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Abstract

This paper translates the conditions necessary for the identification of natural di-

rect and indirect effects into a transparent language, thus permitting a more informed

judgment of the plausibility of these conditions. We show that the conditions usually

cited in the literature are overly restricted, and can be relaxed substantially, without

compromising identification. In particular, we show that natural effects can be identi-

fied by methods other than adjustment. The identification conditions can be further

relaxed in parametric models with interactions, and permit us to compare the relative

importance of several pathways, mediated by interdependent variables.

1 Introduction

It is well known that, unlike the assumptions needed for identifying the controlled direct
effects (CDE), the identification of “natural” effects is more intricate, and requires addi-
tional assumptions (Robins and Greenland, 1992; Pearl, 2001).1 Conditions for identifying
natural direct and indirect effects are commonly derived in terms of independencies among
counterfactual variables (Pearl, 2001; Robins, 2003; Petersen et al., 2006; VanderWeele and
Vansteelandt, 2009; Imai et al., 2010). These independencies, often decorated with labels
such as “ignorability,” “conditional ignorability,” or “sequential ignorability,” are incom-
prehensible to ordinary mortals and are invoked “largely because they justify the use of
available statistical methods and not because they are truly believed” (Joffe et al., 2010).
Several attempts have been made recently to interpret these conditions in more conceptually
meaningful way, so as to enable researchers to judge whether the necessary assumptions
are scientifically plausible (Imai et al., 2011; Muthén, 2011; Valeri and VanderWeele, 2011).
These interpretations avoid “ignorability” vocabulary and invoke instead such notions as

1The natural direct effect is defined as the effect transmitted from X and Y while keeping some interme-
diate variable M at whatever level it attained prior to the transition.
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“no unmeasured confounders,” “as if randomized,” or “essentially random” which are more
appealing to data analysts.

Unfortunately, these interpretations are laden with two other sources of ambiguity. First,
the notion of a “confounder” is ambiguous. Some define a “confounder” (of X and Y ) as a
variable that affects both X and Y , some as a variable that is associated with both X and Y

and still others allow for a confounder to affect X and be associated with Y . Worse yet, the
expression “no unmeasured confounders” is sometimes used to exclude the very existence of
such variables and sometimes to affirm the ability to neutralize them by controlling other
variables. Second, the interpretations have taken “sequential ignorability” as a starting
point and consequently are overly stringent – sequential ignorability is a sufficient but not
necessary condition for identifying natural effects. Weaker conditions can be articulated in
a transparent and unambiguous language which provide a greater identification power and
a greater conceptual clarity.

A typical example of overly stringent conditions that can be found in the literature reads
as follows:

“Imai et al. (2010) showed that the sequential ignorability assumption must be
satisfied in order to identify the average mediation effects. This key assumption
implies that the treatment assignment is essentially random after adjusting for
observed pretreatment covariates and that the assignment of mediator values
is also essentially random once both observed treatment and the same set of
observed pretreatment covariates are adjusted for.” (Imai et al., 2011)

We shall show that milder conditions are in fact sufficient for identification; first the
treatment assignment need not be random under any adjustment and, second, we need not
insist on using “the same set of observe pretreatment covariates,” two separate sets can
sometimes accomplish what the same set does not.

Another common conception among researchers assumes that control of confounding
between the treatment and the mediator can be accomplished independently of how we
control the relationship between the mediator and the outcome. We will show this not be
the case; adjusting for mediator-outcome confounders may confound the treatment-mediator
relationship (see Fig. 11 below), therefore, adjustment for the latter should consider the
covariates used in the former.

The purpose of this note is to offer a concise list of conditions that are sufficient for
identifying the natural direct effect (the same holds for the indirect effect), milder than
those articulated in Imai et al. (2010, 2011), and still expressed in a familiar and accessible
format.

2 The Counterfactual Derivation of Natural Effects

To make this paper self-contained, Appendix A provides a formal proof of the conditions
for direct-effect identification, as it appeared in (Pearl, 2001). It starts with the counter-
factual definition of the natural direct effect, and then goes through three steps. First, it
seeks a set of covariates W that reduces nested counterfactuals to simple counterfactuals.
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Second, it reduces all counterfactuals to do-expressions, that is, expressions that are es-
timable from controlled randomized experiments. Finally it poses conditions for identifying
the do-expressions from observational studies. These three steps are echoed in the informal
conditions articulated in the next section. (See also Shpitser and VanderWeele (2011) and
Shpitser (2012) for refinements and elaborations.)

3 Interpretable Conditions

3.1 Preliminary Notation and Nomenclature

In this section, we will try to avoid counterfactual and “ignorability” vocabulary to the
maximum extent possible, and will invoke instead the notions of conditioning, confounding
and independence among factors that may influence observed variables. We will say that
the relationship between X and Y is “unconfounded” if the factors that influence X are
independent of all factors that influence Y when X is held fixed.2 Given a set W of covariates,
we will say that “W renders a relationship unconfounded” if the relationship is unconfounded
in every stratum W = w of W . Such conditional unconfoundedness holds, for example, if
W consists of all common causes of X and Y , but may hold for other types of covariates
as well (known as “sufficient” or “admissible” (Pearl, 2009a, p. 80)). Finally, we will use
the expression “W deconfounds a relationship” as a short-hand substitute for “W renders a
relationship unconfounded.”

We will let X stand for the treatment, M for a mediator, and Y for the outcome. We
will focus our discussion on the natural direct effect, labeled NDE, though all conditions
are applicable to the indirect effect as well, by virtue of the pseudo-additive decomposition
of the total effect (see Pearl 2001, Eq. (23).) NDE is defined as the expected increase in Y

when X is incremented by one unit and M is kept constant at what ever level it attains (in
each individual) just before incrementing X.

Finally, we will assume that readers are familiar with the notion of (nonparametric)
identifiability as applied to causal or counterfactual relations (see, for example (Pearl, 2009a,
p. 77)). In particular, we will say that the “W -specific” causal effect of X on Y is identifiable,
if the effect is consistently estimable from the observed data for every stratum level w.

3.2 Sufficient conditions for identifying natural effects

The following are two sets of interpretive conditions, marked A and B, that are sufficient
for identifying natural effects, both direct and indirect. Each condition is communicated by
a verbal description followed by its formal expression, where YXM stands for all factors that
affect Y when X and M are held constant (at any values). Each set of conditions is followed
by its graphical version, marked AG and BG with all graphs representing nonparametric

2This definition, formally written as X⊥⊥YX , provides a conceptually meaningful interpretation of “strong
ignorability,” and is given a graphical representation in Pearl (2009a, pp. 341–344). I am grateful to an
anonymous reviewer for noting that the zero-bias definition given in an earlier version of this paper is
insufficient – functional models must be invoked. The distinction between functional and interventional
models is given in Pearl (2009a, pp. 22–38) and is further elaborated in Robins and Richardson (2010).
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structural equation models (Pearl, 2009a, [Ch. 7). Set B is the stronger of the two, and
represents assumptions commonly invoked in the mediation literature (Imai et al., 2010,
2011; Shpitser and VanderWeele, 2011; VanderWeele and Vansteelandt, 2009; Vansteelandt,
2012). Set A is weaker, and echoes more faithfully the derivation in Appendix A.

A (Weak conditions)

There exists a set W of measured covariates such that:

A-1 No member of W is affected by treatment.

A-2 W deconfounds the mediator-outcome relationship (holding X constant).

[MX⊥⊥YMX | W ]

A-3 The W -specific effect of the treatment on the mediator is identifiable by some means.

[P (m | do(x), w) is identifiable]

A-4 The W -specific joint effect of {treatment+mediator} on the outcome is identifiable by
some means.

[P (y | do(x, m), w) is identifiable]

AG (Graphical version of A)

There exists a set W of measured covariates such that:

AG-1 No member of W is a descendant of X.

AG-2 W blocks all backdoor paths from M to Y , disregarding the one through X.

AG-3 The W -specific effect of X on M is identifiable using do-calculus.

AG-4 The W -specific joint effect of {X, M} on Y is identifiable using do-calculus.

B (stronger condition)

There exists a set W of measured covariates such that:

B-1 No member of W is affected by the treatment.

B-2 W deconfounds the treatment-{mediator, outcome} relationship.

[X⊥⊥YXM , MX | W ]

B-3 W and X deconfound the mediator-outcome relationship.

[M⊥⊥YM | X, W ]
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BG (graphical version of B)

There exists a set W of measured covariates such that:

BG-1 No member of W is a descendant of X.

BG-2 W blocks all backdoor paths from X to M .

BG-3 W and X block all backdoor paths from M to Y .

Remarks

Assumption set A differs from B on two main provisions. First, A-3 and A-4 permit the
identification of causal effects by any methods whatsoever, while B-2 and B-3 require that
identification be accomplished by adjustment. Second, whereas A-3 and A-4 makes no
commitment to which covariates are invoked in the identification of the causal effects needed,
B requires that the same set W satisfy both B-2 and B-3.

It should be noted that, whereas this paper concerns identification in observational stud-
ies, conditions A-3 and A-4 open the door to experimental studies, when such are feasible.
For example, one may venture to estimate the causal effect of X on M by randomizing X or
by using encouragement designs (instrumental variables) or multi-state adjustment.3 Only
the latter will be considered here. The restrictions on all such designs are the same, namely,
that they be W -specific, where W is a set of attributes satisfying A-1 and A-2.

Appendix B explains why we must insist that W will be unaffected by the treatment.

4 Illustrations

X Y

(a)

X Y

W

MM

(b)

Figure 1: (a) The basic unconfounded mediation model, showing the treatment (X) mediator
(M) and outcome (Y ). (b) The mediator model with an added covariate (W ) that confounds
both the X → M and the M → Y relationships.

3Note that the corresponding assumption in B-3 is stronger than the zero-bias condition

P (y | do(m), x, w) = P (y | m, x, w)

which can be verified experimentally. B-3 requires that, conditioned on X and W , M be independent of
the joint set {Ym1

, Ym2
, . . . , Ymk

}, where {m1, m2, . . . , mk} are the values of M . Such joint independence
implies zero bias, but the converse may not hold.
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To illustrate and compare the conditions articulated in the previous section we start with
simple models that satisfy the strong conditions of B (and BG), and then examine how the
process of identification can benefit from the relaxed conditions given in A (and AG).

4.1 How the natural effects are identified

Figure 1(a) illustrates the classical mediation model, with no confounding; all omitted factors
(not shown in the diagram) affecting X, M, and Y are assumed to be independent, so both
the mediation process, X → M , and the outcome process {X, M} → Y , are said to be
“unconfounded.” In this model, the null set W = {0} satisfies the conditions in B (as well
as in A), and the natural direct effect takes the form4

NDE =
∑

m

[E(Y | X = 1, M = m)− E(Y | X = 0, M = m)]P (M = m | X = 0). (1)

Likewise, the natural indirect effect (formally defined in Appendix A) becomes5

NIE =
∑

m

E(Y | X = 0, M = m)[P (M = m | X = 1) − P (M = m | X = 0)] (2)

We see that both equations invoke weighted averages over the levels of M , to allow for
heterogeneous populations where M and its effects on Y vary from individual to individual
and cannot be equalized by policy intervention. NDE measures the portion of the total
effect that would be transmitted to Y absent M ’s ability to detect changes in X, while NIE

measures the portion transmitted absent Y ’s ability to detect such changes, except those
transmitted through M .

Figure 1(b) illustrates a confounded mediation model in which a variable W (or a set of
variables) confounds all three relationships in the model. Because W is not affected by X

and is observed, adjusting for W renders all relationships unconfounded and the conditions
of B (as well as A) are satisfied. Accordingly, the natural direct effect estimand is given by

NDE =
∑

m

∑

w

[E(Y | X = 1, M = m, W = w)− E(Y | X = 0, M = m, W = w)]

P (M = m | X = 0, W = w)P (W = w) (3)

Figure 2(a) illustrates a mediation model in which W is partitioned into three independent
sets, each confounding one of the relationship in the model. It is a special case of Fig. 1(b),
with W = {W1, W2, W3} which, when substituted in Eq. (3), yields:

4Eqs. (1) and (2) were called “The Mediation Formula” in (Pearl 2009a, p. 132; Pearl 2009b, 2011).
Summations should be replaced by integration when applied to continuous variables, as in (Imai et al.,
2010).

5The NDE and NIE are connected to each other via TE, the total effect, by the pseudo-additive
relation: TE = NDE −NIEr where NIEr is the NIE for the reversed transition, from X = 1 to X = 0.
It is identified therefore whenever NDE and TE are, and all our discussions concerning the NDE should
apply to NIE as well (Pearl, 2009a, p. 132; Pearl, 2009b, 2011).
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X Y

W1

X Y

W3

W2

W3

W1W2

(a) (b)

M M

Figure 2: (a) A mediation model with three independent confounders, W1, W2 and W3. (b)
showing dependencies among the confounders W1, W2 and W3.

NDE =
∑

m

∑

w2,w3,w1

P (W2 = w2, W3 = w3, W = w1)[E(Y | X = 1, M = m, W1 = w, W2 = w2, W3 = w3))

− E(Y | X = 0, M = m, W1 = w1, W2 = w2, W3 = w3, )]

P (M = m | X = 0, W1 = w1, W2 = w2, W3 = w3) (4)

=
∑

m

∑

w2,w3,w1

P (W2 = w2)P (W3 = w3)[E(Y | X = 1, M = m, W1 = w1, W3 = w3))

− E(Y | X = 0, M = m, W1 = w1, W3 = w3)]

P (M = m | X = 0, W2 = w2, W1 = w1)P (W1 = w1) (5)

This decomposition is enabled by the assumption that W1, W2 and W3 are mutually
independent. In the more general case, as the one is in Fig. 2(b) confounders will not be
independent and Eq. (3) needs to be used.

W3X Y

W2
M

Figure 3: A mediation model with two dependent confounders, permitting the decomposition
of Eq. (6). Hollow circles stand for unmeasured confounders. The model satisfies condition
A but violates condition B.

4.2 Comparing identification power

We are now ready to explore the benefits of the weaker conditions expressed in A. First, note
that conditions A-3 and A-4 allow for covariates outside W to assist in the identification.
This results in a greater flexibility in allocating covariates for the various adjustments invoked
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in expression (2). It also simplifies the process of justifying the assumptions supported by
these adjustments, and leads, in turns, to a simpler overall estimand.

Specifically, in choosing covariates to deconfound the {X, M} → Y relationship one is
free to ignore the covariates chosen to deconfound the X → M relationship, and vice versa.

The model in Fig. 3 demonstrates this flexibility. Since the mediator-to-outcome relation-
ship is unconfounded (for fixed X), we are at liberty to choose W = {0} to satisfy conditions
A-1 and A-2. Likewise, the treatment-mediator relationship is unconfounded when we adjust
for W2, and this permits us to remove W3 from the the factor P (M = m | X = 0, W =
w)P (W = w) of Eq. (3).6 Finally, the {XM} → Y relationship is deconfounded by W3

alone, which permits us to remove W2 from the factors E(Y | X = 1, M = m, W = w) and
E(Y | X = 0, M = m, W = w) of Eq. (3). The resulting estimand for NDE becomes:

NDE =
∑

m

∑

w2,w3

P (W2 = w2, W3 = w3)[E(Y | X = 1, M = m, W3 = w3)]

− [E(Y | X = 0, M = m, W3 = w3, )]P (M = m | X = 0, W2 = w2) (6)

with only one of W3 and W2 appearing in each of the last two factors.
Note that covariates need not be pretreatment to ensure identification; B and A require

merely that W be causally unaffected by the treatment. Indeed, W3 in Fig. 3 may well be a
post-treatment variable, the control of which is essential for identifying NDE. Note also that
“treatment assignment” in the model of Fig. 3 is not truly “random” for it is affected by the
hidden common causes of X, W2, and W3. It is for this reason that the term “unconfounded”
is less ambiguous than “randomized.”

We are now ready to compare the identification power of A versus B.
A draws its increased power from two sources:

(a) Divide and conquer – Covariates may be found capable of deconfounding the mediator
and outcome processes separately but not simultaneously

(b) Multi-step adjustment – Covariates may be found capable of identifying causal effects
through a nonstandard, multi-step adjustment but not through a one-step adjustment,
as required by B.

(a) Divide and conquer

Fig. 3 demonstrates how the “divide and conquer” flexibility translates into an increase
identification power. Here, the X → M relationship requires an adjustment for W2, and
the X → Y relationship requires an adjustment for W3. If we make the two adjustments
separately, we can identify NDE by the estimand of Eq. (6). However, if we insist on
adjusting for W2 and W3 simultaneously, as required by assumption set B, the X → M

relationship would become confounded, by opening two colliders in tandem along the path
X → W3 ↔ W2 ←M . As a result, assumption set B would deem the NDE to be unidenti-
fiable; there is no covariates set W that simultaneously deconfounds the two relationships.

6This is licensed by the fact that W2 is a sufficient deconfounder, and is valid regardless of whether W2

and W3 are correlated.
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(b) Multi-step adjustments

Figure 4 displays a model for which the natural direct effect achieves its identifiability through
multi-step adjustment (in this case using the front-door procedure), permitted by A, though
not through a single-step adjustment, as demanded by B. In this model, the null set W = {0}

X Y

Z

M

Figure 4: Measuring Z permits the identification of the effect of X on M through the
front-door procedure.

satisfies conditions B-1 and B-3, but not condition B-2; there is no set of covariates that
would enable us to deconfound the treatment-mediator relationship. Fortunately, condition
A-3 requires only that we identify the effect of X on M by some method, not necessarily by
rendering X random or unconfounded (or ignorable). The presence of observed variable Z

permits us to identify this causal effect using the front door condition (Pearl, 1995, 2009a).
The resultant NDE estimand will be:

NDE =
∑

m

[E(Y | X = 1, M = m)−E(Y | X = 0, M = m)]P (M = m | do(X = 0)) (7)

where P (M = m | do(X = 0)) is given by the front-door estimator:
∑

z

P (Z = z | X = 0, M = m)
∑

x′

P (M = m | Z = z, X = x′)P (X = x′).

X Y

W

Z

M

T

Figure 5: Measuring Z and T permits the identification of the effect of X on M and X on
Y for each specific w and leads to the identification of the natural direct effect.

Figure 5 embodies the same idea in a slightly more complicated context. Here, the front-
door estimator needs to be applied to both the X → M and the X → Y relationships.
In addition, conditioning on W is necessary, in order to satisfy condition A-2. Still, the
identification of P (M = m | do(x), w) and E(Y | do(m, x), w) presents no special problems
to students of causal inference (Shpitser and Pearl, 2006). This example demonstrates the
impact of requiring A-4; had T not been observed, conditions A-1 to A-3 would have been
satisfied, but not A-4.
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W

M

X Y

Figure 6: NDE is not identifiable because condition A-2 cannot be satisfied, though all
causal effects are identifiable.

5 Coping with Treatment-dependent Confounders

Figure 6 tempts us to apply the front-door estimator to the M → Y relationship, which
is confounded by unobserved common causes of M and Y (represented by the dashed arc).
Unfortunately, although the causal effect of {X, M} on Y is identifiable, condition A-2 cannot
be satisfied; no covariate can be measured that deconfounds the M → Y relationship.

This is the first example we encountered in which the natural direct effect is not identi-
fiable and the controlled direct effect is.7 Another such example is shown in Fig. 7. Here,

X Y

W

M

Figure 7: NDE is not identifiable because condition A-1 cannot be satisfied – W is a
descendant of X.

W can serve to deconfound both the M → Y and the X → M relationships but, alas, W

is a descendant of X and so, it violates condition A-1 and renders NDE non-identifiable.
Figure 7 unveils a general pattern that prevents identification in any (nonparametric) model
(Robins, 2003; Avin et al., 2005): Whenever a variable exists (be it measured or unmeasured)
that is a descendant of X and an ancestor of both M and Y (W in our examples), NDE is
not identifiable.

This restriction however does not apply to linear models, where parameter identification
is all that is needed for the identification of all effects, even when a confounder W of M → Y

is affected by the treatment. The same holds for other parametric models, such as linear
models with interaction terms.8

7A full characterization of the conditions identifying the controlled direct effect

CDE(m) = E[Y | do(X = 1, M = m)] −E[Y | do(X = 0, M = m)],

in the presence of unmeasured confounders is given in (Shpitser and Pearl, 2008), based on the do-calculus.
8Such models have been analyzed extensively in the literature, some using purely statistical approach

(MacKinnon, 2008; Kraemer et al., 2008; Jo, 2008; Preacher et al., 2007) and some applying the Mediation
Formula of equations (1) and (2) (VanderWeele and Vansteelandt, 2009; Muthén, 2011; Imai et al., 2010;
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To illustrate, consider the parametric version of Fig. 7:

y = β1m + β2x + β3xm + β4w + ε1 (8)

m = γ1x + γ2w + ε2 (9)

w = αx + ε3 (10)

with β3xm representing an interaction term, then the basic definition of the natural effects
(Appendix A) gives (for the transition from X = 0 to X = 1):

NDE = β2 + αβ4 (11)

NIE = β1(γ1 + αγ2) (12)

TE = β2 + (γ1 + αγ2)(β3 + β1) + αβ4 (13)

TE −NDE = (β1 + β3)(γ1 + αγ2) (14)

We see that, due to treatment-mediator interaction, β3xm, the portion of the effect for
which mediation is necessary (TE−NDE) can differ significantly from the portion for which
mediation is sufficient (NIE) (Pearl, 2011). The fact the W is affected by the treatment
does not hinder the identification of these effects (as long as the structural parameters are
identifiable), though the choice of terms for each of those effects is not trivial, and needs
to be guided carefully by the formal, counterfactual definitions of NDE and NIE (Pearl,
2012).

For nonparametric models, Avin et al. (2005) derived a necessary and sufficient condition
for identifying (natural) path-specific effects in graphs with no confounders. For example,
suppressing the X → W or X → M processes in Fig. 7 would lead to identifiable effects,
while suppressing the W → Y or M → Y processes will not.

Figure 7 can in fact be regarded as having two interacting mediators, M and W , and the
results of Avin et al. (2005) highlight a fundamental difference between the two. Whereas
effects mediated through W are identifiable, those mediated through M are not. For example,
the natural direct and indirect effects viewing W as the mediator can be obtained directly
from Eqs. (1) and (2), exchanging m with w, since the relationships X → W and (XW )→ Y

are unconfounded. This gives

NDE(W ) =
∑

w

[E(Y | X = x′, W = w)− E(Y | X = x, W = w)]P (W = w | X = x)

NIE(W ) =
∑

w

E(Y | X = x, W = w)[P (W = w | X = x′)− P (W = w | X = x)]

in which M is not invoked.
For comparison, the parametric version of Fig. (7) given in Eqs. (8)–(10) yields the

following effects when W is considered the mediator:

NDE(W ) = β2 + γ1β1 (15)

NIE(W ) = α(β4 + γ2β1) (16)

TE = β2 + (γ1 + αγ2)(β3 + β1) + αβ4 (17)

TE −NDE(W ) = α(γ2β3 + β4 + γ2β1 + γ1β3) (18)

Valeri and VanderWeele, 2011; Pearl, 2010, 2011). However, the problem of dealing with two interacting
mediators (e.g., M and W in Fig. 7) has not received much attention.
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Comparing Eqs. (15)–(18) to Eqs. (11)–(14) allows an investigator to assess the relative
contribution of each mediator, W and M , to the overall effect of X on Y .

Figure 8 depicts the parameterized model of Eqs. (8)–(10) and compares the subgraphs
carrying the effects (NIE) mediated by M and W , respectively.

β
4

β
4

γ
2

γ
2

β
3

β
3

(b)(a)

γ
1 β

1
β

1
γ

1

β
2

β
2

W

M

X Y

M

X Y

W

αα

Figure 8: A parameterized version of Fig. 7, in which the heavy arrows represent (a) Paths
carrying the natural indirect effect (NIE) when M is considered as the mediator. (b) Same
with W considered as the mediator.

X Y

M

W

Z

Figure 9: NDE is identified by adjusting for W and using Z to deconfound the X → Y

relationship.

Figure 9, demonstrates the role that an observed covariate (Z) on the X → Y pathway
can play in the identification of natural effects. In this model, conditioning on W deconfounds
both the M → Y and Y → M relationships but confounds the X → Y relationship. However
the W -specific joint effect of {X, M} on Y is identifiable through observations on Z (using
the front-door estimand).

Our examples thus far may create the impression that covariates situated along the
path from M to Y are useless for identifying NDE. This is not the case. In Fig. 10, the
mediator→ outcome relationship is unconfounded (once we fix X), so, we are at liberty
to choose W = {0} to satisfy condition A-2. The treatment→ mediator relationship is
confounded, and requires an adjustment for T (so does the treatment-outcome relationship).
However, conditioning on T will confound the {MX} → Y relationship (in violation of
condition A-4). Here, the presence of Z comes to our help, for it permits us to estimate
P (Y | do(x, m), t) thus rendering NDE identifiable.

12



YX

L
2

L
1

M

Z

T

Figure 10: The confounding created by adjusting for T can be removed using measurement
of Z.

YX

W

M

Figure 11: NDE is not identifiable because adjusting for W confounds the X → M rela-
tionship, while leaving W unadjusted renders the M → Y relationship confounded.

5.1 Is the “W -specific” provision necessary?

Assumptions A-3 and A-4 insist on identifying both the X → M and {X, M} → Y effects
after conditioning on W . Figure 11 demonstrates that these provisions are not entailed by
the others; they may produce bias if ignored. In this model, W deconfounds the M → Y and
X → Y relationship, while the X →M relationship is unconditionally unconfounded. Since
W must be adjusted (to deconfound the M → Y relationship), it must also be included in
the deconfounding of X → M . This, according to Fig. 11 is untenable (due to the collider
present) and the NDE cannot therefore be identified in this model.

Fortunately, only sets that are necessary for deconfounding M → Y must participate in
the deconfounding of other relationships. Fig. 3 for example shows that, since W3 is not
necessary for deconfounding M → Y , it is not required to be included in the adjustment for
X → M . Likewise, W2 is ignored in deconfounding {XM} → Y . This flexibility renders
NDE identifiable.

6 Conclusions

We presented a concise and interpretable list of conditions that are sufficient for the identifi-
cation of natural effects and demonstrated by examples that the weaker set of conditions can
lead to improved identification power. In particular, the new conditions open the door for
identification methods that go beyond standard adjustment for covariates. Applying these
conditions to linear models with interaction terms, we showed how path-specific effects can
be estimated in models with multiple pathways and interacting mediators.
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Appendix A

Formal Derivation of Conditions for NDE Identification

(after Pearl (2001))

A.0 Notation

Throughout our analysis we will let X be the control variable (whose effect we seek to assess),
and let Y be the response variable. We will let Z stand for the set of all intermediate variables
between X and Y which, in the simplest case considered, would be a single variable M as in
Fig. 1.9 Most of our results will still be valid if we let Z stand for any set of such variables,
in particular, the set of Y ’s parents excluding X.

We will use the counterfactual notation Yx(u) to denote the value that Y would attain in
unit (or situation) U = u under the control regime do(X = x). See Pearl (2000, Ch. 7) for
formal semantics of these counterfactual utterances. Many concepts associated with direct
and indirect effect require comparison to a reference value of X, that is, a value relative to
which we measure changes. We will designate this reference value by x∗.

A.1 Controlled Direct Effects (review)

Definition 1 (Controlled unit-level direct-effect; qualitative)

A variable X is said to have a controlled direct effect on variable Y in model M and
situation U = u if there exists a setting Z = z of the other variables in the model and two
values of X, x∗ and x, such that

Yx∗z(u) 6= Yxz(u) (19)

In words, the value of Y under X = x∗ differs from its value under X = x when we keep all
other variables Z fixed at z. If condition (1) is satisfied for some z, we say that the transition
event X = x has a controlled direct-effect on Y , keeping the reference point X = x∗ implicit.

Clearly, confining Z to the parents of Y (excluding X) leaves the definition unaltered.

9The mediator is labeled Z in this appendix, to be faithful to the original derivation; it is totally inter-
changeable with M as used in the text.
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Definition 2 (Controlled unit-level direct-effect; quantitative)
Given a causal model M with causal graph G, the controlled direct effect of X = x on Y in
unit U = u and setting Z = z is given by

CDEz(x, x∗; Y, u) = Yxz(u)− Yx∗z(u) (20)

where Z stands for all parents of Y (in G) excluding X.

Definition 3 (Average controlled direct effect)
Given a probabilistic causal model 〈M, P (u)〉, the controlled direct effect of event X = x on
Y is defined as:

CDEz(x, x∗; Y ) = E(Yxz − Yx∗z) (21)

where the expectation is taken over u.

The distribution P (Yxz = y) can be estimated consistently from experimental studies in
which both X and Z are randomized. In nonexperimental studies, the identification of this
distribution requires that certain “no-confounding” assumptions hold true in the population
tested. Graphical criteria encapsulating these assumptions are described in Pearl (2000,
Sections 4.3 and 4.4).

A.2 Natural Direct Effects: Formulation

Definition 4 (Unit-level natural direct effect; qualitative)
An event X = x is said to have a natural direct effect on variable Y in situation U = u if
the following inequality holds

Yx∗(u) 6= Yx,Zx∗ (u)(u) (22)

In words, the value of Y under X = x∗ differs from its value under X = x even when we
keep Z at the same value (Zx∗(u)) that Z attains under X = x∗.

We can easily extend this definition from events to variables by defining X as having a
natural direct effect on Y (in model M and situation U = u) if there exist two values, x∗

and x, that satisfy (22). Note that this definition no longer requires that we specify a value
z for Z; that value is determined naturally by the model, once we specify x, x∗, and u. Note
also that condition (22) is a direct translation of the court criterion of sex discrimination in
hiring (Pearl, 2001) with X = x∗ being a male, X = x a female, and Y = 1 a decision to
hire.

If one is interested in the magnitude of the natural direct effect, one can take the difference

Yx,Zx∗(u)(u)− Yx∗(u) (23)

and designate it by the symbol NDE(x, x∗; Y, u) (acronym for Natural Direct Effect). If we
are further interested in assessing the average of this difference in a population of units, we
have:

Definition 5 (Average natural direct effect)
The average natural direct effect of event X = x on a response variable Y , denoted NDE(x, x∗; Y ),
is defined as

NDE(x, x∗; Y ) = E(Yx,Zx∗
)− E(Yx∗) (24)
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A.4 Natural Direct Effects: Identification

As noted in (Pearl, 2001), we cannot generally evaluate the average natural direct-effect
from empirical data. Formally, this means that Eq. (24) is not reducible to expressions of
the form

P (Yx = y) or P (Yxz = y);

the former governs the causal effect of X on Y (obtained by randomizing X) and the latter
governs the causal effect of X and Z on Y (obtained by randomizing both X and Z).

We now present conditions under which such reduction is nevertheless feasible.

Theorem 1 (Experimental identification)
If there exists a set W of covariates, nondescendants of X or Z, such that

Yxz⊥⊥Zx∗ | W for all z (25)

(read: Yxz is conditionally independent of Zx∗, given W ), then the average natural direct-
effect is experimentally identifiable, and it is given by

NDE(x, x∗; Y ) =
∑

w,z

[E(Yxz | w) −E(Yx∗z | w)]

P (Zx∗ = z | w)P (w) (26)

Proof
The first term in (24) can be written

E(Yx,Zx∗
= y)
=

∑
w

∑
z E(Yxz = y | Zx∗ = z, W = w)

P (Zx∗ = z | W = w]P (W = w)
(27)

Using (25), we obtain:

E(Yx,Zx∗
= y)
=

∑
w

∑
z
E(Yxz = y | W = w)

P (Zx∗ = z | W = w)P (W = w)
(28)

Each factor in (28) is identifiable; E(Yxz = y | W = w), by randomizing X and Z for each
value of W , and P (Zx∗ = z | W = w) by randomizing X for each value of W . This proves
the assertion in the theorem. Substituting (28) into (24) and using the law of composition
E(Yx∗) = E(Yx∗Zx∗

) (Pearl 2000, p. 229) gives (26), and completes the proof of Theorem 1.
�

The conditional independence relation in Eq. (25) can easily be verified from the causal
graph associated with the model. Using a graphical interpretation of counterfactuals (Pearl,
2000, p. 214-5), this relation reads:

(Y⊥⊥Z | W )GXZ
(29)
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In words, W d-separates Y from Z in the graph formed by deleting all (solid) arrows ema-
nating from X and Z.

Figure 12(a) illustrates a typical graph associated with estimating the direct effect of X

on Y . The identifying subgraph is shown in Fig. 12(b), and illustrates how W separates Y

from Z. The separation condition in (29) is somewhat stronger than (25), since the former
implies the latter for every pair of values, x and x∗, of X (see (Pearl 2000, p. 214)).

U3

U1
U2

U4

U3

U1
U2

U4

(b)

Y

Z

X

W

(a)

Y

Z

X

W

Figure 12: (a) A causal model with latent variables (U ’s) where the natural direct effect
can be identified in experimental studies. (b) The subgraph GXZ illustrating the criterion
of experimental identifiability (Eq. 29): W d-separates Y from Z.

The identification of the natural direct effect from nonexperimental data requires stronger
conditions. From Eq. (26) we see that it is sufficient to identify the conditional probabilities
of two counterfactuals: P (Yxz = y | W = w) and P (Zx∗ = z | W = w), where W is any
set of covariates that satisfies Eq. (25) (or (29)). This yields the following criterion for
identification:

Theorem 2 (Nonexperimental identification)
The average natural direct-effect NDE(x, x∗; Y ) is identifiable in nonexperimental studies if
there exists a set W of covariates, nondescendants of X or Z, such that, for all values z and
w we have:

(i) Yxz⊥⊥Zx∗ | W

(ii) P (Yxz = y | W = w) and P (Yx∗z = y | W = w) are identifiable

(iii) P (Zx∗ = z | W = w) is identifiable

Moreover, if conditions (i)-(iii) are satisfied, the natural direct effect is given by (26).
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Appendix B

Why can’t we use treatment-dependent covariates to

deconfound the mediator-outcome process

Both A and B insist that no member of W be affected by the treatment, which is a require-
ment distinct to the identification of natural effects. For example, to identify the controlled
direct effect CDE(m) in Fig. 9 we can condition on W = w, and, using the truncated
factorization formula (Pearl, 2000, p. 72), we can write

CDE(m) = E[Y | do(X = 1, M = m)]− E[Y | do(X = 0, M = m)]

=
∑

w

E[Y | X = 1, M = m, W = w]P (X = 1, W = w)

− E[Y | X = 0, M = m, W = w]P (X = 0, W = w)

The reason such conditioning does not work for the natural direct effect is that the latter
is not defined in term of a population experiment (i.e., control M to level M = m and change
X from X = 0 to X = 1) but in terms of a hypothetical manipulation at the unit level,
namely, for each individual u, freeze M at whatever level it attained for that individual, then
change X from X = 0 to X = 1 and observe the change in Y ).

Appendix A shows that in order to convert this unit-based operation to a population-
based operation (expressible as a do(x) expression) we must first find a W that deconfounds
M from Y (with X fixed) and, then, conditioned on that same W , identify the counterfactual
expression

P (Mx = m | W = w).

When W is affected by the treatment, this expression is not identifiable even when X is
randomize. To see that, we recall that Mx stand for all factors affecting M when X is held
fixed. These factors are none others but the omitted factors (or disturbance terms) that
affect M . When we condition on W , those factors become correlated with X which renders
X confounded with M .

This can also be seen from the graph, using virtual colliders. The expression P (Mx =
m |W = w) stands for the causal effect of X on M within a stratum w of W . It is identifiable
using the back door criterion which demands that W not be affected by X because, as soon
as W is a descendant of any intermediate variable from X to M (including M itself) a virtual
collider is formed, and a new back-door path is opened by conditioning on W (Pearl, 2009a,
p. 339).

Another way of seeing this, is to resort to do-calculus. If W is not affected by the
treatment, we have Wx = W , and we can write

P (Mx = m | W = w) = P (Mx = m | Wx = w) =
P (Mx = m, Wx = w)

P (Wx = w)

=
P (M = m, W = w | do(X = x))

P (W = w | do(X = x))

= P (M = m | do(X = x), W = w)
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The last expression stands for the causal effect of X on M given that W = w is the
post-treatment value of W . It is identifiable by the do-calculus, whenever the model permits
such identification (Shpitser and Pearl, 2008).

It is worth mentioning at this point that treatment-dependent confounders hinder only
nonparametric identification of natural effects as defined in Eq. (24). The difficulty disap-
pears when we have a parametric representations (as in Eqs. (8)–(10)) or when we compro-
mise on the requirement of freezing M completely at the value it attained prior to the change
in treatment. For example, if in Fig. 7 we merely disable the process X → M and allow M

to respond to W as we change X from X = 0 to X = 1, the resulting direct effect will be
identified. This type of direct and indirect effects, which I would like to call “semi-natural
effects,”10 are defined as (using parenthetical notation):

SNDE = E(Y (X = 1), M(X = 0, W (X = 1)), W (X = 1)) − E(Y (X = 0))

SNIE = E(Y (X = 0), M(X = 1, W (X = 0)), W (X = 0)) − E(Y (X = 0))

Using the derivation leading to Eq. (26) one can show that these semi-natural effects are
identifiable by:

SNDE =
∑

mw

E(Y | X = 1, M = m, W = w)P (M = m | X = 0, W = w)P (W = w | X = 1)

−E(Y | X = 0)

SNIE =
∑

mw

E(Y | X = 0, M = m, W = w)P (M = m | X = 1, W = w)P (W = w | X = 0)

−E(Y | X = 0)

Accordingly, the parametric model of Eqs. (8)–(10) would yield the following semi-natural
effects:

SNDE = β2 + α(β4 + γ2β1)

SNIE = γ1β1

TE = β2 + (γ1 + αγ2)(β3 + β1) + αβ4

TE − SNDE = γ1(β1 + β3) + β3αγ2

Figure 13 depicts the path that supports the SNDE and SNIE compared with those
supporting the NDE and NIE in Eqs. (11)–(14). We see that the criterion of Avin et al.
(2005) is satisfied in the latter, but not the former.
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