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Abstract

The �potential outcome�� or Neyman�Rubin 	NR
 model
through which statisticians were �rst introduced to causal
analysis su�ers from two fundamental shortcomings
 	�

It lacks formal underpinning and 	�
 it uses conceptually
opaque language for expressing causal information� As a
results� investigators �nd it di�cult to discern whether
a set of formulae represents a faithful picture of one�s
knowledge� and whether such a set is self�consistent or
redundant�
These shortcomings can be recti�ed using counterfac�

tual semantics based on nonparametric structural equa�
tions �Pearl� ����a� which provides both a mathematical
foundation for the NR analysis and a conceptually trans�
parent language for expressing causal knowledge� This
semantical framework gives rise to a friendly calculus of
causation that uni�es the graphical� potential outcome
and structural equation approaches and resolves long�
standing problems in several of the sciences� These in�
clude questions of confounding� causal e�ect estimation�
policy analysis� legal responsibility� direct and indirect ef�
fects� instrumental variables� surrogate designs� and the
integration of data from experimental and observational
studies�

KEY WORDS
 Structural equation models� confound�
ing� Rubin causal model� graphical methods� counterfac�
tuals� causal e�ects�

�� Introduction

Almost two decades have passed since Paul Holland pub�
lished his seminal review paper on the Neyman�Rubin
	NR
 approach to causal inference �Holland� ������ Our
understanding of causal inference has since increased sev�
eral folds� due primarily to advances in three areas


�� Nonparametric structural equations

�� Graphical models

�� Symbiosis between counterfactual and graphical
methods�

These advances are central to the empirical sciences be�
cause the research questions that motivate most studies in
the health� social and behavioral sciences are not statisti�
cal but causal in nature� For example� what is the e�cacy
of a given drug in a given population� Whether data can

prove an employer guilty of hiring discrimination� What
fraction of past crimes could have been avoided by a given
policy� What was the cause of death of a given individ�
ual� in a speci�c incident�
Remarkably� although much of the conceptual frame�

work and algorithmic tools needed for tackling such prob�
lems are now well established� they are hardly known to
researchers in the �eld who could put them into practical
use� Why�

Solving causal problems mathematically requires cer�
tain extensions in the standard mathematical language
of statistics� and these extensions are not generally em�
phasized in the mainstream literature and education� As
a result� large segments of the statistical research commu�
nity �nd it hard to appreciate and bene�t from the many
results that causal analysis has produced in the past two
decades�

This paper aims at making these advances more acces�
sible to the general research community by� �rst� contrast�
ing causal analysis with standard statistical analysis and�
second� by comparing and unifying various approaches to
causal analysis�

�� From Associational to Causal Analysis�

Distinctions and Barriers

��� The Basic Distinction� Coping With Change

The aim of standard statistical analysis� typi�ed by re�
gression� estimation� and hypothesis testing techniques�
is to assess parameters of a distribution from samples
drawn of that distribution� With the help of such pa�
rameters� one can infer associations among variables� es�
timate the likelihood of past and future events� as well as
update the likelihood of events in light of new evidence
or new measurements� These tasks are managed well by
standard statistical analysis so long as experimental con�
ditions remain the same� Causal analysis goes one step
further� its aim is to infer not only the likelihood of events
under static conditions� but also the dynamics of events
under changing conditions� for example� changes induced
by treatments or external interventions�

This distinction implies that causal and associational
concepts do not mix� There is nothing in the joint dis�
tribution of symptoms and diseases to tell us that curing
the former would or would not cure the latter� More gen�
erally� there is nothing in a distribution function to tell
us how that distribution would di�er if external condi�
tions were to change�say from observational to experi�
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mental setup�because the laws of probability theory do
not dictate how one property of a distribution ought to
change when another property is modi�ed� This infor�
mation must be provided by causal assumptions which
identify relationships that remain invariant when exter�
nal conditions change�

These considerations imply that the slogan �correla�
tion does not imply causation� can be translated into a
useful principle� one cannot substantiate causal claims
from associations alone	 even at the population level�
behind every causal conclusion there must lie some causal
assumption that is not testable in observational studies�

��� Formulating the Basic Distinction

A useful demarcation line that makes the distinction be�
tween associational and causal concepts crisp and easy to
apply	 can be formulated as follows� An associational con�
cept is any relationship that can be de�ned in terms of a
joint distribution of observed variables	 and a causal con�
cept is any relationship that cannot be de�ned from the
distribution alone� Examples of associational concepts
are� correlation	 regression	 dependence	 conditional in�
dependence	 likelihood	 collapsibility	 risk ratio	 odd ra�
tio	 marginalization	 conditionalization	 �controlling for	�
and so on� Examples of causal concepts are� randomiza�
tion	 in
uence	 e�ect	 confounding	 �holding constant	�
disturbance	 spurious correlation	 instrumental variables	
intervention	 explanation	 attribution	 and so on� The
former can	 while the latter cannot be de�ned in term of
distribution functions�

This demarcation line is extremely useful in causal
analysis for it helps investigators to trace the assump�
tions that are needed for substantiating various types of
scienti�c claims� Every claim invoking causal concepts
must rely on some premises that invoke such concepts� it
cannot be inferred from	 or even de�ned in terms statis�
tical associations alone�

��� Rami�cations of the Basic Distinction

This principle has far reaching consequences that are not
generally recognized in the standard statistical literature�
Many researchers	 for example	 are still convinced that
confounding is solidly founded in standard	 frequentist
statistics	 and that it can be given an associational def�
inition saying 
roughly�� �U is a potential confounder
for examining the e�ect of treatment X on outcome Y
when both U and X and U and Y are not independent��
That this de�nition and all its many variants must fail	
is obvious from the demarcation line above� �indepen�
dence� is an associational concept while confounding is
needed for establishing causal relations� The two do not
mix	 hence	 the de�nition must be false� Therefore	 to
the bitter disappointment of generations of epidemiology
researchers	 confounding bias cannot be detected or cor�
rected by statistical methods alone� one must make some
judgmental assumptions regarding causal relationships in

the problem before an adjustment 
e�g�	 by strati�cation�
can safely correct for confounding bias�
Another rami�cation of the sharp distinction between

associational and causal concepts is that any mathemat�
ical approach to causal analysis must acquire new nota�
tion for expressing causal relations � probability calculus
is insu�cient� To illustrate	 the syntax of probability cal�
culus does not permit us to express the simple fact that
�symptoms do not cause diseases�	 let alone draw math�
ematical conclusions from such facts� All we can say is
that two events are dependent�meaning that if we �nd
one	 we can expect to encounter the other	 but we can�
not distinguish statistical dependence	 quanti�ed by the
conditional probability P 
disease jsymptom� from causal
dependence	 for which we have no expression in standard
probability calculus� Scientists seeking to express causal
relationships must therefore supplement the language of
probability with a vocabulary for causality	 one in which
the symbolic representation for the relation �symptoms
cause disease� is distinct from the symbolic representa�
tion of �symptoms are associated with disease��

��� Two Mental Barriers� Untested Assump�

tions and New Notation

The preceding two requirements� 
�� to commence causal
analysis with untested	� theoretically or judgmentally
based assumptions	 and 
�� to extend the syntax of prob�
ability calculus	 constitute the two main obstacles to
the acceptance of causal analysis among statisticians and
among professionals with traditional training in statistics�
Associational assumptions	 even untested	 are testable

in principle	 given su�ciently large sample and su��
ciently �ne measurements� Causal assumptions	 in con�
trast	 cannot be veri�ed even in principle	 unless one re�
sorts to experimental control� This di�erence stands out
in Bayesian analysis� Though the priors that Bayesians
commonly assign to statistical parameters are untested
quantities	 the sensitivity to these priors tends to dimin�
ish with increasing sample size� In contrast	 sensitivity
to prior causal assumptions	 say that treatment does not
change gender	 remains substantial regardless of sample
size�
This makes it doubly important that the notation we

use for expressing causal assumptions be meaningful and
unambiguous so that one can clearly judge the plausibil�
ity or inevitability of the assumptions articulated� Statis�
ticians can no longer ignore the mental representation in
which scientists store experiential knowledge	 since it is
this representation	 and the language used to access that
representation that determine the reliability of the judg�
ments upon which the analysis so crucially depends�
How does one recognize causal expressions in the sta�

tistical literature� Those versed in the potential�outcome
notation �Neyman	 ����� Rubin	 ����� Holland	 �����	
can recognize such expressions through the subscripts

�By �untested� I mean untested using frequency data in nonex�

perimental studies�



that are attached to counterfactual events and variables�
e�g� Yx�u� or Zxy� �Some authors use parenthetical ex�
pressions� e�g� Y �x� u� or Z�x� y��� The expression Yx�u��
for example� stands for the value that outcome Y would
take in individual u� had treatment X been at level x�
If u is chosen at random� Yx is a random variable� and
one can talk about the probability that Yx would at�
tain a value y in the population� written P �Yx � y��
Alternatively� Pearl �	

�� used expressions of the form
P �Y � yjset�X � x�� or P �Y � yjdo�X � x�� to denote
the probability �or frequency� that event �Y � y� would
occur if treatment condition X � x were enforced uni�
formly over the population�� Still a third notation that
distinguishes causal expressions is provided by graphical
models� where the arrows convey causal directionality��

However� few have taken seriously the textbook re�
quirement that any introduction of new notation must
entail a systematic de
nition of the syntax and seman�
tics that governs the notation� Moreover� in the bulk of
the statistical literature before ����� causal claims rarely
appear in the mathematics� They surface only in the
verbal interpretation that investigators occasionally at�
tach to certain associations� and in the verbal description
with which investigators justify assumptions� For exam�
ple� the assumption that a covariate is not a�ected by a
treatment� a necessary assumption for the control of con�
founding �Cox� 	
���� is expressed in plain English� not
in a mathematical expression�

Remarkably� though the necessity of explicit causal no�
tation is now recognized by most leaders in the 
eld� the
use of such notation has remained enigmatic to most rank
and 
le researchers� and its potentials still lay grossly un�
derutilized in the statistics based sciences� The reason
for this� I am 
rmly convinced� can be traced to the un�
friendly and ad�hoc way in which the NR model has been
presented to the research community�

The next section provides a conceptualization that
overcomes these mental barriers� it o�ers both a friendly
mathematical machinery for cause�e�ect analysis and a
formal foundation for counterfactual analysis�

�� The Language of Diagrams and Structural

Equations

��� Semantics� Causal E�ects and Counterfac�

tuals

How can one express mathematically the common un�
derstanding that symptoms do not cause diseases� The
earliest attempt to formulate such relationship mathe�

�Clearly� P �Y � yjdo�X � x�� is equivalent to P �Yx � y��
This is what we normally assess in a controlled experiment� with
X randomized� in which the distribution of Y is estimated for each
level x of X�

�These notational clues should be useful for detecting inade�
quate de�nitions of causal concepts	 any de�nition of confounding�
randomization or instrumental variables that is cast in standard
probability expressions� void of graphs� counterfactual subscripts
or do��� operators� can safely be discarded as inadequate�

matically was made in the 	
���s by the geneticist Sewall
Wright �	
�	�� who used a combination of equations and
graphs� For example� if X stands for a disease variable
and Y stands for a certain symptom of the disease� Wright
would write a linear equation�

y � �x� u �	�

where x stands for the level �or severity� of the disease� y
stands for the level �or severity� of the symptom� and u

stands for all factors� other than the disease in question�
that could possibly a�ect Y � In interpreting this equation
one should think of a physical process whereby Nature
examines the values of x and u and� accordingly� assigns
variable Y the value y � �x� u�
To express the directionality inherent in this process�

Wright augmented the equation with a diagram� later
called �path diagram�� in which arrows are drawn from
perceived� causes to their �perceived� e�ects and� more
importantly� the absence of an arrow makes the empirical
claim that the value Nature assigns to one variable is not
determined by the value taken by another�
The variables V and U are called �exogenous� � they

represent observed or unobserved background factors
that the modeler decides to keep unexplained� that is�
factors that in�uence but are not in�uenced by the other
variables �called �endogenous�� in the model�
If correlation is judged possible between two exogenous

variables� U and V � it is customary to connect them by
a dashed double arrow� as shown in Fig� 	�b��

V UV U

βX YβX Y

(b)(a)

x = v
y =   x + uβ

Figure 	� A simple structural equation model� and its
associated diagrams� Unobserved exogenous variables are
connected by dashed arrows�

To summarize� path diagrams encode causal assump�
tions via missing arrows� representing claims of zero in�
�uence� and missing double arrows �e�g�� between V and
U�� representing the causal assumption Cov�U� V ����

The generalization to nonlinear system of equations is
straightforward� For example� the non�parametric inter�
pretation of the diagram of Fig� ��a� corresponds to a
set of three functions� each corresponding to one of the
observed variables�

z � fZ�w�

x � fX�z� v� ���

y � fY �x� u�

where W�V and U are assumed to be jointly independent
but� otherwise� arbitrarily distributed�
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Figure �� �a� The diagram associated with the structural
model of Eq� ���� �b� The diagram associated with the
modi�ed model of Eq� ���	 representing the intervention
do�X 
 x���

Remarkably	 unknown to most economists and philoso�
phers	 structural equation models provide a formal inter�
pretation and symbolic machinery for analyzing counter�
factual relationships of the type� �Y would be y had X

been x in situation U 
 u	
 denoted Yx�u� 
 y� Here U
represents the vector of all exogenous variables�
The key idea is to interpret the phrase �had X been

x�
 as an instruction to modify the original model and
replace the equation for X by a constant x�	 yielding

z 
 fZ�w�

x 
 x� ���

y 
 fY �x� u�

the graphical description of which is shown in Fig� ��b��
This replacement permits the constant x� to di�er from

the actual value of X �namely fX�z� v�� without render�
ing the system of equations inconsistent	 thus yielding
a formal interpretation of counterfactuals in multi�stage
models	 where the dependent variable in one equation
may be an independent variable in another �Balke and
Pearl	 ����ab� Pearl	 ����b�� For example	 to compute
the average causal e�ect of X on Y 	 i�e�	 E�Yx�� we solve
Eq� ��� for Y in terms of the exogenous variables	 yield�
ing Yx� 
 fY �x�� u�	 and average over U and V � To
answer more sophisticate questions such as whether Y
would be y� if X were x�	 given that in fact Y is y� and
X is x�	 we need to compute the conditional probability
P �Yx� 
 y�jY 
 y�� X 
 x�� which is well de�ned once
we know the forms of the structural equations and the
distribution of the exogenous variables in the model�
This interpretation of counterfactuals	 cast as solutions

to modi�ed systems of equations	 provides the conceptual
and formal link between structural equation models	 used
in economics and social science and the Neyman�Rubin
potential�outcome framework to be discussed in Section
�� But �rst we discuss two long�standing problems that
have been completely resolved in purely graphical terms	
without delving into algebraic techniques�

��� Confounding and Causal E�ect Estimation

The central target of most studies in the social and
health sciences is the elucidation of cause�e�ect relation�
ships among variables of interests	 for example	 treat�

ments	 policies	 preconditions and outcomes� While good
statisticians have always known that the elucidation of
causal relationships from observational studies must be
shaped by assumptions about how the data were gener�
ated	 the relative roles of assumptions and data	 and ways
of using those assumptions to eliminate confounding bias
have been a subject of much controversy� The structural
framework of Section ��� puts these controversies to rest�

Covariate Selection� The back�door criterion

Consider an observational study where we wish to �nd the
e�ect of X on Y 	 for example	 treatment on response	 and
assume that the factors deemed relevant to the problem
are structured as in Fig� �� some are a�ecting the re�

Z1

Z3

Z2

Y

X

W

W

W

1

2

3

Figure �� Graphical model illustrating the back�door cri�
terion� Error terms are not shown explicitly�

sponse	 some are a�ecting the treatment and some are
a�ecting both treatment and response� Some of these
factors may be unmeasurable	 such as genetic trait or
life style	 others are measurable	 such as gender	 age	 and
salary level� Our problem is to select a subset of these fac�
tors for measurement and adjustment	 namely	 that if we
compare treated vs� untreated subjects having the same
values of the selected factors	 we get the correct treat�
ment e�ect in that subpopulation of subjects� Such a set
of factors is called a �su�cient set
 or a set �appropri�
ate for adjustment
� The problem of de�ning a su�cient
set	 let alone �nding one	 has ba�ed epidemiologists and
social science for decades �see Greenland et al�� ������	
Pearl �����a� and ������ for review��
The following criterion	 named �back�door
 in

�Pearl	 ����a�	 provides a graphical method of selecting
such a set of factors for adjustment� It states that a set
S is appropriate for adjustment if two conditions hold�

�� No element of S is a descendant of X

�� The elements of S �block
 all �back�door
 paths
from X to Y 	 namely all paths that end with an
arrow pointing to X ��

Based on this criterion we see	 for example	 that the
sets fZ�� Z�� Z�g� fZ�� Z�g	 and fW�� Z�g	 each is su��
cient for adjustment	 because each blocks all back�door

�In this criterion� a set S of nodes is said to block a path p if
either �i� p contains at least one arrow�emitting node that is in S�
or �ii� p contains at least one collision node that is outside S and
has no descendant in S�



paths between X and Y � The set fZ�g� however� is not
su�cient for adjustment because� as explained above� it
does not block the path X � W� � Z� � Z� � Z� �
W� � Y �
The implication of �nding a su�cient set S is that�

stratifying on S is guaranteed to remove all confounding
bias relative the causal e�ect of X on Y � In other words�
it renders the causal e�ect of X on Y identi�able� via

P �Y � yjdo�X � x		

�
X

s

P �Y � yjX � x� S � s	P �S � s	 �
	

Since all factors on the right hand side of the equation are
estimable �e�g�� by regression	 from the pre�interventional
data� the causal e�ect can likewise be estimated from such
data without bias�
The back�door criterion allows us to write Eq� �
	 di�

rectly� after selecting a su�cient set S from the diagram�
without resorting to any algebraic manipulation� The
selection criterion can be applied systematically to dia�
grams of any size and shape� thus freeing analysts from
judging whether �X is conditionally ignorable given S�
 a
formidable mental task required in the potential�response
framework �Rosenbaum and Rubin� ������ The criterion
also enables the analyst to search for an optimal set of
covariate�namely� a set S that minimizes measurement
cost or sampling variability �Tian et al�� ������

General control of confounding

Adjusting for covariates is only one of many methods that
permits us to estimate causal e�ects in nonexperimental
studies� A much more general identi�cation criterion is
provided by the following theorem�

Theorem � �Tian and Pearl� �����
A su�cient condition for identifying the causal e�ect

P �yjdo�x		 is that every path between X and any of its

children traces at least one arrow emanating from a mea�

sured variable��

For example� ifW� is the only observed covariate in the
model of Fig� �� then there exists no su�cient set for ad�
justment �because no set of observed covariates can block
the paths from X to Y through Z�	� yet P �yjdo�x		 can
nevertheless be estimated since the one path from X to
W� �the only child ofX	 traces the arrowX � W�� which
emanates from a measured variable� X � In this example�
the variable W� acts as a �mediating instrumental vari�
able
 �Pearl ����b� Chalak and White� ����� and yields
the estimand�

P �Y � yjdo�X � x		

�
X

w�

P �W� � wjdo�X � x		P �Y � yjdo�W� � w		

�
X

w

P �wjx	
X

x
�

P �yjw� x�	P �x�	 ��	

�Before applying this criterion� one may delete from the causal

graph all nodes that are not ancestors of Y �

More recent results extend this theorem by ��	 present�
ing a necessary and su�cient condition for identi�cation
�Shpitser and Pearl� ������ and ��	 extending the condi�
tion from causal e�ects to any counterfactual expression
�Shpitser and Pearl� ������ The corresponding unbiased
estimands for these causal quantities� are readable di�
rectly from the diagram�

�� The Language of Potential Outcomes

The elementary object of analysis in the potential�
outcome framework is the unit�based response variable�
denoted Yx�u	� read� �the value that Y would obtain in
unit u� had treatment X been x
 �Neyman� ����� Rubin�
���
�� These subscripted variables are treated as unde�
�ned quantities� useful for expressing the causal quanti�
ties we seek� but are not derived from other quantities
in the model� In contrast� in the previous section coun�
terfactual entities were derived from a set of meaningful
physical processes� each represented by an equation� and
unit was interpreted a vector u of background factors that
characterize an experimental unit� Each structural equa�
tion model thus provides a compact representation for
a huge number of counterfactual claims� guaranteed to
be consistent� The potential outcome framework lacks
such compactness� nor does it provide guarantees that
any given set of claims is consistent�
In view of these features� the structural de�nition of

Yx�u	 can be regarded as the formal basis for the poten�
tial outcome approach� It interprets the opaque English
phrase �the value that Y would obtain in unit u� had X

been x
 in terms of a meaningful mathematical model
that allows such values to be computed unambiguously�
Consequently� important concepts in potential response
analysis that researchers �nd ill�de�ned or overly esoteric
often obtain meaningful and natural interpretation in
the structural semantics� Examples are� �unit
 ��exoge�
nous variables
 in structural semantics	� �principal strat�
i�cation
 ��equivalence classes
 in structural semantics
�Balke and Pearl� ���
a� and �Pearl ����b� �conditional
ignorability
 ��back�door condition
 in �Pearl ����a� �as�
signment mechanism
 �P �xjdirect�causes of X	 in struc�
tural semantics	 and so on� The next two subsections
examine how assumptions and inferences are handled in
the potential outcome approach�

��� Formulating Assumptions

The distinct characteristic of the potential outcome ap�
proach is that� although its primitive objects are unde�
�ned� hypothetical quantities� the analysis itself is con�
ducted almost entirely within the axiomatic framework
of probability theory� This is accomplished� by postulat�
ing a �super
 probability function on both hypothetical
and real events� treating the former as 
missing data
�
In other words� if U is treated as a random variable
then the value of the counterfactual Yx�u	 becomes a
random variable as well� denoted as Yx� The potential�



outcome analysis proceeds by treating the observed dis�
tribution P �x�� � � � � xn� as the marginal distribution of an
augmented probability function P � de�ned over both ob�
served and counterfactual variables� Queries about causal
e�ects are phrased as queries about the marginal distri�
bution of the counterfactual variable of interest� writ�
ten P ��Yx 	 y�� The new hypothetical entities Yx are
treated as ordinary random variables
 for example� they
are assumed to obey the axioms of probability calcu�
lus� the laws of conditioning� and the axioms of condi�
tional independence� Moreover� these hypothetical enti�
ties are not entirely whimsy� but are assumed to be con�
nected to observed variables via consistency constraints
�Robins� �
��� such as

X 	 x 	� Yx 	 Y� ���

which states that� for every u� if the actual value of X
turns out to be x� then the value that Y would take on if
X were x is equal to the actual value of Y � For example� a
person who chose treatment x and recovered� would also
have recovered if given treatment x by design�
The main conceptual di�erence between the two ap�

proaches is that� whereas the structural approach views
the subscript x as an operation that changes the distri�
bution but keeps the variables the same� the potential�
outcome approach views the variable Yx� to be a di�erent
variable� loosely connected to Y through relations such
as ����
Pearl �����a� Chapter �� shows� using the structural in�

terpretation of Yx�u�� that it is indeed legitimate to treat
counterfactuals as jointly distributed random variables in
all respects� that consistency constraints like ��� are au�
tomatically satis�ed in the structural interpretation and�
moreover� that investigators need not be concerned about
any additional constraints except the following two��

Yyz 	 y for all y and z ���

Xz 	 x 	� Yxz 	 Yz for all x and z ���

Eq� ��� ensures that the interventions do�Y 	 y� results
in the condition Y 	 y� regardless of concurrent interven�
tions� say do�Z 	 z�� that are applied to variables other
than Y � Equation ��� generalizes ��� to cases where Z is
held �xed� at z�
To communicate substantive causal knowledge� the

potential�outcome analyst must express causal assump�
tions as constraints on P �� usually in the form of condi�
tional independence assertions involving counterfactual
variables� In Fig� ��a� for instance� to communicate
the understanding that a treatment assignment �Z� is
randomized �hence independent of both U and V �� the

�This completeness result is due to Halpern ������� who noted
that an additional axiom

fYxz � yg 	 fZxy � zg �� Yx � y

must hold in non
recursive models� This fundamental axiom may
come to haunt economists and social scientists who blindly apply
NR analysis in their �elds�

potential�outcome analyst needs to use the independence
constraint Z��fXz� Yxg� To further formulate the under�
standing that Z does not a�ect Y directly� except through
X � the analyst would write a� so called� �exclusion restric�
tion�� Yxz 	 Yx� Clearly� no mortal can judge the valid�
ity of such assumptions in any real life problem without
resorting to graphs��

��� Performing Inferences

A collection of assumptions of this type might sometimes
be su�cient to permit a unique solution to the query of
interest
 in other cases� only bounds on the solution can
be obtained� For example� if one can plausibly assume
that a set Z of covariates satis�es the conditional inde�
pendence

Yx��X jZ �
�

�an assumption that was termed �conditional ignorabil�
ity� by �Rosenbaum and Rubin� �
��� then the causal ef�
fect P ��Yx 	 y� can readily be evaluated to yield

P ��Yx 	 y� 	
X

z

P ��Yx 	 yjz�P �z�

	
X

z

P ��Yx 	 yjx� z�P �z� �using �
��

	
X

z

P ��Y 	 yjx� z�P �z� �using ����

	
X

z

P �yjx� z�P �z�� ����

which is the usual covariate�adjustment formula� as in
Eq� ����
Note that almost all mathematical operations in this

derivation are conducted within the safe con�nes of prob�
ability calculus� Save for an occasional application of rule
��� or ����� the analyst may forget that Yx stands for a
counterfactual quantity�it is treated as any other ran�
dom variable� and the entire derivation follows the course
of routine probability exercises�
However� this mathematical illusion comes at the ex�

pense of conceptual clarity� especially at a stage where
causal assumptions need be formulated� The reader may
appreciate this aspect by attempting to judge whether
the assumption of conditional ignorability Eq� �
�� the
key to the derivation of Eq� ����� holds in any familiar
situation� say in the experimental setup of Fig� ��a�� This
assumption reads� �the value that Y would obtain had
X been x� is independent of X � given Z�� Such assump�
tions of conditional independence among counterfactual
variables are not straightforward to comprehend or as�
certain� for they are cast in a language far removed from
ordinary understanding of cause and e�ect� When coun�
terfactual variables are not viewed as byproducts of a
deeper� process�based model� it is also hard to ascertain

�Even with the use of graphs the task is not easy� for example�
the reader should try to verify whether fZ��XzjY g holds in the
simple model of Fig� 
�a��



whether all relevant counterfactual independence judg�
ments have been articulated� whether the judgments ar�
ticulated are redundant� or whether those judgments are
self�consistent�
The need to express� defend� and manage formidable

counterfactual relationships of this type explains the slow
acceptance of causal analysis among epidemiologists and
statisticians� and why economists and social scientists
continue to use structural equation models instead of
the potential�outcome alternatives advocated in Holland
�����	� Angrist et al� ����
	� and Sobel �����	�
On the other hand� the algebraic machinery o�ered

by the potential�outcome notation� once a problem is
properly formalized� can be powerful in re�ning as�
sumptions �Angrist et al�� ���
	� deriving consistent es�
timands �Robins� ���
	� bounding probabilities of causa�
tion �Tian and Pearl� 
���	� and combining data from ex�
perimental and nonexperimental studies �Pearl� 
���a	�

��� Combining Graphs and Algebra � Methods

and Accomplishments�

Pearl �
���a� page 
�
	 presents a way of combining the
best features of the two approaches� It is based on en�
coding causal assumptions in the language of diagrams�
translating these assumptions into potential outcome no�
tation� performing the mathematics in the algebraic lan�
guage of counterfactuals and� �nally� interpreting the re�
sult in plain causal language� Often� the answer desired
can be obtained directly from the diagram� and no trans�
lation is necessary �as demonstrated in Section ��
��
This method has scored an impressive list of ac�

complishments� including solutions to the long�standing
problems of legal responsibility �Tian and Pearl� 
����
Pearl� 
���	� non�compliance �Balke and Pearl� �����
Chickering and Pearl� ����	� direct and indirect ef�
fects �Pearl� 
���	� mediating instrumental variables
�Pearl� ����b� Brito and Pearl� 
��
	� robustness analysis
�Pearl� 
���	� and the integration of data from experi�
mental and observational studies �Tian and Pearl� 
����
Pearl� 
���a	� Detailed descriptions of these results are
given in the corresponding articles which are available on
hbayes�cs�ucla�edu�jp�home�htmli�

�� Conclusions

Statistics is strong in devising ways of describing data and
inferring distributional parameters from sample� Causal
inference require two addition ingredients� a science�
friendly language for articulating causal knowledge� and
a mathematical machinery for processing that knowl�
edge� combining it with data and drawing new causal
conclusions about a phenomena� This paper introduces
nonparametric structural equations models as a formal
and meaningful language for formulating causal knowl�
edge and for explicating causal concepts used in sci�
enti�c discourse� These include� randomization� inter�
vention� direct and indirect e�ects� confounding� coun�

terfactuals� and attribution� The algebraic component
of the structural language coincides with the potential�
outcome framework� and its graphical component em�
braces Wright�s method of path diagrams �in its non�
parametric version�� When uni�ed and synthesized� the
two components o�er statistical investigators a power�
ful methodology for empirical research� The merits of
this methodology have quickly been recognized by sev�
eral research communities �e�g�� Morgan and Winship�

���� Greenland et al�� ����� Petersen et al�� 
��
� Chalak
and White� 
��
	 and are making their way� past obvious
pockets of resistance� to statistical education as well�
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