To appear in Paul Cohen (Ed.) 50 years to Al. TECHNICAL REPORT
R-331
June 2006

'Two journeys into human reasoning

Judea Pearl
Cognitive Systems Laboratory
Computer Science Department
University of California, Los Angeles, CA 90024
judea@cs.ucla.edu

Abstract

This essay is a personal account of two research journeys motivated
by a bold, yet common AI paradigm: whatever people do well machine
should do better, if only we could listen carefully to the way people do it.

The first journey takes us to reasoning with uncertainty and the de-
velopment of Bayesian Networks, the second to causal reasoning and the
formalization of causal and counterfactual relationships.

Admittedly, none of these journeys unveiled how people actually do
it, and none led to algorithms that consistently outperform humans, yet
the results achieved through these efforts far exceed those obtained from
fields outside AI, guided by less ambitious paradigms. I hope that the
lesson would inspire more such journeys in the futures.

1 Reasoning with Uncertainty

My journey into uncertainly land was motivated by a busy mixture of observa-
tions and speculations.

1. The consistent agreement between plausible reasoning and probability cal-
culus could not be coincidental, but strongly suggests that human intuition
invokes some crude form of probabilistic computation.

2. In light of the speed and effectiveness of human reasoning, the computa-
tional difficulties that plagued earlier probabilistic systems could not be
very fundamental and should be overcome by making the right choice of
simplifying assumptions which humans store in their head.

3. The most crucial type of assumptions needed for probabilistic computation
is conditional independence and graphical forms are the only plausible way
in which such assumptions could be represented.

4. If a graphical knowledge representation could be found, then it should be
possible to use the lines as message-passing channels, and we could then
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update beliefs by parallel distributed computations, reminiscent of neural
architectures.

5. If belief updating could be achieved by such distributed mechanisms, then
the update would be easier to explain, since the flow of information would
transverse conceptually meaningful paths.

6. If distributed updating were feasible, then probabilistic inference would be
as easy to program and execute (even on a serial machine) as rule-based
systems, and only simple control mechanisms would be required.

In hindsight, some of these speculations were rather naive. For example,
fully distributed updating turned out to be correct only in singly connected
networks, and some conditional independence relationships were shown to defy
graphical representation altogether. Nevertheless, many of these speculations
have survived the test of time. In recent years, belief networks have become a
tool of great versatility and power and are now considered the most common
representation scheme for probabilistic knowledge.

My curiosity to study distributed probabilistic computations on graphical
models began brewing in the late 1970s, after I read Rumelhart’s paper on
reading comprehension [11]. In this paper, Rumelhart presented compelling
evidence that text comprehension must be a distributed process that combines
both top-down and bottom-up inferences. Strangely, this dual mode of inference,
so characteristic of Bayesian analysis, did not match the capabilities of the
ruling paradigms for uncertainty management in the 1970s. I thus began to
explore the possibility of achieving distributed computation in a “pure” Bayesian
framework, so as not to compromise its basic capacity to combine bi-directional
inferences (i.e., predictive and abductive).

Not caring much about generality at that point, I pieced the simplest struc-
ture I could thin of (i.e., a tree) and tried to see if anything useful can be
computed by assigning each variable a simple processor, forced to communicate
only with its neighbors. This gave rise to the tree-propagation algorithm re-
ported in [5] and, a year later, to belief propagation on poly-trees [3], which
supported not only bi-directional inferences but also intercausal interactions,
such as “explaining-away.”

In the course of developing these algorithms, it became clear that condi-
tional independence is the most fundamental relation behind the organization
of probabilistic knowledge and the most crucial factor facilitating distributed
computations. I therefore decided to investigate systematically how directed
and undirected graphs could be used as a language for encoding, decoding, and
reasoning with such independencies.

Probabilities and graphs are rather dissimilar mathematical objects, so, I
was forced to as some fundamental questions about the relationships between
the two. I began by asking how a directed acyclic graph (dag) can be extracted
from a given probability distribution, whether the extracted dag is unique, what
kind of distributions can be specified by a given dag, how we can read off the



independencies that are captured by the dag, and whether they match those
associated with causal organizations.

This line of inquiry led to the formulation of Bayesian belief networks (a
name I coined in 1986), their interpretation, and their use in probabilistic infer-
ence. In parallel, this inquiry also gave rise to the axiomatic theory of graphoids
[10][8][1], in which directed and undirected graphs are treated as abstract math-
ematical objects, called dependency models, and in which direct from indirect
dependencies are distinguished by “path separation.”!

2 Reasoning with Cause and Effect

One regrettable step in this line of research was my failure to recognize causation
as totally distinct ingredient, different from all the probabilistic notions that
support evidential reasoning and statistical inference. Although I acknowledged
the ubiquitous role of causation in conceptualizing the world, so intoxicated
was I with the power of probabilities that I mistook causation to be subservient
to probability. A statement such as “Causation is a language with which one
can talk efficiently about certain structures of relevance relationships” [8] would
embarrass me today, as it should embarrass thousands of readers of my latest
boo (Causality, 2000) in which I made the following confession:

“Ten years ago, when I began writing Probabilistic Reasoning in Intelligent
Systems (1988), I was working within the empiricist tradition. In this tradi-
tion, probabilistic relationships constitute the foundations of human knowledge,
whereas causality simply provides useful ways of abbreviating and organizing in-
tricate patterns of probabilistic relationships. Today, my view is quite different.
I now take causal relationships to be the fundamental building blocs both of
physical reality and of human understanding of that reality, and I regard proba-
bilistic relationships as but the surface phenomena of the causal machinery that
underlies and propels our understanding of the world.”

What I discovered in these years is that causality does not mix with proba-
bility. If probabilities encode beliefs and how beliefs change with observations,
causality encodes how probabilities themselves change or, more accurately, what
aspects of a probability function remain invariant when others undergo change.

And this brings us to the story of my first encounter with causality.

I got my first hint of the dark world of causality during my junior year of high
school. My science teacher, Dr. Feuchtwanger, introduced us to the study of
logic by discussing the 19th century finding that more people died from smallpox
inoculations than from smallpox itself. Some people used this information to
argue that inoculation was harmful when, in fact, the data proved the opposite,
that inoculation was saving lives by eradicating smallpox. “And here is where
logic comes in,” concluded Dr. Feuchtwanger, “To protect us from cause-effect

1Bayesian belief networks have been criticized for “substituting mathematics for clarity”
(e.g., R. E. Barlow, in [4], page 117). In my judgment, it was precisely this conversion of
networks and diagrams to mathematically defined objects that led to their current acceptance
in practical reasoning systems.



fallacies of this sort.” We were all enchanted by the marvels of logic, even
though Dr. Feuchtwanger never actually showed us how logic protects us from
such fallacies.

It doesn’t, I realized in the early 1990’s, as I began to seriously examine the
relations between causation, logic and probability. Neither logic, nor any branch
of mathematics had developed adequate tools for managing problems, such as
the smallpox inoculations, involving cause-effect relationships. Even an innocent
sentence such as “the rooster crow does not cause the sun to rise” could not
be written in any mathematical notation, let alone processed by mathematical
methods. Most of my colleagues considered causal vocabulary to be dangerous,
avoidable, ill-defined, and nonscientific. “Causality is endless controversy,” one
of them warned. The accepted style in scientific papers was to write “A implies
B” even if one really meant “A causes B,” or to state “A is related to B” if one
was thinking “A affects B.”

Clearly, such denial of causal thought could not last forever. The influence of
artificial intelligence gave my generation the expectation that intuition should
be expressed, not suppressed. And causality, it turns out, is not nearly as nasty
as her reputation suggests. Once I got past a few mental blocs, and began
formalizing the obvious, I found causality to be smiling with clarity, bursting
with new ideas and new possibilities. As the epilogue of my boo summarizes:

“Causality is not mystical or metaphysical. It can be understood
in terms of simple processes, and it can be expressed in a friendly
mathematical language, ready for computer analysis.”

This sweeping statement evoked obvious criticism in some traditional
statistically-minded circles, but the findings that have ensued gave comfort to
many new audiences: students of statistics who wondered (many still do) why
instructors are reluctant to discuss causality in class; students of epidemiology
who wondered (some still do) why simple concepts such as “confounding” are so
terribly complex when expressed mathematically; students of economics and so-
cial science who demand to now the meaning of the parameters they are asked to
estimate; and, naturally, students of artificial intelligence and cognitive science,
who write programs and theories for knowledge discovery, causal explanations
and causal speech.

I thin students of AI should draw inspiration from the that the mathemati-
zation of causal reasoning, which has affected and enlightened so many scientific
disciplines, emanated from a naive, simple minded AI paradigm: whatever peo-
ple do well machine can do as well, if only we listen carefully and formulate
what we hear.
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