a mini-

mal change (to a model) necessary for establishing the antecedent X = x (for all u). Thus,
similarities and priorities—if they are ever needed—may be read into the do(�) operator
as an afterthought (see Pearl, 2000, Eq. 3.11, and Goldszmidt & Pearl, 1992), but they

are not basic to the analysis.”

2.1. The two principles of causal inference

Before describing specific applications of the structural theory, it will be useful to sum-

marize its implications in the form of two “principles.” The entire set of tools needed for

solving causal and counterfactuals problems is based on only these two:

Principle 1: “The law of structural counterfactuals.”

Principle 2: “The law of structural independence.”

The first principle is described in Eq. 1 and instructs us how to compute counterfactu-

als from a structural model. It thus allows us to define formally which counterfactual is

true in a given model M and in any given circumstance (U = u), and to express commu-

nicable assumptions about reality in terms of counterfactual sentences. Likewise, when

probabilities are defined on U, principle 1 permits us to compute probabilities of a count-

erfactual, to determine if one counterfactual depends on another given a third and, most

important, to determine what assumptions one must make about reality in order to infer

probabilities of counterfactuals from either experimental or passive observations.

Principle 2 instructs us how to detect conditional independencies in the data from the

structure of the model, that is, from the graph that describes the functional relationships

between the variables. Remarkably, regardless of the functional form of the equations in

the model and regardless of the distribution of the exogenous variables U, if the distur-

bances are mutually independent and the model is recursive, the distribution P(v) of the
endogenous variables must obey certain conditional independence relations, stated

roughly as follows: Whenever sets X and Y are “separated” by a set Z in the graph, X is

independent of Y given Z in the probability.2
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This powerful theorem, called d-separation (Pearl, 2000, pp. 16–18), constitutes the

link between causal assumptions encoded in the model and the observed data. It serves as

the basis for causal discovery algorithms (Pearl & Verma, 1991; Spirtes, Glymour, &

Scheines, 1993) as well as deciding identification and testing model misspecification.

3. Summary of applications

Since its inception (Balke & Pearl, 1995) this counterfactual model has provided math-

ematical solutions to a vast number of lingering problems in policy analysis and retro-

spective reasoning. In the context of decision making, for example, a rational agent is

instructed to maximize the expected utility

EUðxÞ ¼
X

y

PðYx ¼ yÞUðyÞ ð2Þ

over all options x. Here, U(y) stands for the utility of outcome Y = y and P(Yx = y) stands
for the probability that outcome Y = y would prevail, had action do(X = x) been per-

formed and condition X = x firmly established.3

The central question in many of the empirical sciences is that of identification: Can we

predict the effect of a contemplated action do(X = x) or, in other words, can the post-

intervention distribution, PðYx ¼ yÞ, be estimated from data generated by the pre-inter-

vention distribution, P(z, x, y)? Clearly, since the prospective counterfactual Yx is gener-

ally not observed, the answer must depend on the agent’s model M and then the question

reduces to: Can PðYx ¼ yÞ be estimated from a combination of P(z, x, y) and a graph G
that encodes the structure of M?

This problem has been solved by deriving a precise characterization of what Skyrms

(1980) called “KD-partition,” namely, a set S of observed variables that permits

PðYx ¼ yÞ to be written in terms of Bayes conditioning or, “adjusting for” S:

PðYx ¼ yÞ ¼
X

s

Pðyjx; sÞPðsÞ:

The solution came to be known as the back-door criterion (Pearl, 1995), stating

(roughly) that a set S of variables is admissible for adjustment if it “blocks” every path

between X and Y that ends with an arrow into X. Hagmayer and Sloman (2009) provide

some evidence that this is exactly what people do. Tian and Pearl (2002) and Shpitser

and Pearl (2007) further expanded this result and established a criterion that permits (or

forbids) the assessment of PðYx ¼ yjZ ¼ zÞ by any method whatsoever, including the

use of X-dependent covariates Z (Pearl, 2009a, pp. 339–341), and time-varying sets of

antecedent variables X.
Prospective counterfactual expressions of the type PðYx ¼ yÞ are concerned with pre-

dicting the average effect of hypothetical actions and policies and can, in principle, be

assessed from experimental studies in which X is randomized. Retrospective counterfactu-
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als, on the other hand, like S2 in the Oswald scenario, consist of variables at different

hypothetical worlds (different subscripts) and these may or may not be testable experi-

mentally. In epidemiology, for example, the expression PðYx0 ¼ y0jx; yÞ may stand for the

fraction of patients who recovered (y) under treatment (x) who would not have recovered

(y0) had they not been treated (x0). This fraction cannot be assessed in experimental study,

for the simple reason that we cannot re-test patients twice, with and without treatment.

A different question is therefore posed: Which counterfactuals can be tested, be it in

experimental or observational studies? This question has been given a mathematical solu-

tion in (Shpitser & Pearl, 2007). It has been shown, for example, that in linear systems,

EðYxjeÞ is estimable from experimental studies whenever the prospective effect EðYxÞ is

estimable in such studies. Likewise, the counterfactual probability PðYx0 jxÞ, also known as

the effect of treatment on the treated (ETT), is estimable from observational studies

whenever an admissible S exists for PðYx ¼ yÞ (Shpitser & Pearl, 2009).

Retrospective counterfactuals have also been indispensable in conceptualizing direct and

indirect effects (Baron & Kenny, 1986; Pearl, 2001; Robins & Greenland, 1992), which

require nested counterfactuals in their definitions. For example, to evaluate the direct effect

of treatment X ¼ x0 on individual u, un-mediated by a set Z of intermediate variables, we

need to construct the nested counterfactual Yx0;ZxðuÞ where Y is the effect of interest, and

ZxðuÞ stands for whatever values the intermediate variables Z would take had treatment not

been given.4 Likewise, the average indirect effect, of a transition from x to x0 is defined as

the expected change in Y affected by holding X constant, at X = x, and changing Z, hypo-
thetically, to whatever value it would have attained had X been set to X ¼ x0.

This counterfactual formulation has enabled researchers to derive conditions under

which direct and indirect effects are estimable from empirical data (Pearl, 2001; Petersen,

Sinisi, & van der Laan, 2006) and to answer such questions as given in the following:

“Can data prove an employer guilty of hiring discrimination?” or phrased counterfactually,

“what fraction of employees owes its hiring to sex discrimination?”

These tasks are performed using a general estimator, called the Mediation Formula

(Pearl, 2001, 2009b, 2012a), which is applicable to nonlinear models with discrete or

continuous variables, and permits the evaluation of path-specific effects with minimal

assumptions regarding the data-generating process (Pearl, 2012b, 2012c).

Finally, as the last application, I point to a recent theory of “transportability” (Pearl &

Bareinboim, 2011) which provides a formal solution to the century-old problem of “exter-

nal validity” (Campbell & Stanley, 1966); that is, under what conditions can experimental

findings be transported to another environment, how the results should be calibrated to

account for environmental differences, and what measurements need be taken in each of

the two environments to license the transport.

The impact of the structural theory in the empirical sciences does not prove, of course,

its merits as a cognitive theory of counterfactual reasoning. The evidence is in fact mixed

on this issue (see Sloman & Lagnado, 2005, vs. Rips, this issue. Also see Kaufmann, this

issue). It proves nevertheless that in the arena of policy evaluation and decision making

the theory is compatible with investigators’ states of belief and, whenever testable, its

conclusions have withstood the test of fire.
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4. Conclusions

This introduction started with the enigma of consensus: “What mental representation

permits such consensus to emerge from the little knowledge we have about Oswald,

Kennedy, and 1960s Texas, and what algorithms would need to be postulated to account

for the swiftness, comfort and confidence with which such judgments are issued?” The

very fact that people communicate with counterfactuals already suggests that they share a

similarity measure, that this measure is encoded parsimoniously in the mind, and hence

that it must be highly structured.

The theory of structural counterfactuals offers a solution to the consensus enigma. It

presents conceptually clear and parsimonious encoding of knowledge from which causes,

counterfactuals, and probabilities of counterfactuals can be derived by effective algo-

rithms. It further carries the potential of teaching robots to communicate in the language

of counterfactuals and eventually acquire an understanding of notions such as responsibil-

ity and regret, pride and free will.

The theory has given rise to major breakthroughs in the methodology of the empirical

sciences.
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Notes

1. Simon and Rescher (1966) came close to this definition but, lacking the “wiping

out” operator, could not reconcile the contradiction that ensues when an observa-

tion X = x′ clashes with the antecedent X = x of the counterfactual Yx.
2. The “separation” criterion requires that all paths between X and Y be intercepted

by Z, with special handling of paths containing head-to-head arrows (Pearl, 2000,

pp. 16–18). In linear models, Principle 2 is valid for non-recursive models as

well.

3. Eq. 2 represents the dictates of Causal Decision Theory (CDT), Stalnaker (1981),

Lewis (1973), Gardenfors (1988), and Joyce (1999)—the pitfalls of Evidential

Decision Theory are well documented (see Pearl, 2000; Skyrms, 1980, pp. 108–9)
and need not be considered.

4. Note that conditioning on the intermediate variables in Z would generally yield the

wrong answer, due to unobserved “confounders” affecting both Z and Y. Moreover,
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in non-linear systems, the value at which we hold Z constant will affect the result

(Pearl, 2000, pp. 126–132).
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