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Abstract

We assess the precision of direct vs. indirect methods of estimating regression parameter.
In particular we compare the direct estimator, defined by the regression itself, with composite
estimators, which invoke auxiliary variables, under various modeling assumptions of exclusion
and indepndence. Our general conclusion is that a composite estimator that exploits the
model restrictions has greater asymptotic precision than its direct counterpart.

1 Model 1

Consider the following model:

e y is the outcome of interest

x 1s the intermediate cause

z 1s the cause of interest

z affects y only through x

Example 1 y denotes “heart attack”, x denotes “cholesterol”, and z denotes “butter”
Let’s give some more mathematical structure:

y=pr+u (1)
r =2+ (2)

and

y=p0z+v)+u
= Byz+ (Bv+u)

We will define 6 = v and € = fv + u, and write
y=0z+c¢ (3)

For simplicity, we will assume that (y,z, z)" have the multivariate normal distribution with zero
mean.



Two Estimators We consider two estimation methods of 6. The first one estimates it in one
step using . The second one estimates (/3,7) using and , and then use the relationship
0 = (B to compute an estimate of 6.

The single step estimator We will call the single step estimator 0. Using the well-known

result, we can see that
~ Var (¢)
— N
Vi <9 9) - (O’ Var (z))

Because Cov (u,v) = 0, we have Var (¢) = 32 Var (v) + Var (u), which implies that we can write

\/5(5_ 0) N (07 2 Var (v) + Var (u)>

Var (z)

The two step estimator We will call the single step estimator ) Again using the well-known

result, we can see that
~ Var (u)
Vi (ﬁ B 5) - N (O’ Var(:c))

Using Var (x) = 72 Var (z) + Var (v), we obtain

~ ar (u
Vi <B B B) - N (0’ V2 Var\(/z) + )Var (v))

We now claim that v/n (5 — ﬁ) and \/n (7 — ) are asymptotically independent. We note that

1 n
n D i Tilli

\/ﬁ(g—ﬁ) IVT@)JF%(U

1 n
n > e ZiVi

\/ﬁ(?—’Y)ZT(Z)JrOp(l)

and
E[(zu) (20)] = E [z (vz + v) wv] = vE [2*uwv] + E [20°u]

With normality along with Cov (u,v) = 0, this component is equal to zero. Therefore, 3 and 7
are asymptotically independent.

Now, using the delta method, we have /n (5— 0) asymptotically normal with asymptotic

variance equal to
72 Var (u) 3% Var (v)
72 Var (z) 4+ Var (v) Var (z2)

Comparison We see that the single step estimator has the asymptotic variance equal to

3% Var (v) 4 Var (u)
Var (z)




and the two step estimator has the asymptotic variance equal to

72 Var (u) 3% Var (v)
72 Var (z) + Var (v) Var (z2)

Subtracting from , we obtain

-
_ B Var (v) + Var (u) ( 72 Var (u) 3% Var (v))
Var (z2) 72 Var (z) 4+ Var (v) Var (z2)
_ Var (w) Var (u)
Var(z)  Var(z) + 7% Var (v)

>0

In other words, the two-step estimator is more efficient than the one step estimator.

2 Model 2

Consider the following model:

e y is the outcome of interest
e 2 is the intermediate cause
e 2 is the cause of interest

e 2 affects y directly, and indirectly through z

Example 2 y denotes “heart attack”, x denotes “cholesterol”, and z denotes “butter”. We will
assume that the “butter” has both direct and indirect impacts, which is expressed (@ i mathemat-
ical terms.

Let’s give some more mathematical structure:

y=PBr+dz+u (6)
r="z+v (7)

and

y=pF(yz+v)+dz+u
=(fy+9)z+ (Bv+u)

We will define 6 = v+ 0 and € = Sv + u, and write
y=0z+c¢ (8)

For simplicity, we will assume that (y,z, z)" have the multivariate normal distribution with zero
mean.



Two Estimators We consider two estimation methods of 6. The first one estimates it in one
step using . The second one estimates (/3,7) using @ and , and then use the relationship
0 = B~y + 6 to compute an estimate of 6.

The single step estimator We will call the single step estimator 0. Using the well-known
result, we can see that

(1) 3 (1) o o P e

Remark 1 If the OLS on (t]) is to be consistent, we should have Cov (u,v) = 0. This means that
Var (&) = % Var (v) + Var (u)

It follows that
Var(¢)  f* Var (v) + Var (u)
Var (z) Var (z)

The two step estimator We will call the two step estimator 0. Again using the well-known
result, we can see that

A7) 00) o (B e ] )

VICEDES (Rl

They are asymptotically independent by the same reasoning as outlined in the previous note.
By the analysis of variance formula in , we also have

and

Var (z) = 7* Var (z) + Var (v)
Cov (z, z) = v Var (2)

—~ N/
It follows that the asymptotic variance of (ﬁ , 5) is equal to

Var (z)  Cov (z,2) ' B v?Var (z) + Var (v) ~Var(z) |
Var () Cov (z,z) Var(z) = Var () v Var (z) Var (2)
_ Var(u) | 1 -
T Var(v) | -7 7
o~ o~ /
To conclude, the asymptotic variance of (5 ,0, ‘?) is equal to
Var(u) Var(u)
2y st X
_FyVar(v) 72 Var(v) + Var(z) v O( )
0 0 Var(z)




Now, using the delta method, we have /n (5— 9) asymptotically normal with asymptotic

variance equal to

Var(u) . Var(u)
A 1
|: v 1 5 } _/y\/ar(v) v Var(v) + Var(z) v 0( ) 1
ar(v
0 0 Var(z) ﬁ

_ (% Var (v) + Var (u)
Var (z2)

Comparison We see that the single step estimator has the asymptotic variance equal to

3?2 Var (v) + Var (u)
Var (z)

and the two step estimator has the asymptotic variance equal to

3?2 Var (v) + Var (u)
Var (z)

They are identical!

Explanation The single step estimator should be equal to

0 — E?:l ZilYi
22;1 Zz‘2

As for the two step estimator 5, we note that

yi = Ba; + 0z + s

é\ _ [ Z?:l CL’ZQ Z?:1 Xiz; :|1 |: Z?:1 XTiYi :|
0 Z?:l LiZi 2?21 2} Z?zl ZiYi
1 [ (2%1 z7) (Z?:lnxiyi) — (Z?:1nxizz’)2 (Z%} ZiYi)
(S0 22) (00, 22) — (00 aiz)” | — oy maz) Qoimy mawe) + (i 7) (Q2imy 2i%i)

and
n
Zi:1 Tiz;

5=
Z?:l 2}



Therefore, we have
0 =57+4
_ (> i z) (o miys) — (o wizi) (D07 2ivi) iy Ti%
(i, a?) (o, 28) — (i miz)” > %
— (i iz) i waye) + i, 2f) i, ziyi)
Qi ) oim 20) — (2 xizz‘)z
(i i) (S i) — (S wiz)” ()
(i #) (D 28) — (D wiz)”
— (X wiz) Qo way) + Oy ) (O 2ivi)
(i 29 (D 28) — (T wiz)”
(S0 22) (S m) — (D i)’ (522
i 7)) OCim 22) — (i $izi)2
(0 22) (S ) (B2 ) - (S en)” (BR2g)
(i #) (i 28) — (i wiz)”
(ZZ&%Qﬁﬂﬁ%%ZLﬁmf(ZLﬂﬁ)
(i) O2im 28) — (2 xizi)2
> i ZiYi
D i1 2
=6

_|_

+

Given that the two estimators are numerically identical, it should not surprise us that their
asymptotic variances are identical.

3 Model 3

We will assume

y=oax+ Pw+¢e
W =Yz + &

Z:5$+€3

We assume that all the equations can be estimated by OLS. This implies certain orthogonality.
For simplification of derivation, we will assume that orthogonality is equivalent to independence.
We will also assume that all the variables have zero mean. Under these assumptions, we obtain
the following independences:



€3J_|_$
€QJ_LZ
g1 1L (z,w)

It is straightforward to show that it also implies that

€3 AL E9 (9)
&1 1L E9 (10)

Remark 2 [t is not clear whether we obtain the implication
£3 A1 &1 (11)

as well, which would simplify the derivation below. Probably not. In order to make sure that we
do, we will make the assumption that the equation

y=axr+ Pw+¢e

means that, if we regress y on (x,w, z), then we get 0 as the coefficient of z. This would ensure
that we also get .

Parameter of Interest We are interested in estimation of . Below are some of the natural
estimators.

1. We regress y on (z, 2)

2. We regress y on (z,w)

3. We regress y on (z,w, 2)

4. We regress y on x, and subtract it by the product Sv¢ identified from the three equations

y=axr+ pw+ &,
w = Yz + &2
z =0x + €3

We show that the second estimator has the smallest asymptotic variance.

First estimator We note that

y=axr+ pw+ e
=ar+ [ (yz+¢e2) + ¢
=ax + [Byz+ (Bea +&1)



and regress y on (x, z). The asymptotic variance matrix of the two-dimensional coefficient vector
is given by

2 71
Var (Bey + 1) { Oz 05522 }

Ozz O

where we adopt the convention of using o2 to denote a generic variance. We also let UJ2- = Var (¢;).
Noting that

Opy = 50923
o2 =6%02 + o3

Var (Bey + €1) = B202 + o2

we obtain that the asymptotic variance matrix is

2 2 2 0925 50325 -
(5 oy + J1)

2§22 2
do; 0°0; + 03

and the asymptotic variance of the estimator of « is given by the (1,1)-element of the matrix

above, i.e.,
1

2.2
030

(5205 + Uf) (5202 + ag) (12)

Second estimator The second estimator simply uses the equation
y=oaxr+ pw+¢e

and regress y on (z,w). The asymptotic variance matrix of the two-dimensional coefficient vector

is given by
ol o -
Var (e1) { e axw }

Noting that

W = Yz + €9
=7 (0z +¢e3) + &9
= 0z + (ve3 + €2)

with the implication
Opw = 750920
0o = 720%0; + 7703 + 03
we obtain the asymptotic variance matrix

Var (e1) T B =07} % 790
Ul g 2 L vdo2 425%02 4 4202 + o

rw O-w



and the asymptotic variance of the estimator of « is given by the (1,1)-clement

o

2¢2 2 2 2 2
20302 + 0302 (7 0oy + o5 + 02) (13)

Subtracting from , we obtain
2

07

1
(6203 + Uf) pp ((5203 + 032,) — (72(52092C + 720§ + Jg)

2 2 9 2 9
3 Y o350, + 050,
2
o
2 321282520 2.2 4 2:2 2 2 2. 2. 2, 2 2 2
= N O os0s + By os + B0% 050 + Brosos + 6%oio
0_30_3:(720_%_{_0_5>( 3Yx 3 2¥x 2¥3 1 :1:)

Every element on the right is positive, so we conclude that the second estimator has the smaller
asymptotic variance than the first.

Third estimator The third estimator uses
y=axr+ pw+0Xx z+e

and regress y on (z,w,z). The asymptotic variance matrix of the three-dimensional coefficient

vector is given by
02 Opw Ous -
Var(e1) | Opw 02 0w
Opz Ows O
We have already established that

2
T

2 _ 22 2
o, =0%0, + 03

2
Opw = YO0,
2

o2 =*8%02 +y2o; + 0

Oy = 00

Using
w ="z + €
we also establish
Ows = fyaz =7 (5203 + 032,) = 752053 + 70?2,
Therefore, the asymptotic variance matrix is
-1

o2 Yoo do?
ol | 002 420%0% + 4202 + 02 6202 4 ol
do? v6%02 + yo? 6202 + o2

and the asymptotic variance of the estimator of « is given by the (1,1)-element

2
o1 2 2 2
—— (0702 + 14
UgUg%( Oy 03) ( )
Subtracting from , we obtain
i (522+ 2)_ i (2522+22+ 2)_522 a3 <0
0302\ e T T aargr ez VO T T s T ) O e g 7

so we conclude that the second estimator has the smaller asymptotic variance than the third.

9



Fourth estimator The fourth estimator notes that

y=ar+pw+e =ar+ B (yz+¢e2) +e1
=ax + vz + Pes + €1 = ax + By (0x + e3) + Pea + &1
= (a+ Byd) x + (Bves + P2 + 1)
Because £ is identified from
y=ar+ pw+e;

and v and 0 are identified from

W =Yz + &2

z=0x + €3

we can estimate o by regressing y on z and subtracting it by the product S+ identified from the
three equations.

In order to make sense of them, we need the asymptotic covariance of every estimator. For
this purpose, we set up the moment equation

z (y — )
z (y — (ax + Pw))
E| w(y—(ax+pw) | =0

2 (w—yz)

x(z—0x)
where we define

Y =a+ By

This is an exactly identified moment, and the asymptotic variance requires characterization of the
variance matrix of

z (y — o) x (Bres + Bea +€1)
7 (y — (ar + fw)) e,
w(y — (ax + pw)) | = weq
2 (w—yz) 2€9
z(z —ox) T3
at the truth. Writing
x (Byes + Bey + €1) z (Byes + Bey +€1) xey + freg + Bywes
xTreq Treq xreq
weq = (75l‘+ (’783+€2))€1 = £1€9 +’7€1€3+75$€1
2€9 (0x + e3) €2 €983 + 0ey
TE3 TE3 HASE

we can see that the variance matrix of interest is

ojof + BPoiol + fPP0t0] oot V60,01 Booios  Broios
o2o? o2o? yooio? 0 0
0= yoaio? voo20? olos + yloios + 2600} 0 0
Bdoios 0 0 0302 + 6%0203 0
Byoios 0 0 0 o203

10



Remark 3 There is a fair amount of simplification using independence among €’s.

With

x(y — @) 2 0 0 0 0
5 Ty~ (az+puw)) 0 22 zw 0 0
T=-F ww(y—(am—i—ﬁw}) =FE| 0 zw w? 0 0
2 (w—yz) 0 0 0 220
z(z —dx) 0o 0 0 0 =z°

o2 0 0 0 0

0 o2 voo? 0 0

=1 0 ~dc2 ~*6%0% +~%02 + 02 0 0

0 0 0 5202 + 0% 0

0 0 0 0 o2

the asymptotic variance of the estimator of # is given by T~ (Tﬁl)/.
As for the estimator of a, we note that it is based on the equality

a=¢—py0
and apply the delta method, which delivers
1

0 (v?03 + 03) (803 + 03)

(870303 + Boy0; + 770 0ty + 2% 0tog0; + 7oy

as the asymptotic variance. Subtracting from , we obtain

B12030d + ool + 178030k + 278030303 + '0lo} + Botedod + olaed
2 (2.7 L 2\ (2.2 3
02 (203 + 03) (6%02 + 03)

2
07

262 2 2 9 2\ _ 52 2
—72030:%4_0503 ('y 0°o, + 03+02) = [0,

O3
02 (6202 + o3)

+ 0°0i0502 + 070303)
(15)
2
>0

so we conclude that the second estimator has the smaller asymptotic variance than the fourth.

4 Model 4

We will assume the following:
e 2, x,y are binary
e =T —Y

e Our objective of interest is



e We would like to compare the one shot estimator P [y = 1| z = 1] against the compositional
estimator Ply=1|z=1]Plx=1|z=1]+Ply=1x=0P[z =0[z = 1]
e We show that the asymptotic variance of the one shot estimator is larger than that of the

compositional estimator.

4.1 Technical Derivation

Some symbols

e §=Priz=12=0
e o =Pr{z=0,2=1]
e y=Prjz=0,2=0

Remark 4 We obviously have ¢»p = 1 —~ — & — ¢, but it is more convenient to have this for
programming.’

With these symbols, we can say that the target parameter of interest is

0=Priy=1/z=1]
=Priy=1z=1]Priz=1z=1]+Prly=1lz =0]Pr[z =0|2z = 1]

:a7+ﬁ90
a2 YA
=af+B(1-¢)
where we let N
E=——=Priz=1|2=1
S =Prle=1z=1]

Structure in the model The structure in the model is such that z affects y only indirectly
through x. In terms of probability, this implies the exclusion restriction of the form

Prly|z,z] = Pry| z]

We therefore have



e Priy=0lz=0,2=1]=Priy=0/z2=0,2=0] (=Prly=0/z=0])

Using the definition of v, 9, p, 1, we can write the joint probabilities as

ep(L,,)=u=Prly=lLz=1z2=1]=ay
e p(1,1,0)=uy=Prjy=12=1,2=0=ad
e p(0,1,1)=u3=Prjy=0,z=1,z=1=(1—-a)y
¢ p(0,1,0)=uy=Prjy=0,2=1,2=0=(1—«)d
e p(1,0,1)=us=Prly=1,2=0,z=1] =Py
e p(1,0,0)=ug=Prly=1,2=0,2=0] = ¢
¢ p(0,0,1)=u;=Prjy=0,2=0,z=1=(1-0) ¢
e p(0,0,0)=ug=Prjy=0,2=0,2=0=(1-5)¢

Remark 5 We do not need to define p and u separately, but it is convenient for accounting/computer

programming purpose.

Remark 6 Below, we will use u and u to denote the vector of u’s and corresponding sample fre-

quencies, i.e., u = (uy,us, ..., ug) . We will use the fact that the asymptotic variance of \/n (i — u)

is N (0,%), where

where

and

—afyp
—afdp
Bryp (o —
y, = | Poelo—
— %y
Be* (B —
| BYe (B -

D
)

)
)

[ —ay(ay—1)
—a?v6

ay? (a—1)
avyo (o —1)
—afyyp
—apyy
ayp (B —

| a8 -

1)
1)

—Be (Bp —1)

¥ = diag (u) —uu’ = [24, 3]

—a?v6

—ad (ad — 1)

avyo (a — 1)
ad? (a—1)

—afBdp
—a 01
adp (B —
ady (B —

—afByy
—afoy

1

)

1)

By (a—1)
By (o — 1)

—B%)e

By (B — 1)
1)
)

B (B —
BY* (B —

ay? (a—1
avyo (a—1

—Y(a—=1)(ay =7 +1)
—76 (a —1)*

)
)

By (a—1)
By (a —1)

—vp(a—=1)(8 -
7 (a—1) (8-

ayp (B —1
adp (8 —1

—vp(a—=1)(8—
—0p (a—1) (B —
1)
1)
—p(B—=1)(Be—p+1)
1)?

Be® (6 —
Bibp (8 —

—Pp (B —
13

)
)

1)
1)

1)
1)

avyo (a — 1)

ad? (o — 1)

—76 (o — 1)
—d(a—=1)(ad—d+1)

pop (o —1)

Boy (a —1)

—0p(a=1) (8 -1)
=0y (a—1)(B-1)

ayy (B —1)
ady (B —1)
v (a—=1)(B-1)
—0 (a—1)(8—-1)

Bipp (B —1)
BY* (B —1)
—pp (B — 1)

— (-1 (B —¢+1)




Natural estimators of the parameters For asymptotics, we relate the natural estimators to
the sample frequencies, i.e., the u’s.

(17170) a1 +a2

(0,1,0) ﬁ1_|'a2—{'a3_|’a4

)
=

\.D—‘

=
+
)|
=
+|+
D))
-

=
+

)

(17070) aB—i_aﬁ

p +p
ﬁ(17071>+ﬁ<17070)+ﬁ(07071)+ﬁ(07070) ﬂ5_'_/71(34_@7_'—/@8

3=Prlz=1,2=1=p(1,1,1) +5(0,1,1)

1,z=0]=p(1,1,0)+p(0,1,0)

$=DPrPrjz=0,2=1]=p5(1,0,1)+p(0,0,1)

= Us + Uy
Understanding the two possible estimators The decomposition estimator is
0=at+p (1 - 5)
B Uy + Uy uy + s us + U Us + Uy
Uy + U + U + Uy Uy + U3 + Us + Uy Us + Ug + Wy + Us Uy + Us + Us + Uy

and the one shot estimator is

ng’;[yzuz:l]zpr[gj\: Lz=1]

Pr[z =1]
_f’;[yzl,le,zzl]—l—f’;[y:1,:16:0,2':1]
- Pr[z = 1]

B p(1,1,1)+p(1,0,1)
- p(1,1,1)+p(0,1,1) +p(1,0,1) + p(0,0,1)

B Uy + us
Uy + us + Us + Uy




Asymptotic distribution of the decomposition estimator We first establish the asymp-

o~ N\
totic distribution of <a, B, f) by using delta method. We will recall that

~ Uy + Uy

O = = = = =
U + Uz + Uz + Uy

B\_ Us + g
Us + ug + Uy + Us

g_ ¥y Uy + us
Y+ up+us+us + ur

—~ N/
We will basically understand (&, B, £> as a function of u. Letting

[ “34‘—“42 0 % T _a—1 0 @
(w1 +ug+us+ug) (u1+us+us+ur) y+6 (v+¢)
gttty 0 0 —a-l 0 0
(u1+uz+us+us) o
o u1+uz 0 us+ur PR - 0 L2
(U1+U2‘:_U3+U4)E (u14uz+us+ur) y+o (v+¢)?
o witus -
A= a (CY, 57 g) _ (u1+uz+U3+U4)2 0 0 — y+4 0 0
ou 0 ur+ug 5 _ u1tus . 0 _B=1 v 5
(us+us+urtus) (u1+ug+us+ur) Yt (v+¢)
0 e 0 0 -2 0
(us+ue+ur+ug) Yt
0 _ us+ue _ u1tug 0 __B8  _ ;
(U5+ues-:w+us)2 (u1+us+us+ur)® Y+o (r+e)
__ ustus __B
I 0 CEEE——— 0 | I 0 s 0
the asymptotic variance matrix is given by
a—1
—Oém S_l O
NTA = 0 B 0
©
0 0 Vot
We now use the delta method to
5:&5+3(L—a
o~ N\
understanding ¢ as a function of <a, B, f) . Its asymptotic variance is given by
a—1
e 00 3
(¢ 1-¢€ a=p]| 0 G55 O 1-¢
Y _
0 0 T o+ a—p
Ca(l-a)@ BU-PBA-8" ypla—p)°
v+ l—y—o (v +¢)
In other words, the asymptotic variance of the compositional estimator is equal to
a(l-a)¢ BO-B1-9" re(a=p)] (16)
y+0 1—y=9 (v + ¢)°
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Asymptotic distribution of the one shot estimator We will basically understand
— Uy + Us
Uy + Us + us + uy

as a function of u. Letting

19) < U + Us )_ Usg + Uy
Ouy \uy + uz + us + ur (U1+U3+U5+u7>2

0 ( Uy + Us )_O
au2 Uy + us + us + uy
0 ( Uy + us )_ Uy + us
Ouz \u1 + us + us + uy (u1+u3—|—u5+u7)2

0 Uy + Us —0
(9u4 Uy + us + us + uy

0 < Uy + us )_ us + uy
Ous \ U1 + ug + us + uy (u1+U3+u5+U7)2

0 Uy + Us —0
(9u6 Uy + us + us + uy n
0 ( Uy + us ) Uy + us

Qur \uy + uz + us + uz (uy + uz + us + uy)?

0 ( uy + Us ) —0
8u8 Uy + Uz + Us + Uy
In order to apply the delta method, we stack these expressions as an eight dimensional column
vector, and evaluate at the true value of the u’s, e.g., u; = ayp. We then obtain a column vector

B uztur . r 1

(Y+e—ay—PF¢) ]

(u1+uz+us+ur)? (v+e)?
0 0
_ ultus _ 1
o ( —wtus (u1tus+us+ur)” (v+¢)* (ay + By)
X = uitustustur /) 0 . 0
- - usz+u - 1 . o
du (u1+u33+u57+u7)2 (v4)? (ry Ty-ay 690)
0 0
_ u1tus . 1
(u1+uz+us+ur)? (y+p)? (Oé’7 + BSO)
i 0 i i 0 i

Using the delta method, we can conclude that the asymptotic variance of the one shot estimator
is equal to

X'Ex = (ay + B) (v + ¢ — ay = By)

o
(v +¢)°
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In other words, the asymptotic variance of the one shot estimator is equal to

W(O&Wﬁ@) (v + @ —ay—By) (17)

Subtracting from , we obtain

AL, e A-(v+d+¢)BA-B)+1(1—-(v+d)al—a)
(el (L= (+0) (1-+2)
_ e+ 9P =B+ (v +y)al —a)
(v +9)* (p+¢) (v +9)

In other words, the compositional estimator is more efficient than the one shot estimator.

>0

17



	Model 1
	Model 2
	Model 3
	Model 4
	Technical Derivation




