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Abstract

The intrinsic schism between causal and associational relations presents profound ethical
and methodological challenges to researchers in the social and behavioral sciences, ranging from
the statement of a problem, to the implementation of a study, to the reporting of finding.
This paper describes a causal modeling framework that mitigates these challenges by offering
a simple, yet formal and principled methodology for causal analysis in empirical research. The
framework is based on the Structural Causal Model (SCM) described in [Pearl, 2000b] – a non-
parametric extension of structural equation models that provides a mathematical foundation
and a friendly calculus for the analysis of causes and counterfactuals. In particular, the paper
establishes a methodology for inferring (from a combination of data and assumptions) answers
to three types of causal queries: (1) queries about the effects of potential interventions, (also
called “causal effects” or “policy evaluation”), (2) queries about probabilities of counterfactuals,
(including assessment of “regret,” “attribution,” or “causes of effects”), and (3) queries about
direct and indirect effects (also known as “mediation” or “effect decomposition”). Finally, the
paper defines the formal and conceptual relationships between the structural and potential-
outcome frameworks and demonstrates a symbiotic analysis that uses the strong features of
both.

Keywords: Structural equation models, confounding, graphical methods, counterfactuals,
causal effects, potential outcome, mediation.

1 Introduction

The research questions that motivate most quantitative studies in the health, social and behavioral

sciences are not statistical but causal in nature. For example, what is the efficacy of a given
treatment or program in a given population? Whether data can prove an employer guilty of hiring
discrimination? What fraction of past crimes could have been avoided by a given policy? What

was the cause of death of a given individual, in a specific incident? These are causal questions
because they require some knowledge of the data-generating process; they cannot be computed

from the data alone.
Solving causal problems mathematically requires certain extensions in the standard

mathematical language of statistics, and these extensions are not generally emphasized in
the mainstream literature and education. As a result, a profound tension exists between the

scientific questions that a researcher wishes to ask and the type of questions traditional analysis
can accommodate, let alone answer. Bluntly, scientists speak causation and statistics delivers

correlation. This tension has resulted in several ethical issues concerning the statement of a
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problem, the implementation of a study, and the reporting of finding. This paper describes

a simple causal extension to the language of statistics, and shows how it leads to a coherent
methodology that avoids the ethical problems mentioned, and permits researchers to benefit from

the many results that causal analysis has produced in the past two decades.
Following an introductory section which defines the demarcation line between associational

and causal analysis, the rest of the paper will deal with the estimation of three types of causal
queries: (1) queries about the effect of potential interventions, (2) queries about counterfactuals
(e.g., whether event x would occur had event y been different), and (3) queries about the direct

and indirect effects.

2 From Associational to Causal Analysis: Distinctions and

Barriers

2.1 The Basic Distinction: Coping With Change

The aim of standard statistical analysis, typified by regression, estimation, and hypothesis testing
techniques, is to assess parameters of a distribution from samples drawn of that distribution. With

the help of such parameters, one can infer associations among variables, estimate probabilities
of past and future events, as well as update probabilities of events in light of new evidence or

new measurements. These tasks are managed well by standard statistical analysis so long as
experimental conditions remain the same. Causal analysis goes one step further; its aim is to infer
not only probabilities of events under static conditions, but also the dynamics of events under

changing conditions, for example, changes induced by treatments or external interventions.
This distinction implies that causal and associational concepts do not mix. There is nothing

in the joint distribution of symptoms and diseases to tell us whether curing the former would or
would not cure the latter. More generally, there is nothing in a distribution function to tell us

how that distribution would differ if external conditions were to change—say from observational
to experimental setup—because the laws of probability theory do not dictate how one property

of a distribution ought to change when another property is modified. This information must be
provided by causal assumptions which identify those relationships that remain invariant when

external conditions change.
These considerations imply that the slogan “correlation does not imply causation” can

be translated into a useful principle: one cannot substantiate causal claims from associations
alone, even at the population level—behind every causal conclusion there must lie some causal
assumption that is not testable in observational studies.1

2.2 Formulating the Basic Distinction

A formal demarcation line that makes the distinction between associational and causal concepts
crisp and easy to apply, can be formulated as follows. An associational concept is any relationship

that can be defined in terms of a joint distribution of observed variables, and a causal concept is any
relationship that cannot be defined from the distribution alone. Examples of associational concepts

are: correlation, regression, dependence, conditional independence, likelihood, collapsibility,
propensity score, risk ratio, odd ratio, marginalization, Granger causality, conditionalization,

“controlling for,” and so on. Examples of causal concepts are: randomization, influence,

1The methodology of “causal discovery” (Spirtes et al. 2000; Pearl 2000b, Chapter 2) is likewise based on the
causal assumption of “faithfulness” or “stability,” but will not be discussed in this paper.
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effect, confounding, “holding constant,” disturbance, spurious correlation, faithfulness/stability,

instrumental variables, intervention, explanation, mediation, and attribution. The former can,
while the latter cannot be defined in term of distribution functions.

This demarcation line is extremely useful in tracing the assumptions that are needed for
substantiating various types of scientific claims. Every claim invoking causal concepts must rely

on some premises that invoke such concepts; it cannot be inferred from, or even defined in terms
statistical associations alone.

2.3 Ramifications of the Basic Distinction

This principle has far reaching consequences that are not generally recognized in the standard
statistical literature. Many researchers, for example, are still convinced that confounding is solidly
founded in standard, frequentist statistics, and that it can be given an associational definition

saying (roughly): “U is a potential confounder for examining the effect of treatment X on outcome
Y when both U and X and U and Y are not independent.” That this definition and all its

many variants must fail [Pearl, 2000b, Section 6.2]2 is obvious from the demarcation line above; if
confounding were definable in terms of statistical associations, we would have been able to identify

confounders from features of nonexperimental data, adjust for those confounders and obtain
unbiased estimates of causal effects. This would have violated our golden rule: behind any causal

conclusion there must be some causal assumption, untested in observational studies. Hence the
definition must be false. Therefore, to the bitter disappointment of generations of epidemiologist

and social science researchers, confounding bias cannot be detected or corrected by statistical
methods alone; one must make some judgmental assumptions regarding causal relationships in the
problem before an adjustment (e.g., by stratification) can safely correct for confounding bias.

This distinction implies that causal relations cannot be expressed in the language of probability
and, hence, that any mathematical approach to causal analysis must acquire new notation

for expressing causal relations – probability calculus is insufficient. To illustrate, the syntax
of probability calculus does not permit us to express the simple fact that “symptoms do not

cause diseases”, let alone draw mathematical conclusions from such facts. All we can say
is that two events are dependent—meaning that if we find one, we can expect to encounter

the other, but we cannot distinguish statistical dependence, quantified by the conditional
probability P (disease|symptom) from causal dependence, for which we have no expression in

standard probability calculus. Scientists seeking to express causal relationships must therefore
supplement the language of probability with a vocabulary for causality, one in which the
symbolic representation for the relation “symptoms cause disease” is distinct from the symbolic

representation of “symptoms are associated with disease.”

2.4 Two Mental Barriers: Untested Assumptions and New Notation

The preceding two requirements: (1) to commence causal analysis with untested,3 theoretically

or judgmentally based assumptions, and (2) to extend the syntax of probability calculus in order
to articulate such assumptions, constitute the two main sources of confusion in the ethics of

formulating, conducting, and reporting empirical studies.
Associational assumptions, even untested, are testable in principle, given sufficiently large

sample and sufficiently fine measurements. Causal assumptions, in contrast, cannot be verified

2Any intermediate variable U on a causal path from X to Y satisfies this definition, without confounding the
effect of X on Y .

3By “untested” I mean untested using frequency data in nonexperimental studies.
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even in principle, unless one resorts to experimental control. This difference stands out in

Bayesian analysis. Though the priors that Bayesians commonly assign to statistical parameters
are untested quantities, the sensitivity to these priors tends to diminish with increasing sample

size. In contrast, sensitivity to prior causal assumptions, say that treatment does not change
gender, remains substantial regardless of sample size.

This makes it doubly important that the notation we use for expressing causal assumptions
be cognitively meaningful and unambiguous so that one can clearly judge the plausibility or
inevitability of the assumptions articulated. Statisticians can no longer ignore the mental

representation in which scientists store experiential knowledge, since it is this representation, and
the language used to access that representation that determine the reliability of the judgments

upon which the analysis so crucially depends.
How does one recognize causal expressions in the statistical literature? Those versed in the

potential-outcome notation [Neyman, 1923, Rubin, 1974, Holland, 1988], can recognize such
expressions through the subscripts that are attached to counterfactual events and variables, e.g.

Yx(u) or Zxy. (Some authors use parenthetical expressions, e.g. Y (0), Y (1), Y (x, u) or Z(x, y).)
The expression Yx(u), for example, may stand for the value that outcome Y would take in

individual u, had treatment X been at level x. If u is chosen at random, Yx is a random variable,
and one can talk about the probability that Yx would attain a value y in the population, written
P (Yx = y). Alternatively, Pearl [1995] used expressions of the form P (Y = y|set(X = x)) or

P (Y = y|do(X = x)) to denote the probability (or frequency) that event (Y = y) would occur if
treatment condition X = x were enforced uniformly over the population.4 Still a third notation

that distinguishes causal expressions is provided by graphical models, where the arrows convey
causal directionality.5

However, few have taken seriously the textbook requirement that any introduction of new
notation must entail a systematic definition of the syntax and semantics that governs the notation.

Moreover, in the bulk of the statistical literature before 2000, causal claims rarely appear in the
mathematics. They surface only in the verbal interpretation that investigators occasionally attach

to certain statistical parameters (e.g., regression coeffcients), and in the verbal description with
which investigators justify assumptions. For example, the assumption that a covariate not be
affected by a treatment, a necessary assumption for the control of confounding [Cox, 1958, p. 48],

is expressed in plain English, not in a mathematical expression.
The next section provides a conceptualization that overcomes these mental barriers; it offers

both a friendly mathematical machinery for cause-effect analysis and a formal foundation for
counterfactual analysis.

3 Structural causal models, diagrams, causal effects, and

counterfactuals

3.1 Structural equations as oracles for causes and counterfactuals

How can one express mathematically the common understanding that symptoms do not cause

diseases? The earliest attempt to formulate such relationship mathematically was made in the
1920’s by the geneticist Sewall Wright (1921), who used a combination of equations and graphs.

4Clearly, P (Y = y|do(X = x)) is equivalent to P (Yx = y), This is what we normally assess in a controlled
experiment, with X randomized, in which the distribution of Y is estimated for each level x of X .

5These notational clues should be useful for detecting inadequate definitions of causal concepts; any definition of
confounding, randomization or instrumental variables that is cast in standard probability expressions, void of graphs,
counterfactual subscripts or do(∗) operators, can safely be discarded as inadequate.
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For example, if X stands for a disease variable and Y stands for a certain symptom of the disease,

Wright would write a linear equation:
y = βx + u (1)

where x stands for the level (or severity) of the disease, y stands for the level (or severity) of the

symptom, and u stands for all factors, other than the disease in question, that could possibly
affect Y . In interpreting this equation one should think of a physical process whereby Nature

examines the values of x and u and, accordingly, assigns variable Y the value y = βx + u.
To express the directionality inherent in this assignment process, Wright augmented the

equation with a diagram, later called “path diagram,” in which arrows are drawn from (perceived)
causes to their (perceived) effects and, more importantly, the absence of an arrow makes the
empirical claim that the value Nature assigns to one variable is indifferent to that taken by

another. (See Fig. 1.)
The variables V and U are called “exogenous”; they represent observed or unobserved

background factors that the modeler decides to keep unexplained, that is, factors that influence
but are not influenced by the other variables (called “endogenous”) in the model.

If correlation is judged possible between two exogenous variables, U and V , it is customary to
connect them by a dashed double arrow, as shown in Fig. 1(b).

V UV U

βX YβX Y

(b)(a)

x = v

y =   x + uβ

Figure 1: A simple structural equation model, and its associated diagrams. Unobserved exogenous
variables are connected by dashed arrows.

To summarize, path diagrams encode causal assumptions via missing arrows, representing

claims of zero influence, and missing double arrows (e.g., between V and U), representing the
(causal) assumption Cov(U, V )=0.

(a) (b)

W

Z

V

X

U

Y

0
x

U

Y

W

Z

V

X

Figure 2: (a) The diagram associated with the structural model of Eq. (2). (b) The diagram
associated with the modified model, Mx0

, of Eq. (3), representing the intervention do(X = x0).

The generalization to non-linear system of equations is straightforward. For example, the

non-parametric interpretation of the diagram of Fig. 2(a) corresponds to a set of three functions,
each corresponding to one of the observed variables:

z = fZ(w)

x = fX(z, v) (2)

y = fY (x, u)
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where in this particular example, W, V and U are assumed to be jointly independent but,

otherwise, arbitrarily distributed.
Remarkably, unknown to most economists and philosophers,6 structural equation models

provide a formal interpretation and symbolic machinery for analyzing counterfactual relationships
of the type: “Y would be y had X been x in situation U=u,” denoted Yx(u) = y. Here U

represents the vector of all exogenous variables.7

The key idea is to interpret the phrase “had X been x0” as an instruction to modify the
original model and replace the equation for X by a constant x0, yielding the sub-model, Mx0

,

z = fZ(w)

x = x0 (3)

y = fY (x, u)

the graphical description of which is shown in Fig. 2(b).
This replacement permits the constant x0 to differ from the actual value of X (namely fX(z, v))

without rendering the system of equations inconsistent, thus yielding a formal interpretation of
counterfactuals in multi-stage models, where the dependent variable in one equation may be an

independent variable in another [Balke and Pearl, 1994, Pearl, 2000a]. In general, we can formally
define the post-intervention distribution by the equation:

PM (y|do(x))
Δ
= PMx

(y) (4)

In words: In the framework of model M , the post-intervention distribution of outcome Y is

defined as the probability that model Mx assigns to each outcome level Y = y.
From this distribution, one is able to assess treatment efficacy by comparing aspects of this

distribution at different levels of x0. A common measure of treatment efficacy is the difference

E(Y |do(x′
0))− E(Y |do(x0)) (5)

where x′
0 and x0 are two levels (or types) of treatment selected for comparison. For example, to

compute E(Yx0
), the expected effect of setting X to x0, (also called the average causal effect of

X on Y , denoted E(Y |do(x0)) or, generically, E(Y |do(x))), we solve Eq. (3) for Y in terms of

the exogenous variables, yielding Yx0
= fY (x0, u), and average over U and V . It is easy to show

that in this simple system, the answer can be obtained without knowing the form of the function

fY (x, u) or the distribution P (u). The answer is given by:

E(Yx0
) = E(Y |do(X = x0) = E(Y |x0)

which is estimable from the observed distribution P (x, y, z). This result hinges on the assumption

that W, V, and U are mutually independent and on the topology of the graph (e.g., that there is
no direct arrow from Z to Y .)

In general, it can be shown [Pearl, 2000b, Chapter 3] that, whenever the graph is Markovian
(i.e., acyclic with independent exogenous variables) the post-interventional distribution
P (Y = y|do(X = x)) is given by the following expression:

P (Y = y|do(X = x)) =
∑

t

P (y|t, x)P (t) (6)

6Connections between structural equations and a restricted class of counterfactuals were recognized by Simon
and Rescher [1966]. These were later generalized by Balke and Pearl [1995] who used modified models to permit
counterfactual conditioning on dependent variables.

7Because U = u may contain detailed information about a situation or an individual, Yx(u) is related to what
philosophers called “token causation,” while P (Yx = y|Z = z) characterizes “Type causation,” that is, the tendency
of X to influence Y in a sub-population characterized by Z = z.
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where T is the set of direct causes of X (also called “parents”) in the graph. Again, we see that

all factors on the right hand side are estimable from the distribution P of observed variables and,
hence, the counterfactual probability P (Yx = y) is estimable with mere partial knowledge of the

generating process – the topology of the graph and independence of the exogenous variable is all
that is needed.

When some variables in the graph (e.g., the parents of X) are unobserved, we may not be
able to estimate (or “identify” as it is called) the post-intervention distribution P (y|do(x)) by
simple conditioning, and more sophisticate methods would be required. Likewise, when the query

of interest involves several hypothetical worlds simultaneously, e.g., P (Yx = y|Yx′ = y′), the
Markovian assumption may not suffice for identification and additional assumptions, touching on

the form of the data-generating functions (e.g., monotonicity) may need to be invoked. These
issues will be discussed in Sections 3.2 and 5.

This interpretation of counterfactuals, cast as solutions to modified systems of equations,
provides the conceptual and formal link between structural equation models, used in economics

and social science and the Neyman-Rubin potential-outcome framework to be discussed in Section
3.4. But first we discuss two long-standing problems that have been completely resolved in purely

graphical terms, without delving into algebraic techniques.

3.2 Confounding and Causal Effect Estimation

While good statisticians have always known that the elucidation of causal relationships from

observational studies must be shaped by assumptions about how the data were generated,
the relative roles of assumptions and data, and ways of using those assumptions to eliminate
confounding bias have been a subject of much controversy.8 The structural framework of Section

3.1 puts these controversies to rest.

Covariate Selection: The back-door criterion

Consider an observational study where we wish to find the effect of X on Y , for example, treatment
on response, and assume that the factors deemed relevant to the problem are structured as in

Fig. 3; some are affecting the response, some are affecting the treatment and some are affecting

Z1

Z3

Z2

Y

X

W

W

W

1

2

3

Figure 3: Graphical model illustrating the back-door criterion. Error terms are not shown explicitly.

both treatment and response. Some of these factors may be unmeasurable, such as genetic trait

or life style, others are measurable, such as gender, age, and salary level. Our problem is to
select a subset of these factors for measurement and adjustment, namely, that if we compare

treated vs. untreated subjects having the same values of the selected factors, we get the correct

8A recent flair-up of this controversy can be found in Pearl [2009c,d] and Rubin [2009] which demonstrates the
difficulties statisticians encounter in articulating causal assumptions and typical mistakes that arise from pursuing
causal analysis within the statistical paradigm of clinical trials or “missing data.”
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treatment effect in that subpopulation of subjects. Such a set of “deconfounding” factors is called

a “sufficient set” or a set “admissible for adjustment”. The problem of defining a sufficient set, let
alone finding one, has baffled epidemiologists and social science for decades (see [Greenland et al.,

1999, Pearl, 1998, 2003] for review).
The following criterion, named “back-door” in Pearl [1993], settles this problem by providing

a graphical method of selecting a sufficient set of factors for adjustment. It states that a set S is
admissible for adjustment if two conditions hold:

1. No element of S is a descendant of X

2. The elements of S “block” all “back-door” paths from X to Y , namely all paths that end
with an arrow pointing to X .9

Based on this criterion we see, for example, that the sets {Z1, Z2, Z3}, {Z1, Z3}, and {W2, Z3},
each is sufficient for adjustment, because each blocks all back-door paths between X and Y . The

set {Z3}, however, is not sufficient for adjustment because, as explained in footnote 9, it does not
block the path X ←W1 ← Z1 → Z3 ← Z2 →W2 → Y .

The implication of finding a sufficient set S is that, stratifying on S is guaranteed to remove

all confounding bias relative the causal effect of X on Y . In other words, it renders the causal
effect of X on Y estimable, via

P (Y = y|do(X = x))

=
∑

s

P (Y = y|X = x, S = s)P (S = s) (7)

Since all factors on the right hand side of the equation are estimable (e.g., by regression) from the
pre-interventional data, the causal effect can likewise be estimated from such data without bias.

The back-door criterion allows us to write Eq. (7) directly, after selecting a sufficient set
S from the diagram, without resorting to any algebraic manipulation. The selection criterion
can be applied systematically to diagrams of any size and shape, thus freeing analysts from

judging whether “X is conditionally ignorable given S,” a formidable mental task required in
the potential-outcome framework [Rosenbaum and Rubin, 1983]. The criterion also enables the

analyst to search for an optimal set of covariate—namely, a set S that minimizes measurement
cost or sampling variability [Tian et al., 1998]. A complete identification condition, including

models with no sufficient sets (e.g., Fig. 3, assuming that X, Y , and W3 are the only measured
variables) are given in [Shpitser and Pearl, 2006].

Another problem that has a simple graphical solution is to determine whether adjustment
for two sets of covariates would result in the same confounding bias [Pearl and Paz, 2009]. This

criterion allows one to assess, prior to taking any measurement, whether two candidate sets of
covariates, differing substantially in dimensionality, measurement error, cost, or sample variability
are equally valuable in their bias-reduction potential.

3.3 Counterfactual Analysis in Structural Models

Not all questions of causal character can be encoded in P (y|do(x)) type expressions, in much the

same way that not all causal questions can be answered from experimental studies. For example,
questions of attribution (e.g., I took an aspirin and my headache is gone, was it due to the

9In this criterion, a set S of nodes is said to block a path p if either (i) p contains at least one arrow-emitting node
that is in S, or (ii) p contains at least one collision node that is outside S and has no descendant in S. See [Pearl,
2000b, pp. 16–7, 335–7].
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aspirin?) or of susceptibility (e.g., I am a healthy non-smoker, would I be as healthy had I been

a smoker?) cannot be answered from experimental studies, and naturally, this kind of questions
cannot be expressed in P (y|do(x)) notation.10 To answer such questions, a probabilistic analysis

of counterfactuals is required, one dedicated to the relation “Y would be y had X been x in
situation U=u ,” denoted Yx(u) = y.

As noted in Section 3.1, the structural definition of counterfactuals involves modified models,
like Mx0

of Eq. (3), formed by the intervention do(X = x0) (Fig. 2(b)). Denote the solution of Y
in model Mx by the symbol YMx

(u), the formal definition of the counterfactual Yx(u) in SCM is

given by [Pearl, 2000b, p. 98]:

Yx(u)
Δ
= YMx

(u). (8)

The quantity Yx(u) can be given experimental interpretation; it stands for the way an individual
with characteristics (u) would respond, had the treatment been x, rather than the treatment
x = fX(u) actually received by that individual. In our example, since Y does not depend on v and

w, we can write: Yx0
(u) = fY (x0, u). Clearly, the distribution P (u, v, w) induces a well defined

probability on the counterfactual event Yx0
= y, as well as on joint counterfactual events, such

as ‘Yx0
= y AND Yx1

= y′,’ which are, in principle, unobservable if x0 �= x1. Thus, to answer
attributional questions, such as whether Y would be y1 if X were x1, given that in fact Y is y0

and X is x0, we need to compute the conditional probability P (Yx1
= y1|Y = y0, X = x0) which

is well defined once we know the forms of the structural equations and the distribution of the

exogenous variables in the model. For example, assuming a linear equation for Y (as in Fig. 1),

y = βx + u,

the conditions Y = y0 and X = x0 yield V = x0 and U = y0−βx0, and we can conclude that, with
probability one, Yx1

must take on the value: Yx1
= βx1 + U = β(x1 − x0) + y0. In other words,

if X were x1 instead of x0, Y would increase by β times the difference (x1 − x0). In non-linear
systems, the result would also depend on the distribution of U and, for that reason, attributional

queries are generally not identifiable in non-parametric models [Pearl, 2000b, Chapter 9].
In general, if x and x′ are incompatible then Yx and Yx′ cannot be measured simultaneously,

and it may seem meaningless to attribute probability to the joint statement “Y would be y
if X = x and Y would be y′ if X = x′.” Such concerns have been a source of objections to

treating counterfactuals as jointly distributed random variables [Dawid, 2000]. The definition of
Yx and Yx′ in terms of two distinct submodels neutralizes these objections [Pearl, 2000b], since the
contradictory joint statement is mapped into an ordinary event (among the background variables)

that satisfies both statements simultaneously, each in its own distinct submodel; such events have
well defined probabilities.

The structural interpretation of counterfactuals (8) also provides the conceptual and formal
basis for the Neyman-Rubin potential-outcome framework, an approach that takes a controlled

randomized trial (CRT) as its starting paradigm, assuming that nothing is known to the
experimenter about the science behind the data. This “black-box” approach was developed by

statisticians who found it difficult to cross the two mental barriers discussed in Section 2.4. The
next section establishes the precise relationship between the structural and potential-outcome

paradigms, and outlines how the latter can benefit from the richer representational power of the
former.

10The reason for this fundamental limitation is that no death case can be tested twice, with and without treatment.
For example, if we measure equal proportions of deaths in the treatment and control groups, we cannot tell how many
death cases are actually attributable to the treatment itself; it is quite possible that many of those who died under
treatment would be alive if untreated and, simultaneously, many of those who survived with treatment would have
died if not treated.
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3.4 Relation to potential outcomes and the demystification of “ignorability”

The primitive object of analysis in the potential-outcome framework is the unit-based response

variable, denoted Yx(u), read: “the value that outcome Y would obtain in experimental unit u,
had treatment X been x” [Neyman, 1923, Rubin, 1974]. Here, unit may stand for an individual
patient, an experimental subject, or an agricultural plot. In Section 3.3 we saw (Eq. (8)) that

this counterfactual entity has a natural interpretation in structural equations as the solution for
Y in a modified system of equation, where unit is interpreted a vector u of background factors

that characterize an experimental unit. Each structural equation model thus carries a collection
of assumptions about the behavior of hypothetical units, and these assumptions permit us to

derive the counterfactual quantities of interest. In the potential-outcome framework, however,
no equations are available for guidance and Yx(u) is taken as primitive, that is, an undefined

quantity in terms of which other quantities are defined; not a quantity that can be derived from
some model. In this sense the structural interpretation of Yx(u) provides the formal basis for the

potential outcome approach; the formation of the submodel Mx explicates mathematically how
the hypothetical condition “had X been x” could be realized, and what the logical consequence
are of such a condition.

The distinct characteristic of the potential outcome approach is that, although investigators
must think and communicate in terms of undefined, hypothetical quantities such as Yx(u), the

analysis itself is conducted almost entirely within the axiomatic framework of probability theory.
This is accomplished, by treating the new hypothetical entities Yx as ordinary random variables;

for example, they are assumed to obey the axioms of probability calculus, the laws of conditioning,
and the axioms of conditional independence.

Naturally, these hypothetical entities are not entirely whimsy. They are assumed to be
connected to observed variables via consistency constraints [Robins, 1986] such as

X = x =⇒ Yx = Y, (9)

which states that, for every u, if the actual value of X turns out to be x, then the value that Y

would take on if ‘X were x’ is equal to the actual value of Y . For example, a person who chose
treatment x and recovered, would also have recovered if given treatment x by design. Whether

additional constraints should tie the observables to the unobservables is not a question that can
be answered in the potential-outcome framework, which lacks an underlying model.

The main conceptual difference between the two approaches is that, whereas the structural
approach views the intervention do(x) as an operation that changes the distribution but keeps
the variables the same, the potential-outcome approach views the variable Y under do(x) to be

a different variable, Yx, loosely connected to Y through relations such as (9), but remaining
unobserved whenever X �= x. The problem of inferring probabilistic properties of Yx, then becomes

one of “missing-data” for which estimation techniques have been developed in the statistical
literature.

Pearl [2000b, Chapter 7] shows, using the structural interpretation of Yx(u) (Eq. (8)), that it
is indeed legitimate to treat counterfactuals as jointly distributed random variables in all respects,

that consistency constraints like (9) are automatically satisfied in the structural interpretation
and, moreover, that investigators need not be concerned about any additional constraints except

the following two:

Yyz = y for all y, subsets Z, and values z for Z (10)

Xz = x⇒ Yxz = Yz for all x, subsets Z, and v alues z for Z (11)
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Equation (10) ensures that the interventions do(Y = y) results in the condition Y = y, regardless

of concurrent interventions, say do(Z = z), that may be applied to variables other than Y .
Equation (11) generalizes (9) to cases where Z is held fixed, at z.

3.5 Problem Formulation and the Demystification of “Ignorability”

The main drawback of this black-box approach surfaces in the phase where a researcher begins to
articulate the “science” or “causal assumptions” behind the problem at hand. Such knowledge, as

we have seen in Section 1, must be articulated at the onset of every problem in causal analysis –
causal conclusions are only as valid as the causal assumptions upon which they rest.

To communicate scientific knowledge, the potential-outcome analyst must express causal
assumptions in the form of assertions involving counterfactual variables. For instance, in our

example of Fig. 2(a)), to communicate the understanding that Z is randomized (hence independent
of V and U), the potential-outcome analyst would use the independence constraint Z⊥⊥{Xz, Yx}.

11

To further formulate the understanding that Z does not affect Y directly, except through X , the
analyst would write a, so called, “exclusion restriction”: Yxz = Yx.

A collection of constraints of this type might sometimes be sufficient to permit a unique
solution to the query of interest; in other cases, only bounds on the solution can be obtained. For
example, if one can plausibly assume that a set Z of covariates satisfies the relation

Yx⊥⊥X |Z (12)

(assumption that was termed “conditional ignorability” by Rosenbaum and Rubin [1983]) then
the causal effect P (Yx = y) can readily be evaluated to yield

P (Yx = y) =
∑

z

P (Yx = y|z)P (z)

=
∑

z

P (Yx = y|x, z)P (z) (using (12))

=
∑

z

P (Y = y|x, z)P (z) (using (9))

=
∑

z

P (y|x, z)P (z). (13)

The last expression contains no counterfactual quantities and coincides precisely with the standard
covariate-adjustment formula of Eq. (7).

We see that the assumption of conditional ignorability (12) qualifies Z as a sufficient covariate
for adjustment; indeed, one can show formally [Pearl, 2000b, pp. 98–102, 341–43] that (12) is
entailed by the “back-door” criterion of Section 3.2.

The derivation above may explain why the potential outcome approach appeals to mathematical
statisticians; instead of constructing new vocabulary (e.g., arrows), new operators (do(x)) and

new logic for causal analysis, almost all mathematical operations in this framework are conducted
within the safe confines of probability calculus. Save for an occasional application of rule (11) or

(9)), the analyst may forget that Yx stands for a counterfactual quantity—it is treated as any
other random variable, and the entire derivation follows the course of routine probability exercises.

However, this mathematical orthodoxy exacts a very high cost at the inevitable stage where
causal assumptions are formulated. The reader may appreciate this aspect by attempting to

11The notation Y⊥⊥X |Z stands for the conditional independence relationship P (Y = y, X = x|Z = z) = P (Y =
y|Z = z)P (X = x|Z = z) [Dawid, 1979].
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judge whether the assumption of conditional ignorability (12), the key to the derivation of (13),

holds in any familiar situation, say in the experimental setup of Fig. 2(a). This assumption
reads: “the value that Y would obtain had X been x, is independent of X , given Z”. Even the

most experienced potential-outcome expert would be unable to discern whether any subset Z of
covariates in Fig. 3 would satisfy this conditional independence condition.12 Likewise, to convey

the structure of the chain X →W3 → Y (Fig. 3) in the language of potential-outcome, one would
need to write the cryptic expression: W3x

⊥⊥{Yw3
, X}, read: “the value that W3 would obtain had

X been x is independent of the value that Y would obtain had W3 been w3 jointly with the value

of X .” Such assumptions are cast in a language so far removed from ordinary understanding of
cause and effect that, for all practical purposes, they cannot be comprehended or ascertained by

ordinary mortals. As a result, researchers in the graph-less potential-outcome camp rarely use
“conditional ignorability” (12) to guide the choice of covariates; they view this condition as a

hoped-for miracle of nature rather than a target to be achieved by reasoned design.13

Having translated “ignorability” into a simple condition (i.e., back-door) in a graphical

model permits researchers to understand what conditions covariates must fulfill before they
eliminate bias, what to watch for and what to think about when covariates are selected, and what

experiments we can do to test, at least partially, if we have the knowledge needed for covariate
selection.

Aside from offering no guidance in covariate selection, formulating a problem in the

potential-outcome language encounters three additional hurdles. When counterfactual variables
are not viewed as byproducts of a deeper, process-based model, it is hard to ascertain whether all

relevant counterfactual independence judgments have been articulated, whether the judgments
articulated are redundant, or whether those judgments are self-consistent. The need to express,

defend, and manage formidable counterfactual relationships of this type explain the slow
acceptance of causal analysis among health scientists and statisticians, and why economists and

social scientists continue to use structural equation models instead of the potential-outcome
alternatives advocated in Angrist et al. [1996], Holland [1988], Sobel [1998].

On the other hand, the algebraic machinery offered by the counterfactual notation, Yx(u),
once a problem is properly formulated, can be extremely powerful in refining assumptions [Angrist
et al., 1996], deriving consistent estimands [Robins, 1986], bounding probabilities of necessary

and sufficient causation [Tian and Pearl, 2000], and combining data from experimental and
nonexperimental studies [Pearl, 2000b]. Pearl [2000b, p. 232] presents a way of combining the best

features of the two approaches. It is based on encoding causal assumptions in the language of
diagrams, translating these assumptions into counterfactual notation, performing the mathematics

in the algebraic language of counterfactuals (using (9), (10), and (11)) and, finally, interpreting
the result in plain causal language. Section 5 illustrates such symbiosis.

4 Methodological Dictates and Ethical Considerations

The structural theory described in the previous sections dictates a principled methodology that
eliminates the confusion between causal and statistical interpretations of study results as well as

12Inquisitive readers are invited to guess whether Xz⊥⊥Z|Y holds in Fig. 2(a).
13The opaqueness of counterfactual independencies explains why many researchers within the potential-outcome

camp are unaware of the fact that adding a covariate to the analysis (e.g., Z3 in Fig. 3) may actually increase

confounding bias. Paul Rosenbaum, for example, writes: “there is little or no reason to avoid adjustment for a
variable describing subjects before treatment” [Rosenbaum, 2002, p. 76]. Rubin [2009] goes as far as stating that
refraining from conditioning on an available measurement is “nonscientific ad hockery” for it goes against the tenets
of Bayesian philosophy (see Pearl [2009c,d] for a discussion of this fallacy).
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the ethical dilemmas that this confusion tends to spawn. The methodology dictates that every

investigation involving causal relationships (and this entails the vast majority of empirical studies
in the social and behavioral sciences) should be structured along the following four-step process:

1. Define: Express the target quantity Q as a function Q(M) that can be computed from any

model M , regardless of how realistic it is.

2. Assume: Formulate causal assumptions using ordinary scientific language and represent
their structural part in graphical form.

3. Identify: Determine if the target quantity is identifiable (i.e., expressible as distributions).

4. Estimate: Estimate the target quantity if it is identifiable, or approximate it, if it is not.

4.1 Defining the target quantity

The definitional phase is the most neglected step in current practice of quantitative analysis

(Section 5). The structural modeling approach insists on defining the target quantity, be it “causal
effect,” “program effectiveness,” “mediated effect,” “effect on the treated,” or “probability of

causation” before specifying any aspect of the model, without making functional or distributional
assumptions, prior to choosing a method of estimation, and prior to seeing any data.

The investigator should view this definition as an algorithm that receives a model M as an
input and delivers the desired quantity Q(M) as the output. Surely, such algorithm should not

be tailored to any aspect of the input M ; it should be general, and ready to accommodate any
conceivable model M whatsoever. Moreover, the investigator should imagine that the input M
is a completely specified model, with all the functions fX , fY , . . . and all the U variables (or

their associated probabilities) given precisely. This is the hardest step for statistically trained
investigators to make; knowing in advance that such model details will never be estimable from

the data, the definition of Q(M) appears like a futile exercise in fantasy land – it is not.
For example, the formal definition of the causal effect P (y|do(x)), as given in Eq. (4), is

universally applicable to all models, parametric as well as non-parametric, through the formation
of a submodel Mx. By defining causal effect procedurally, thus divorcing it from its traditional

parametric representation, the structural theory avoids the many pitfalls and confusions that have
plagued the interpretation of structural and regressional parameters for the past half century.14

4.2 Explicating Causal Assumptions

This is the second most neglected step in causal analysis. In the past, the difficulty has been
the lack of language suitable for articulating causal assumptions which, aside from impeding
investigators from explicating assumptions, also inhibited them from giving causal interpretations

to their findings.
Structural equation models, in their counterfactual reading, have settled this difficulty. Today

we understand that the versatility and natural appeal of structural equations stem from the fact

14Note that β in Eq. (1), the incremental causal effect of X on Y , is defined procedurally by

β
Δ
= E(Y |do(x0 + 1)) −E(Y |do(x0)) =

∂

∂x
E(Y |do(x)) =

∂

∂x
E(Yx).

Naturally, all attempts to give β statistical interpretation have ended in frustrations [Holland, 1988, Whittaker, 1990,
Wermuth, 1992, Wermuth and Cox, 1993], some persisting well into the 21st century [Sobel, 2008].
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that they permit investigators to communicate causal assumptions formally and in the very same

vocabulary that scientific knowledge is stored.
Unfortunately, however, this understanding is not shared by all causal analysts; some analysts

vehemently resist the resurrection of structural models and insist, instead, on articulating causal
assumptions exclusively in the unnatural (though formally equivalent) language of potential

outcomes, ignorability, treatment assignment, and other metaphors borrowed from clinical trials.
This assault on structural modeling is perhaps more dangerous than the causal-associational
confusion, because it is riding on a halo of exclusive ownership to scientific principles and, instead

of prohibiting causation, secludes it away from its natural habitat.
Early birds of this exclusivist attitude have already infiltrated the APA’s Guidelines [Wilkinson

et al., 1999], where we can read passages such as: “The crucial idea is to set up the causal inference
problem as one of missing data” or “If a problem of causal inference cannot be formulated in this

manner (as the comparison of potential outcomes under different treatment assignments), it is not
a problem of inference for causal effects, and the use of “causal” should be avoided,” or, even more

bluntly, “the underlying assumptions needed to justify any causal conclusions should be carefully
and explicitly argued, not in terms of technical properties like “uncorrelated error terms,” but in

terms of real world properties, such as how the units received the different treatments.”
The methodology expounded in this paper testifies against such restrictions. It demonstrates a

viable and principled formalism based on traditional structural equations paradigm, which stands

diametrically opposed to the “missing data” paradigm. It renders the vocabulary of “treatment
assignment” stifling and irrelevant (e.g., there is no “treatment assignment” in sex discrimination

cases). Most importantly, it strongly prefers the use of “uncorrelated error terms,” (or “omitted
factors”) over its “strong ignorability” alternative, which even experts admit cannot be used (and

has not been used) to reason about underlying assumptions.
In short, APA’s guidelines should be vastly more inclusive, and borrow strength from multiple

approaches. The next section demonstrates the benefit of a symbiotic, graphical-structural-
counterfactual approach to deal with the problem of mediation, or effect decomposition.

5 An Example: Mediation, Direct and Indirect Effects

5.1 Direct versus Total Effects

The causal effect we have analyzed so far, P (y|do(x)), measures the total effect of a variable (or

a set of variables) X on a response variable Y . In many cases, this quantity does not adequately
represent the target of investigation and attention is focused instead on the direct effect of X on

Y . The term “direct effect” is meant to quantify an effect that is not mediated by other variables
in the model or, more accurately, the sensitivity of Y to changes in X while all other factors in the

analysis are held fixed. Naturally, holding those factors fixed would sever all causal paths from X
to Y with the exception of the direct link X → Y , which is not intercepted by any intermediaries.

A classical example of the ubiquity of direct effects involves legal disputes over race or sex

discrimination in hiring. Here, neither the effect of sex or race on applicants’ qualification nor the
effect of qualification on hiring are targets of litigation. Rather, defendants must prove that sex

and race do not directly influence hiring decisions, whatever indirect effects they might have on
hiring by way of applicant qualification.

From a policy making viewpoint, an investigator may be interested in decomposing effects to
quantify the extent to which racial salary disparity is due to educational disparity, or, taking

a health-care example, the extent to which sensitivity to a given exposure can be reduced by
eliminating sensitivity to an intermediate factor, standing between exposure and outcome.
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Another example concerns the identification of neural pathways in the brain or the structural

features of protein-signaling networks in molecular biology [Brent and Lok, 2005]. Here, the
decomposition of effects into their direct and indirect components carries theoretical scientific

importance, for it tells us “how nature works” and, therefore, enables us to predict behavior under
a rich variety of conditions.

Yet despite its ubiquity, the analysis of mediation has long been a thorny issue in the social
and behavioral sciences [Judd and Kenny, 1981, Baron and Kenny, 1986, Muller et al., 2005,
Shrout and Bolger, 2002, MacKinnon et al., 2007a] primarily because structural equation modeling

in those sciences were deeply entrenched in linear analysis, where the distinction between causal
parameters and their regressional interpretations can easily be conflated. As demands grew to

tackle problems involving binary and categorical variables, researchers could no longer define direct
and indirect effects in terms of structural or regressional coefficients, and all attempts to extend

the linear paradigms of effect decomposition to non-linear systems produced distorted results
[MacKinnon et al., 2007b]. These difficulties have accentuated the need to redefine and derive

causal effects from first principles, uncommitted to distributional assumptions or a particular
parametric form of the equations. The structural methodology presented in this paper adheres to

this philosophy and it has produced indeed a principled solution to the mediation problem, based
on the counterfactual reading of structural equations (8). The following subsections summarize
the method and its solution.

5.2 Controlled Direct-Effects

A major impediment to progress in mediation analysis has been the lack of notational facility for

expressing the key notion of “holding the mediating variables fixed” in the definition of direct
effect. Clearly, this notion must be interpreted as (hypothetically) setting the intermediate
variables to constants by physical intervention, not by analytical means such as selection,

regression conditioning, matching or adjustment. For example, consider the simple mediation
models of Fig. 4, where the error terms (not shown explicitly) are assumed to be independent. It

YXYX

W1 W2

(b)(a)

Z Z

Figure 4: (a) A generic model depicting mediation through Z with no confounders (b) A mediation

model with two confounders, W1 and W2.

will not be sufficient to measure the association between gender (X) and hiring (Y ) for a given
level of qualification (Z), (see Fig. 4(b)) because, by conditioning on the mediator Z, we create
spurious associations between X and Y through W2, even when there is no direct effect of X on

Y [Pearl, 1998].
Using the do(x) notation, enables us to correctly express the notion of “holding Z fixed” and

formulate a simple definition of the controlled direct effect of the transition from X = x to X = x′:

CDE
Δ
= E(Y |do(x′), do(z))−E(Y |do(x), do(z))
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or, equivalently, using counterfactual notation:

CDE
Δ
= E(Yx′z)−E(Yxz)

where Z is the set of all mediating variables. The readers can easily verify that, in linear systems,
the controlled direct effect reduces to the path coefficient of the link X → Y (see footnote 14)

regardless of whether confounders are present (as in Fig. 4(b) and regardless of whether the error
terms are correlated or not.

This separates the task of definition from that of identification, as demanded by Section 4.1.
The identification of CDE would depend, of course, on whether confounders are present and

whether they can be neutralized by adjustment, but these do not alter its definition. Graphical
identification conditions for expressions of the type E(Y |do(x), do(z1), do(z2), . . . , do(zk)) in the

presence of unmeasured confounders were derived by Pearl and Robins [1995] (see Pearl [2000b,
Chapter 4] and invoke sequential application of the back-door conditions discussed in Section 3.2.

5.3 Natural Direct Effects

In linear systems, the direct effect is fully specified by the path coefficient attached to the link
from X to Y ; therefore, the direct effect is independent of the values at which we hold Z. In

non-linear systems, those values would, in general, modify the effect of X on Y and thus should be
chosen carefully to represent the target policy under analysis. For example, it is not uncommon to
find employers who prefer males for the high-paying jobs (i.e., high z) and females for low-paying

jobs (low z).
When the direct effect is sensitive to the levels at which we hold Z, it is often more meaningful

to define the direct effect relative to some “natural” base-line level that may vary from individual
to individual, and represents the level of Z just before the change in X . Conceptually, we can

define the natural direct effect DEx,x′(Y ) as the expected change in Y induced by changing X
from x to x′ while keeping all mediating factors constant at whatever value they would have

obtained under do(x). This hypothetical change, which Robins and Greenland [1992] conceived
and called “pure” and Pearl [2001] formalized and analyzed under the rubric “natural,” mirrors

what lawmakers instruct us to consider in race or sex discrimination cases: “The central question
in any employment-discrimination case is whether the employer would have taken the same action
had the employee been of a different race (age, sex, religion, national origin etc.) and everything

else had been the same.” (In Carson versus Bethlehem Steel Corp., 70 FEP Cases 921, 7th Cir.
(1996)).

Extending the subscript notation to express nested counterfactuals, Pearl [2001] gave a formal
definition for the “natural direct effect”:

DEx,x′(Y ) = E(Yx′,Zx
)−E(Yx). (14)

Here, Yx′,Zx
represents the value that Y would attain under the operation of setting X to x′ and,

simultaneously, setting Z to whatever value it would have obtained under the setting X = x. We
see that DEx,x′(Y ), the natural direct effect of the transition from x to x′, involves probabilities

of nested counterfactuals and cannot be written in terms of the do(x) operator. Therefore, the
natural direct effect cannot in general be identified or estimated, even with the help of ideal,

controlled experiments (see footnote 10) – a point emphasized in Robins and Greenland [1992].
However, aided by Eq. (8) and the notational power of nested counterfactuals, Pearl [2001] was

nevertheless able to show that, if certain assumptions of “no confounding” are deemed valid, the
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natural direct effect can be reduced to

DEx,x′(Y ) =
∑

z

[E(Y |do(x′, z))−E(Y |do(x, z))]P (z|do(x)). (15)

The intuition is simple; the natural direct effect is the weighted average of the controlled direct
effect, using the causal effect P (z|do(x)) as a weighing function.

One condition for the validity of (15) is that Zx⊥⊥Yx′,z|W holds for some set W of measured

covariates. This technical condition in itself, like the ignorability condition of (12), is close
to meaningless for most investigators, as it is not phrased in terms of realized variables. The

structural interpretation of counterfactuals (8) can be invoked at this point to unveil the graphical
interpretation of this condition. It states that W should be admissible (i.e., satisfy the back-door

condition) relative the path(s) from Z to Y . This condition, satisfied by W2 in Fig. 4(b), is readily
comprehended by empirical researchers, and the task of selecting such measurements, W , can then

be guided by the available scientific knowledge. Additional graphical and counterfactual conditions
for identification are derived in Pearl [2001], Petersen et al. [2006], and Imai et al. [2008].

In particular, it was shown [Pearl, 2001] that expression (15) is both valid and identifiable in
Markovian models (i.e., no unobserved confounders) where each term on the right can be reduced
to a “do-free” expression using Eq. (6) or (7) and then estimated by regression.

For example, for the model in Fig. 4(b), Eq. (15) reads:

DEx,x′(Y ) =
∑

z

∑

w1

P (w1)[E(Y |x′, z, w1))−E(Y |x, z, w1))]
∑

w2

P (z|x, w2)P (w2). (16)

while for the confounding-free model of Fig. 4(a) we have:

DEx,x′(Y ) =
∑

z

[E(Y |x′, z)− E(Y |x, z)]P (z|x). (17)

Both (16) and (17) can easily be estimated by a two-step regression.

5.4 Natural Indirect Effects

Remarkably, the definition of the natural direct effect (14) can be turned around and provide an

operational definition for the indirect effect – a concept shrouded in mystery and controversy,
because it is impossible, using standard intervention, to disable the direct link from X to Y so as

to let X influence Y solely via indirect paths.
The natural indirect effect, IE, of the transition from x to x′ is defined as the expected change

in Y affected by holding X constant, at X = x, and changing Z to whatever value it would have
attained had X been set to X = x′. Formally, this reads [Pearl, 2001]:

IEx,x′(Y )
Δ
= E[(Yx,Zx′

)− E(Yx)], (18)

which is almost identical to the direct effect (Eq. (14)) save for exchanging x and x′ in the first

term.
Indeed, it can be shown that, in general, the total effect TE of a transition is equal to

the difference between the direct effect of that transition and the indirect effect of the reverse
transition. Formally,

TEx,x′(Y )
Δ
= E(Yx′ − Yx) = DEx,x′(Y )− IEx′,x(Y ). (19)
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In linear systems, where reversal of transitions amounts to negating the signs of their effects, we

have the standard additive formula

TEx,x′(Y ) = DEx,x′(Y ) + IEx,x′(Y ). (20)

Since each term above is based on an independent operational definition, this equality constitutes
a formal justification for the additive formula used routinely in linear systems.

Note that, although it cannot be expressed in do-notation, the indirect effect has clear
policy-making implications. For example: in the hiring discrimination context, a policy maker may

be interested in predicting the gender mix in the work force if gender bias is eliminated and all
applicants are treated equally—say, the same way that males are currently treated. This quantity

will be given by the indirect effect of gender on hiring, mediated by factors such as education and
aptitude, which may be gender-dependent.

More generally, a policy maker may be interested in the effect of issuing a directive to a select
set of subordinate employees, or in carefully controlling the routing of messages in a network of
interacting agents. Such applications motivate the analysis of path-specific effects, that is, the

effect of X on Y through a selected set of paths [Avin et al., 2005].
In all these cases, the policy intervention invokes the selection of signals to be sensed, rather

than variables to be fixed. Pearl [2001] has suggested therefore that signal sensing is more
fundamental to the notion of causation than manipulation; the latter being but a crude way of

stimulating the former in experimental setup. The mantra “No causation without manipulation”
must be rejected. (See [Pearl, 2000b, Section 11.4.5, 2nd Ed].)

It is remarkable that counterfactual quantities like DE and IE that could not be expressed
in terms of do(x) operators, and appear therefore void of empirical content, can, under certain

conditions be estimated from empirical studies, and serve to guide policies. Awareness of this
potential should embolden researchers to go through the definitional step of the study and freely
articulate the target quantity Q(M) in the language of science, i.e., counterfactuals, despite the

seemingly speculative nature of each assumption in the model [Pearl, 2000a].

5.5 The Mediation Formula: a simple solution to a thorny problem

This subsection demonstrates how the solution provided in equations (17) and (20) can be applied

to practical problems of assessing mediation effects in non-linear models. We will use the simple
mediation model of Fig. 4(a), where all error terms (not shown explicitly) are assumed to be

mutually independent, with the understanding that adjustment for appropriate sets of covariates
W may be necessary to achieve this independence and that integrals should replace summations

when dealing with continuous variables [Imai et al., 2008].
Combining (17), (19), and (20), the expression for the indirect effect, IE, becomes:

IEx,x′(Y ) =
∑

z

E(Y |x, z)[P (z|x′)− P (z|x)] (21)

which provides a general and easy-to-use formula for mediation effects, applicable to any non-linear

system, any distribution (of U), and any type of variables. Moreover, the formula is readily
estimable by regression, making no assumption whatsoever about the parametric form of the

underlying process. Owed to its generality and ubiquity, I have referred to this expression as the
“Mediation Formula” [Pearl, 2009b].

The Mediation Formula represents the average increase in the outcome Y that the transition
from X = x to X = x′ is expected to produce absent any direct effect of X on Y . Though based
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on solid causal principles, it embodies no causal assumption other than the generic mediation

structure of Fig. 4(a). When the outcome Y is binary (e.g., recovery, or hiring) the ratio
(1− IE/TE) represents the fraction of responding individuals who owe their response to direct

paths, while (1−DE/TE) represents the fraction who owe their response to Z-mediated paths.
The Mediation Formula tells us that IE depends only on the expectation of the counterfactual

Yxz, not on its functional form fY (x, z, uY ) or its distribution P (Yxz = y). It calls therefore for a
two-step regression which, in principle, can be performed non-parametrically. In the first step we
regress Y on X and Z, and obtain the estimate

g(x, z) = E(Y |x, z)

for every (x, z) cell. In the second step we estimate the expectation of g(x, z) conditional on
X = x′ and X = x, respectively, and take the difference:

IEx,x′(Y ) = EZ|x′(g(x, z))− EZ|x(g(x, z))

Non-parametric estimation is not always practical. When Z consists of a vector of several

mediators, the dimensionality of the problem would prohibit the estimation of E(Y |x, z)
for every (x, z) cell, and the need arises to use parametric approximation. We can then

choose any convenient parametric form for E(Y |x, z) (e.g., linear, logit, probit), estimate the
parameters separately (e.g., by regression or maximum likelihood methods), insert the parametric

approximation into (21) and estimate its two conditional expectations (over z) to get the mediated
effect [VanderWeele, 2009, Pearl, 2010b].

When applied to linear models the Mediation Formula yields of course the standard product
of coefficients. For example, the linear version of Fig. 4(a) reads:

x = uX

z = bxx + uZ (22)

y = cxx + czz + uY

Computing the conditional expectation in (21) gives

E(Y |x, z) = E(cxx + czz + uY ) = cxx + czz

and yields

IEx,x′(Y ) =
∑

z

(cxx + czz)[P (z|x′)− P (z|x)].

= cz[E(Z|x′)−E(Z|x)] (23)

= (x′ − x)(czbx) (24)

= (x′ − x)(b− cx) (25)

where b is the total effect coefficient, b = (E(Y |x′)−E(Y |x))/(x′− x) = cx + czbx.
We thus obtained the standard expressions for indirect effects in linear systems, which can be

estimated either as a difference in two regression coefficients (Eq. 25) or a product of two regression
coefficients (Eq. 24), with Y regressed on both X and Z. However, when extended to non-linear
systems, these two strategies yield conflicting results [MacKinnon and Dwyer, 1993, MacKinnon

et al., 2007b] and the question arose as to which strategy should be used in assessing the size of
mediated effects [MacKinnon and Dwyer, 1993, Freedman et al., 1992, Molenberghs et al., 2002,
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MacKinnon et al., 2007b]. Pearl [2010b] shows that both strategies yield highly distorted results in

non-linear models, even when correct parametric forms are assumed. The reason lies in a violation
of step 1 (defining the target quantity) of the methodological dictates of Section 4. Researchers

failed to define the causal quantity of interest and were postulating, estimating, and comparing
parameters that were related to, yet hardly resembling DE and IE. The Mediation Formula

captures the correct target quantity, and helps researchers cross the non-linear barrier that has
held back the mediation literature for over half a century. Simple examples using Bernoulli/binary
noise, logistic and probit models are illustrated in Pearl [2010a,b].

In addition to providing causally-sound estimates for mediation effects, the Mediation
Formula also enables researchers to evaluate analytically the effectiveness of various parametric

specifications relative to any assumed model. This type of analytical “sensitivity analysis” has
been used extensively in statistics for parameter estimation, but could not be applied to mediation

analysis, owed to the absence of an objective target quantity that captures the notion of indirect
effect in both linear and non-linear systems, free of parametric assumptions. The Mediation

Formula has removed this barrier [Li et al., 2007, Imai et al., 2010].
The derivation of the Mediation Formula [Pearl, 2001] was facilitated by taking seriously the

four steps of the structural methodology (Section 4) together with the graph-counterfactual-
structural symbiosis spawned by the structural interpretation of counterfactuals (Eq. (8)). In
contrast, when the mediation problem is approached from an exclusivist potential-outcome

viewpoint, void of the structural guidance of Eq. (8), counterintuitive definitions ensue, carrying
the label “principal stratification” [Rubin, 2004, 2005], which are at variance with common

understanding of direct and indirect effects. For example, the direct effect is definable only in
units absent of indirect effects. This means that a grandfather would be deemed to have no

direct effect on his grandson’s behavior in families where he has had some effect on the father.
This precludes from the analysis all typical families, in which a father and a grandfather have

simultaneous, complementary influences on children’s upbringing. In linear systems, to take an
even sharper example, the direct effect would be undefined whenever indirect paths exist from the

cause to its effect. The emergence of such paradoxical conclusions underscores the wisdom, if not
necessity of a symbiotic analysis, in which the counterfactual notation Yx(u) is governed by its
structural definition, Eq. (8).15 It also brings into focus the ethical issue of inclusiveness and its

role in scientific research and education.

6 Conclusions

Statistics is strong in inferring distributional parameters from sample data. Causal inference
require two addition ingredients: a science-friendly language for articulating causal knowledge,
and a mathematical machinery for processing that knowledge, combining it with data and drawing

new causal conclusions about a phenomena. This paper presents non-parametric structural
causal models (SCM) as a formal and meaningful language for meeting these challenges, thus

easing the ethical tensions that follow the disparity between causal quantities sought by scientists
and associational quantities inferred from observational studies. The algebraic component

of the structural language coincides with the potential-outcome framework, and its graphical
component embraces Wright’s method of path diagrams (in its non-parametric version.) When

unified and synthesized, the two components offer empirical investigators a powerful methodology

15Such symbiosis is now standard in epidemiology research [Robins, 2001, Petersen et al., 2006, VanderWeele and
Robins, 2007, Hafeman and Schwartz, 2009, VanderWeele, 2009] and is making its way slowly toward the social and
behavioral sciences (e.g., Morgan and Winship, 2007, Elwert and Winship, 2010).
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for causal inference which resolves long-standing problems in the empirical sciences. These

include the control of confounding, the evaluation of policies, the analysis of mediation and the
algorithmization of counterfactuals.

In particular, the analysis of mediation demonstrates the benefit of adhering to the
methodological principles described. The development of the Mediation Formula (Eqs. (17) and

(20)) has liberated researchers from the blindfolds of parametric thinking, and allows them to
assess direct and indirect effects for any type of variables, with minimum assumptions regarding
the underlying process.
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