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I commend Professor VanderWeele for providing a lucid description of the “sur-
rogate paradox” and, through it, a comprehensive discussion of the current state of
thinking about surrogate endpoints, their function in experimental studies, and the
various approaches devised to give them formal underpinnings.

The first question that came to mind in reading VanderWeele’s paper was: can
we explain the phenomenon in simple terms, divorced from the technical vocabulary
that was devised to formulate notions such as “indirect effect,” “principled strata,”
“proportion-mediated,” and perhaps others? My second question was: If we take the
negation of the “surrogate paradox” as a criterion for “good” surrogate, why can’t
we create a new, formal definition of “surrogacy” that (1) will automatically avoid
the paradox and (2) will settle, once for all, the disputes (among theoreticians) as to
what “approach” is best for defining surrogates (Joffe and Green, 2009, pp. 530-538;
Pearl, 2011).

In thinking about these two questions, I came across a simple way of explaining
how the paradox comes about and, indirectly, why the requirement of avoiding the
paradox could not, in itself, constitute a satisfactory definition of surrogacy.

As with other paradoxes of causal inference (e.g., Simpson’s paradox, Berkson’s
paradox, suppression effect, reverse regression) a good starting point is linear models,
where the emergence of “paradoxical” phenomena can be examined under the power-
ful “microscope” of path analysis and elementary linear regression (Pearl, 2013a). If
a paradox emerges in linear models, we can be sure that its origin does not rest with
effect heterogeneity or idiosyncratic non-linearities, but with the age-old confusion
between regression and causation (Pearl, 2013b).

Indeed, starting with the simple linear model of Fig. 1(a), we can write the effects
of A on S and on Y, as well as the correlation between S and Y in terms of the



(b)

Figure 1: Path diagram in which S acts as a surrogate for the effect of A on Y,
demonstrating the “surrogate paradox” under both confounded (a) and unconfounded
(b) models.

structural parameters a, 3, and §.!

E(Yi - Yo) = a + By (1)
E(Y|S=1,A=a)—E(Y|S=0,A=a) =8+ (2)
E(S1— S) =7 (3)

The surrogate paradox will be exhibited when the effect of treatment A on the
surrogate S (3) is positive, S and Y are positively correlated (2), but the effect of A
on Y is negative (1), that is, when the structural parameters satisfy:

a+pBy<0 (4)
B+6>0 (5)
¥ >0 (6)

Clearly, for any v > 0 and any [, one can find « sufficiently negative and ¢ sufficiently
positive so as to satisfy (4) and (5). Moreover, even for the unconfounded case, 6 = 0,
shown in Fig. 1(b), the three inequality can be satisfied with 8 > 0 and « sufficiently
negative, namely, « < —f.

We conclude that the surrogate paradox may occur in very common models; it
does not require confounding, nor interaction or heterogeneity. It requires only that
the direct effect of A on Y be sufficiently negative for the paradox to surface. This of
course is an unlikely situation in practice. A treatment that has such a negative direct
effect on outcome would rarely be a candidate for surrogacy analysis. In practice, the
paradox is more likely to take place under confounding conditions (6 > 0) where even
a positive o and a negative § will permit it to surface.

We now address the question of why we cannot pose the avoidance of the surrogate
paradox, namely, the positivity of all quantities on the left hand side of Egs. (1)—(3)
as a formal definition of a “good” surrogate. Indeed, unlike Simpson’s paradox, which
stems from a misinterpretation of statistical data (Pearl, 2009, Ch. 6), negating the
surrogate paradox expresses precisely what we expect a “good” surrogate to do. It is
expected to provide a good prediction of outcome, once it is found to be positively

'We assume a randomized trial, hence, A and S are not confounded nor are 4 and Y. § stands
for the covariance of the “disturbances” affecting S and Y.



affected by the treatment. Why, then, have researchers labored to define “good”
surrogates using fancy formalisms such as “indirect effect,” “principal strata,?” or
“proportion-mediated” (Joffe and Green, 2009) instead of constraining Eqs. (1)—(3)
with the proper inequalities?

The reason, I believe, is that definitions are expected to be formulated in terms
of the knowledge available to the investigator at the time of the study, and this
knowledge consists of qualitative understanding of the model’s structure prior to
seeing the data, or quantitative assessments of the parameters after examining the
data. Egs. (4)-(6) show that structural knowledge is not sufficient to protect us from
the paradox. The paradox may surface even when o = 0 (strong surrogacy) or 5 = 0.
About the only structural condition to prevent the paradox is « = ¢ = 0, which
amounts to perfect mediation (Prentice, 1989). As to quantitative protection from
the paradox, the confounding model of Fig. 1 does not permit the identification of
«, B, and 4, or, in the nonparametric case, of direct and indirect effects.

Another important consideration is robustness. Pearl and Bareinboim (2011)
argued that good prediction of the effect of A on Y should not be the sole criterion
for judging surrogacy, but must be accompanied with a requirement of robustness.
Let us imagine two studies. In the first, we measure the effects of A on both S and
Y and confirm that S is a good surrogate, that is, knowing the effect of treatment on
S allows prediction of the effect of treatment on the outcome. Once S is proclaimed
a “surrogate,” it invites efforts to find direct means of controlling S. For example,
if cholesterol level (5) is found to be a predictor of heart disease in a long run (Y),
drug manufacturers would rush to offer cholesterol-reducing substances for public
consumption. As a result, both the prior P(S = s) and the treatment-dependent
probability P(S = s|A = a) would undergo a change. For S to be a good surrogate, we
should be able to re-assess the effect of the treatment F(Y;—Y}) in a new population in
which the effect of treatment on S has changed, and in which access to Y is no longer
available. Instead, we have an experiment to assess the new value of E(S;—S;). Pearl
and Bareinboim (2011) have shown that, if we assume that the disparity between the
two populations lies only in the difference in E(S; —Sp) (the surrogate’s susceptibility
to treatment) the effect of treatment on the outcome under the new conditions can
still be estimated from the two studies, provided S and Y are not confounded.
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2The choice of “principal strata” to define surrogacy is particularly inadequate, for these strata
are empty in the case of continuous S (Pearl, 2011).
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