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Abstract

The subject of this paper is the elucidation of ef-
fects of actions from causal assumptions repre-
sented as a directed graph, and statistical knowl-
edge given as a probability distribution. In partic-
ular, we are interested in predicting conditional
distributions resulting from performing an action
on a set of variables and, subsequently, taking
measurements of another set. We provide a nec-
essary and sufficient graphical condition for the
cases where such distributions can be uniquely
computed from the available information, as well
as an algorithm which performs this computa-
tion whenever the condition holds. Furthermore,
we use our results to prove completeness of do-
calculus [Pearl, 1995] for the same identification
problem.

Introduction

This paper deals with computing effects of actions in do-
mains represented as causal diagrams, or graphs with di-
rected and bidirected arcs. Such diagrams contain vertices
corresponding to variables of interest, directed arcs repre-
senting potential direct causal relationships, and bidirected
arcs which are spurious correlations or ’hidden common
causes’ [Pearl, 1995], [Pearl, 2000]. Aside from this kind
of causal knowledge represented by the graph, we also have
statistical knowledge about the variables in the model, rep-
resented by a joint probability distribution P .

An action on a set of variables X consists of forcing the
variables to particular values x regardless of the value X
would have otherwise attained. This action, denoted by
do(x) in [Pearl, 2000], transforms the original distribution
P into an interventional distribution denoted by Px. We
quantify the effect of the action do(x) on the set Y by con-
sidering Px(Y). In this paper, we also consider conditional
effects of the form Px(Y|z), which correspond to the ef-

fect of do(x) on Y in the situation where it is known that z
holds.

The problem of causal effect identifiability consists
of finding graphs in which effects represented by Px(y)
or Px(y|z) can be uniquely determined from the original
distribution P . It is well known that in causal diagrams
with no bidirected arcs, corresponding to Markovian mod-
els, all effects are identifiable [Pearl, 2000]. The situation is
more complicated in causal diagrams containing bidirected
arcs, and the corresponding models which are called semi-
Markovian. Consider the graphs in Fig. 1. Here Px(y) is
not identifiable in G in Fig. 1 (a), but identifiable in G′ in
Fig. 1 (b).

Conditioning can both help and hinder identifiability. In the
graph G, conditioning on Z renders Y independent of X ,
making the conditional effect Px(y|z) equal to P (y|z). On
the other hand, in G′, conditioning on Z makes X and Y
dependent, resulting in Px(y|z) becoming non-identifiable.

Over ten years of work have yielded multiple sufficient
conditions for identifiability in the semi-Markovian case
[Spirtes, Glymour, & Scheines, 1993], [Pearl & Robins,
1995], [Pearl, 1995], [Kuroki & Miyakawa, 1999]. An
overview of this work can be found in [Pearl, 2000]. Gen-
erally, sufficiency results for this problem rely on the fact
that certain indepencence properties of P are reflected in
the graphical properties of the corresponding causal di-
agram. As such, sufficient conditions for identifiability
are phrased as conditions on the graph. For example, it
is known that whenever a set Z of non-descendants of
X blocks certain paths in the graph from X to Y, then
Px(Y) =

∑
z P (Y|z, x)P (z) [Pearl, 2000].

[Pearl, 1995] provided 3 rules of do-calculus, which sys-
tematically use properties of the graph to manipulate in-
terventional distribution expressions. These manipulations
can be applied until the effect is reduced to something com-
putable from P . Similarly, [Halpern, 2000] constructed a
system of axioms and sound inference rules which phrase
the identification problem as one of theorem proving. The
axiom set was then shown to be complete. The previous two
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Figure 1: (a) Graph G. (b) Graph G′. (c) Graph G′′.

results have the disadvantage of requiring the user to come
up with a proof strategy to prove identifiability in any given
case, rather than giving a closed form algorithm.

A number of necessity results has recently been derived as
well. One such result [Tian & Pearl, 2002] states that Px

is identifiable if and only if there is no path consisting en-
tirely of bidirected arcs from X to a child of X . Further-
more, a paper currently in review [Shpitser & Pearl, 2006]
constructed a complete algorithm for identifying Px(y),
and showed do-calculus and a version of Tian’s algorithm
[Tian, 2002] is complete for the same identification prob-
lem. The last result is also shown in [Huang & Valtorta,
2006], also in review. A general algorithm for identifying
Px(y|z) has been proposed in [Tian, 2004]. Unfortunately,
as we will show later, the algorithm has its limitations.

In this paper, we use the above necessity results to solve the
problem of identifying conditional distributions Px(y|z).
We show a way to reduce this problem to identifying
unconditional distributions of the form Px′(y′), for which
complete criteria and algorithms are already known. We
then use this reduction to give a complete graphical crite-
rion for identification of conditional effects, and a complete
algorithm which returns an expression for such an effect in
terms of P whenever the criterion holds. We use our re-
sults to prove completeness of do-calculus [Pearl, 1995] for
identifying conditional effects.

Notation and Definitions

In this section we reproduce the technical definitions
needed for the rest of the paper, and introduce common
non-identifying graph structures. We will denote variables
by capital letters, and their values by small letters. Simi-
larly, sets of variables will be denoted by bold capital let-
ters, and sets of values by bold small letters or the function
v(.) on the variable set. We will use some graph-theoretic
abbreviations: Pa(Y)G, An(Y)G, and De(Y)G will denote
the set of (observable) parents, ancestors, and descendants
of the node set Y in G, respectively. We will omit the graph
subscript if the graph in question is assumed or obvious. We
will denote the set {X ∈ G|De(X)G = ∅} as the root set
of G. Finally, following [Pearl, 2000], we will denote Gxy

to be an edge subgraph of G where all in coming arrows
into X and all outgoing arrows from Y are deleted.

Having fixed our notation, we can proceed to formalize
the notions discussed in the previous section. A probabilis-
tic causal model (PCM) is a tuple M = 〈U, V, F, P (U)〉,
where V is a set of observable variables, U is a set of unob-
servable variables distributed according to P (U), and F is a
set of functions. Each variable V ∈ V has a corresponding
function fV ∈ F that determines the value of V in terms of
other variables in V and U. The distribution on V induced
by P (U) and F will be denoted P (V).

Sometimes it is assumed P (V) is a positive distribution.
In this paper we do not make this assumption. Thus, we
must make sure that for every distribution P (W|Z) that we
consider, P (Z) is positive. This can be achieved by mak-
ing sure to sum over events with positive probability only,
and by only considering observations with positive proba-
bility. Furthermore, for any action do(x) that we consider,
it must be the case that P (x|Pa(X)G \ X) > 0 otherwise
the distribution Px(V) is not well defined [Pearl, 2000]. Fi-
nally, because Px(y|z) = Px(y, z)/Px(z), we must make
sure that Px(z) > 0.

The induced graph G of a causal model M contains a node
for every element in V, a directed edge between nodes X
and Y if fY possibly uses the values of X directly to deter-
mine the value of Y , and a bidirected edge between nodes
X and Y if fX and fY both possibly use the value of some
variable in U to determine their respective values. In this
paper we consider recursive causal models, those models
which induce acyclic graphs.

In any causal model there is a relationship between
its induced graph G and P , where P (x1, ..., xn) =∏

i P (xi|v(Pa∗(Xi)G)), and Pa∗(.)G also includes unob-
servable parents [Pearl, 2000]. Whenever this relationship
holds, we say that G is an I-map (independence map) of
P . The I-map relationship allows us to link independence
properties of P to G by using the following well-known
notion of path separation [Pearl, 1988].

Definition 1 (d-separation) A path p in G is said to be d-
separated by a set Z if and only if either

1 p contains a chain I →M → J or fork I ←M → J ,
such that M 6∈ Z, or

2 p contains an inverted fork I → M ← J such that
De(M)G ∩ Z = ∅.

Two sets X, Y are said to be d-separated given Z in G if all
paths from X to Y in G are d-separated by Z. The following
well-known theorem links d-separation of vertex sets in an
I-map G with the independence of corresponding variable
sets in P .

Theorem 1 If sets X and Y are d-separated by Z in G, then
X ⊥⊥ Y|Z in every P for which G is an I-map.



A path that is not d-separated is said to be d− connected.
A d-connected path starting from a node X with an arrow
pointing to X is called a backdoor path from X .

In the framework of causal models, actions are modi-
fications of functional relationships. Each action do(x)
on a causal model M produces a new model Mx =
〈U, V, Fx, P (U)〉, where Fx, is obtained by replacing fX ∈
F for every X ∈ X with a new function that outputs a con-
stant value x given by do(x). Note that Mx induces G \ X.
Since subscripts are used to denote submodels, we will use
numeric superscripts to enumerate models and their associ-
ated probability distributions (e.g. M 1, P 1).

We can now define formally the notion of identifiability of
conditional effects from observational distributions.

Definition 2 (Causal Effect Identifiability) The causal
effect of an action do(x) on a set of variables Y in a given
context z such that Y, X, Z are disjoint is said to be identifi-
able from P in G if Px(Y|z) is (uniquely) computable from
P in any causal model which induces G.

Note that because Z can be empty, conditional effects gen-
eralize the more commonly used notion of effect as Px(y).
The following lemma establishes the conventional tech-
nique used to prove non-identifiability in a given G.

Lemma 1 Let X, Y, Z be sets of variables. Assume there
exist two causal models M 1 and M2 with the same induced
graph G such that P 1(V) = P 2(V), P 1(x|Pa(X)G \X) >
0, P 1

x (z) > 0, P 2
x (z) > 0, and P 1

x (Y|z) 6= P 2
x (Y|z). Then

Px(Y|z) is not identifiable in G.

Throughout the paper, we will make use of 3 rules of do-
calculus [Pearl, 1995]. These identities, derived from The-
orem 1, are known to hold for interventional distributions:

Rule 1: Px(y|z, w) = Px(y|w) if (Y ⊥⊥ Z|X, W)GX

Rule 2: Px,z(y|w) = Px(y|z, w) if (Y ⊥⊥ Z|X, W)GX,Z

Rule 3: Px,z(y|w) = Px(y|w) if (Y ⊥⊥ Z|X, W)G
X,Z∗

where Z∗ = Z \An(W)GX
.

Note that one way to restate rule 2 is to say that it holds for
a set Z whenever there are no backdoor paths from Z to Y
given the action do(x) and observations w.

Hedges and Identifiability of Unconditional
Effects

A previous paper [Shpitser & Pearl, 2006] provided a com-
plete algorithm, and a corresponding graphical condition
for identification of all effects of the form Px(y). In this sec-
tion, we will provide an overview of these results. We first

consider a set of nodes mutually interconnected by bidi-
rected arcs.

Definition 3 (C-component) Let G be a semi-Markovian
graph such that a subset of its bidirected arcs forms a span-
ning tree over all vertices in G. Then G is a C-component
(confounded component).

Any causal diagram is either a C-component, or can
be uniquely partitioned into a set C(G) of maximal C-
components. C-components are an important notion for
identifiability and were studied at length in [Tian, 2002].
The importance of this structure stems from the fact that
the interventional distribution Px factorizes according to
the set C(G \ X). This factorization allows one to decom-
pose the identification problem into a set of subproblems.
Furthermore, it is known that if C is a set of nodes forming
a C-component in G, then Pv\c(C) is identifiable in G. We
use C-components to define a graph structure which turns
out to be a key presence in all unidentifiable effects.

Definition 4 (C-forest) Let G be a semi-Markovian graph,
where Y is the root set. Then G is a Y-rooted C-forest if all
nodes in G form a C-component, and all observable nodes
have at most one child.

If two C-forests share the same root set, and only one of
them contains any nodes in X, then the resulting graph
structure witnesses the non-identifiability of certain effects
of do(x). The structure in question is called a hedge.

Definition 5 (hedge) Let X, Y be sets of variables in G. Let
F, F ′ be R-rooted C-forests such that F ∩X 6= ∅, F ′∩X =
∅, F ′ ⊆ F , and R ⊂ An(Y)Gx . Then F and F ′ form a
hedge for Px(y).

Hedges precisely characterize non-identifiability of inter-
ventional joint distributions, as the following results show.

Theorem 2 Assume there exist R-rooted C-forests F, F ′

that form a hedge for Px(y) in G. Then Px(y) is not identi-
fiable in G.

Proof: Consider the graph H = An(Y)G\X ∩ De(F )G,
and two models M1, M2 which induce H . All variables in
both models are binary. In M 1 every variable is equal to the
bit parity of its parents. In M 2 the same is true, except all
nodes in F ′ disregard the parent values in F \F ′. All U are
fair coins in both models. It has been shown in [Shpitser
& Pearl, 2006] that M1 and M2 satisfy the conditions in
Lemma 1 for Px(y). 2

Theorem 3 (hedge criterion) Px(y) is identifiable from P
in G if and only if there does not exist a hedge for Px′(y′)
in G, for any X′ ⊆ X and Y′ ⊆ Y.

The proof can be found in [Shpitser & Pearl, 2006]. When-
ever Px(y) is identifiable, we say that Px(y) does not con-



function ID(y, x, P, G)
INPUT: x,y value assignments, P a probability distribution,
G a causal diagram.
OUTPUT: Expression for Px(y) in terms of P or
FAIL(F,F’).

1 if x = ∅, return
∑

v\y P (v).

2 if V \An(Y)G 6= ∅,
return ID(y, x ∩ An(Y)G,

∑
v\An(Y)G

P, An(Y)G).

3 let W = (V \ X) \An(Y)Gx .
if W 6= ∅, return ID(y, x ∪ w, P, G).

4 if C(G \ X) = {S1, ..., Sk},
return

∑
v\(y∪x)

∏
i ID(si, v \ si, P, G).

if C(G \ X) = {S},

5 if C(G) = {G}, throw FAIL(G, S).
6 if S ∈ C(G),

return
∑

s\y

∏
Vi∈S P (vi|v(An(Vi))).

7 if (∃S′)S ⊂ S′ ∈ C(G), return ID(y, x ∩ S ′,∏
Vi∈S′ P (Vi|An(Vi)∩S′, v(An(Vi)\S′)), S′).

Figure 2: A complete identification algorithm. FAIL prop-
agates through recursive calls like an exception, and re-
turns F, F ′ which form the hedge which witnesses non-
identifiability.

tain any hedges. In such a case, the ID algorithm (pictured
in Fig. 2) computes the expression for Px(y) in terms of
P . It has also been shown in [Shpitser & Pearl, 2006] that
whenever Px(y) is not identifiable, ID returns the witness-
ing hedge, which entails the following result.

Theorem 4 ID is complete.

The previous results were also used to derive a complete-
ness result for do-calculus

Theorem 5 The rules of do-calculus, together with stan-
dard probability manipulations are complete for determin-
ing identifiability of all effects of the form Px(y).

Proof: The proof, which reduces steps of the ID algorithm
to sequences of applications of do-calculus, can be found
in [Shpitser & Pearl, 2006]. 2

Armed with a complete criterion and corresponding algo-
rithm for identifying Px(y), we tackle the conditional ver-
sion of the problem in the next section.

function IDC(y, x, z, P, G)
INPUT: x,y,z value assignments,
P a probability distribution, G a causal diagram.
OUTPUT: Expression for Px(y|z) in terms of P or
FAIL(F,F’).

1 if (∃Z ∈ Z)(Y ⊥⊥ Z|X, Z \ {Z})Gx,z ,
return IDC(y, x ∪ {z}, z \ {z}, P, G).

2 else let P’ = ID(y ∪ z, x, P, G).
return P ′/

∑
y P ′.

Figure 3: A complete identification algorithm for condi-
tional effects.

Identifiability of Conditional Interventional
Distributions

We now consider the problem of identifying distributions
of the form Px(Y|w), where X, Y, W are arbitrary disjoint
sets of variables. Our approach will be to reduce this prob-
lem to a solved case where the set W is empty. One way to
accomplish this is to use rule 2 of do-calculus to transform
conditioning on W into interventions. Recall that when-
ever rule 2 applies to a set Z ⊆ W in G for Px(y|w) then
Px(y|w) = Px,z(y|w \ z). We want to use rule 2 in the most
efficient way possible and remove as many conditioning
variables as we can. The next lemma shows an application
of rule 2 on any set does not influence future applications
of the rule on other sets elsewhere in the graph.

Lemma 2 If rule 2 of do-calculus applies to a set Z in G
for Px(y|w) then there are no d-connected paths to Y that
pass through Z in neither G1 = G \ X given Z, W nor in
G2 = G \ (X ∪ Z) given W.

Proof: Clearly, there are no d-connected paths through Z in
G2 given W. Consider a d-connected path through Z ∈ Z
to Y in G1, given Z, W. Note that this path must either
form a collider at Z or a collider which is an ancestor of Z.
But this must mean there is a backdoor path from Z to Y,
which is impossible, since rule 2 is applicable to Z in G for
Px(y|w). Contradiction. 2

The following is immediate.

Corollary 1 For any G and any conditional effect Px(y|w)
there exists a unique maximal set Z = {Z ∈ W|Px(y|w) =
Px,z(y|w \ {z})} such that rule 2 applies to Z in G for
Px(y|w).

Proof: Fix two maximal sets Z1, Z2 ⊆ W such that rule 2
applies to Z1, Z2 in G for Px(y|w). If Z1 6= Z2, fix Z ∈
Z1 \Z2. By Lemma 2, rule 2 applies for {Z}∪Z2 in G for
Px(y|w), contradicting our assumption.



Thus if we fix G and Px(y|w), any set to which rule 2 ap-
plies must be a subset of the unique maximal set Z. It fol-
lows that Z = {Z ∈W|Px(y|w) = Px,z(y|w \ {z})}. 2

This corollary states that for any Px(y|w), we can find a
unique maximal set Z ⊆W such that there are no backdoor
paths from Z to Y given the context of the effect, but there
is such a backdoor path from every W ∈W \ Z to Y.

Our goal is to transform our problem of identifying an ex-
pression of the form Px(y|z) into a problem of identifying
an expression of the form Px′(y′) which we already know
how to solve. The previous corollary helps us accomplish
this by moving some elements in Z into a set X.

However, even after a maximal number of nodes is re-
moved from behind the conditioning bar, we might still be
left with a problem involving conditional distributions. The
following key theorem helps us relate this problem to the
previously solved case.

Theorem 6 Let Z ⊆ W be the maximal set such that
Px(y|w) = Px,z(y|w \ z). Then Px(y|w) is identifiable in
G if and only if Px,z(y, w \ z) is identifiable in G.

Proof: See Appendix. 2

We can now put the results obtained so far together to con-
struct a simple algorithm for identifiability of conditional
effects, shown in Fig. 3.

Theorem 7 (soundness) IDC is sound.

Proof: The soundness of the first line follows by rule 2
of do-calculus. The second line is just a stardard condi-
tional distribution calculation, coupled with an invocation
of an algorithm known to be sound from [Shpitser & Pearl,
2006]. 2

We illustrate the operation of the algorithm by considering
the problem of identifying Px(y|z) in the graph G shown in
Fig. 1 (a). Because Y ⊥⊥ Z|X, Z in Gx,z , rule 2 applies and
we call the algorithm again with the expression Px,z(Y ).
This expression is an unconditional effect, so we call ID
as a subroutine. ID, in turn, succeeds immediately on line
6, returning the expression P (y|x, z), which we know is
equal to P (y|z) in G. Our results so far imply that IDC
will succeed on all identifiable conditional effects.

Theorem 8 (completeness) IDC is complete.

Proof: This follows from Theorem 4, Corollary 1 and The-
orem 6. 2

With a complete algorithm for conditional effects, we can
graphically characterize all cases when such effects are
identifiable. To do this, we combine Theorem 6 to reduce
our problem to one of identifying unconditional effects, and
the hedge criterion, which is a complete graphical condi-
tion for such effects.

Corollary 2 (backdoor hedge criterion) Let Z ⊆ W be
the unique maximal set such that Px(y|w) = Px,z(y|w \ z).
Then Px(y|w) is identifiable from P if and only if there does
not exist a hedge for Px′(y′), for any Y′ ⊆ (Y ∪ W) \ Z,
X′ ⊆ X ∪ Z.

Proof: This follows from the hedge criterion and Theorem
6. 2

The name ’backdoor hedge’ comes from the fact that both
backdoor paths and hedge structures are key for identifia-
bility of conditional effects. In particular, Px(y|w) is iden-
tifiable if and only if Px,z(y, w \ z) does not contain any
hedges and every W ∈W \Z has a backdoor path to some
Y ∈ Y in the context of the effect.

Connections to Existing Algorithms

In this section, we explore the connection of our results
to existing identification algorithms for conditional effects.
One existing approach to identifying Px(y|w) consists of
repeatedly using probability manipulations and 3 rules of
do-calculus until the resulting expression does not involve
any interventional distributions. Our results imply that any
identifiable conditional effect can be identified in this way.

Theorem 9 The rules of do-calculus, together with stan-
dard probability manipulations are complete for determin-
ing all effects of the form Px(y|z).

Proof: The IDC algorithm consists of two stages, the
first corresponds to repeated applications of rule 2 of do-
calculus, and the second to identifying the effect of the
form Px(y). The result follows by Theorem 5. 2

We next consider an algorithm proposed in [Tian, 2004].
See Fig. 4. This algorithm generalizes an earlier algorithm
for unconditional effects [Tian, 2002] which was proven
complete in [Shpitser & Pearl, 2006], [Huang & Valtorta,
2006]. Unfortunately, as we now show, the version of the
algorithm for conditional effects is not sound.

Lemma 3 cond-identify is not sound.

Proof: Consider the graph G′′ in Fig. 1 (c). We will
consider conditional effects Px(y|z) and Px(w|z) in this
graph. Note that by the backdoor hedge criterion, nei-
ther effect is identifiable in G′′. Indeed, if Px(y|z) is not
identifiable, then Px(w|z) =

∑
y Px(y|z)Px(w|y, z) =∑

y Px(y|z)P (w|y) is certainly not identifiable.

We now trace through the execution of cond-identify
for both of these effects. First, consider Px(y|z). Then
F = {W}, C(G) = {{X, Z}, {Y }{W}}, C(D) =
{{Z}, {Y }, {W}}, D = {Y, Z, W}. Identification of
Q[{Y }] and Q[{W}] now trivially succeeds, while iden-
tification of Q[{Z}] from Q[{Z, X}] fails. Thus, I = I1 =



function c-identify(C, T, Q[T])
INPUT: C ⊆ T , both are C-components, Q[T ] a probabil-
ity distribution
OUTPUT: Expression for Q[C] in terms of Q[T ] or FAIL

Let A = An(C)GT
.

1 if A = C, return
∑

T\C P

2 if A = T , return FAIL

3 if C ⊂ A ⊂ T , there exists a C-component T ′ such
that C ⊂ T ′ ⊂ A.
return c-identify(C, T ′, Q[T ′])
(Q[T ′] is known to be computable from

∑
T\A Q[T ])

function cond-identify(y, x, z, P, G)
INPUT: x,y,z value assignments,
P a probability distribution, G a causal diagram.
OUTPUT: Expression for Px(y|z) in terms of P or FAIL.

1 Let D = An(Y ∪ Z)GX , F = D \ (Y ∪ Z),
N = I = I1 = ∅.

2 Assume C(D) = {D1, ..., Dk},
C(G) = {C1, ..., Cm}.

3 for each Di,

let CDi
∈ C(G), s.t. Di ⊆ CDi

.
if c-identify(Di, CDi

, Q[CDi
]) = FAIL,

N := N ∪ {Di}

else
I := I ∪ {DI}.

4 if N = ∅, return
P

f

Q

i
Q[Di]

P

y,f

Q

i
Q[Di]

.

5 let F0 = F ∩(
⋃

Di∈N Pa(Di)), F1 = F \F0, I1 = I .

6 for each Di ∈ I1,

if Pa(Di) ∩ F0 6= ∅,
I0 := I0 ∪ {Di}

I1 := I1 \ {Di}

7 let B = F1 ∩
⋃

Di∈I0
Pa(Di).

if B 6= ∅,
F0 := F0 ∪ (B ∩ F1)

F1 := F1 \B

goto step 6

8 if Y ∩ (
⋃

Di∈(N∪I0)
Pa(Di)) = ∅

return
P

f1

Q

Di∈I1
Q[Di]

P

y,f1

Q

Di∈I1
Q[Di]

.

else return FAIL.

Figure 4: An identification algorithm from [Tian, 2004]

{{Y }, {W}}, N = {{Z}}, F0 = ∅, F1 = F . Because
F0 is empty, lines 6 and 7 do nothing. Finally, on line 8,
because Y ∈ Pa(Z), the algorithm returns FAIL.

Now consider the effect Px(w|z). In this case,
F = {Y }, C(G) = {{X, Z}, {Y }{W}}, C(D) =
{{Z}, {Y }, {W}}, D = {Y, Z, W}. As before, iden-
tification of Q[{Y }] and Q[{W}] succeeds, while
identification of Q[{Z}] from Q[{Z, X}] fails. Therefore,
I = I1 = {{Y }, {W}}, N = {{Z}}, F0 = F, F1 = {}.
Because {Y } is not a parent of any identifiable C-
component, line 6 does nothing. Because F1 is empty,
line 7 does nothing. However, {W} ∩ {Y } = ∅, so the
algorithm succeeds. This implies the result. 2

Conclusions

We have presented a complete graphical criterion for
identification of conditional interventional distributions in
semi-Markovian causal models. We used this criterion to
construct a sound and complete identification algorithm for
such distributions, and prove completeness of a do-calculus
for the same identification problem.

This work closes long standing questions about identifi-
ability of interventional distributions, but much more re-
mains to be done. Certain kinds of causal effects or coun-
terfactual statements of interest cannot be expressed as an
interventional distribution. For instance, certain kinds of
direct and indirect effects [Pearl, 2001], and path-specific
effects are represented instead as a probability of a for-
mula in a certain modal logic [Avin, Shpitser, & Pearl,
2005]. Questions about identifiability of such effects in
semi-Markovian models are an open problem for future
work.
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Appendix

We first prove two utility lemmas.

Lemma 4 Let M be a causal model. Assume P (y) > 0.
Then for any X disjoint from Y, there exists x such that
Px(y) > 0.

Proof: Let U be the set of unobservable variables in M . We
know that P (y) =

∑
Y(u)=y P (u). Fix u such that Y(u) =

y. We know such a u exists because P (y) > 0. We also
know u renders M deterministic. Let x be the value X(u)
assumes. Our conclusion now follows. 2

Lemma 5 Let F, F ′ form a hedge for Px(y). Then F ⊆
F ′ ∪ X.

Proof: It has been shown that ID fails on Px(y) in G and re-
turns a hedge if and only if Px(y) is not identifiable in G. In
particular, edge subgraphs of the graphs G and S returned
by line 5 of ID form the C-forests of the hedge in question.
It is easy to check that a subset of X and S partition G. 2

Next, we rephrase the statement of the theorem slightly to
reduce ’algebraic clutter.’

Theorem 6 Let Px(y|w) be such that every W ∈ W
has a backdoor path to Y in G \ X given W \ {W}. Then

Y’

Y

H

(a)

W W’

Y’

H

(b)

W W’

Y

p
p

X X

Figure 5: Inductive cases for proving non-identifiability of
Px(y|w, w′).

Px(y|w) is identifiable in G if and only if Px(y, w) is
identifiable in G.

Proof: If Px(y, w) is identifiable in G, then we can
certainly identify Px(y|w) by marginalization and divi-
sion. The difficult part is to prove that if Px(y, w) is not
identifiable then neither is Px(y|w).

Assume Px(w) is identifiable. Then if Px(y|w) were identi-
fiable, we would be able to compute Px(y, w) by the chain
rule. Thus our conclusion follows.

Assume Px(w) is not identifiable. We also know that every
W ∈W contains a backdoor path to some Y ∈ Y in G \X
given W \ {W}. Fix such W and Y , along with a subgraph
p of G which forms the witnessing backdoor path. Consider
also the hedge F, F ′ which witnesses the non-identifiability
of Px′(w′), where X′ ⊆ X, W′ ⊆W.

Let H = De(F ) ∪ An(W′)G
x′

. We will attempt to show
that Px′(Y |w) is not identifiable in H ∪ p. Without loss of
generality, we make the following three assumptions. First,
we restrict our attention to W′′ ⊆ W that occurs in H ∪ p.
Second, we assume p is a path segment which starts at H
and ends at Y , and does not intersect H . Third, we assume
all observable nodes in H have at most one child.

Consider the models M1, M2 from the proof of Theorem 2
which induce H . We extend the models by adding to them
binary variables in p. Each variable X ∈ p is equal to the
bit parity of its parents, if it has any. If not, X behaves as a
fair coin. If Y ∈ H has a parent X ∈ p, the value of X is
added to the bit parity computation Y makes.

Call the resulting models M 1
∗ , M2

∗ . Because M1, M2

agreed on P (H), and variables and functions in p are the
same in both models, P 1

∗ = P 2
∗ . It has already been shown

that P 1(x|Pa(X)G \ X) > 0, which implies the same is
true for P 1

∗ . We will assume w′′ assigns 0 to every variable
in W′′. Note that in M1

∗ , w′′ is equal to the bit parity of all
the U nodes in H and all parentless nodes in p. Similarly, in
M2

∗ w′′ is equal to the bit parity of all the U nodes in F ′ and
all parentless nodes in p. It’s easy to see that P 1

∗ (w′′) > 0
and P 2

∗ (w′′) > 0. Now by Lemma 4, P 1
∗x(w

′′) > 0 and
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Figure 6: Inductive cases for proving non-identifiability of
Px(y|w, w′).
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Figure 7: Base cases for proving non-identifiability of
Px(y|w, w′).

P 2
∗x(w

′′) > 0.

What remains to be shown is that P 1
∗x(y|w

′′) 6= P 2
∗x(y|w

′′).
We will prove this by induction on the path structure of p.
We handle the inductive cases first. In all these cases, we
fix a node Y ′ that is between Y and H on the path p, and
prove that if Px′(y

′|w′′) is not identifiable, then neither is
Px′(y|w′′).

Assume neither Y nor Y ′ have descendants in W′′. If
Y ′ is a parent of Y as in Fig. 5 (a), then Px′(y|w′′) =∑

y′ P (y|y′)Px′(y
′|w′′). If Y is a parent of Y ′, as in Fig.

5 (b) then the next node in p must be a child of Y ′. There-
fore, Px′(y|w′′) =

∑
y′ P (y|y′)Px′(y

′|w′′). In either case,
by construction P (Y |Y ′) is a 2 by 2 identity matrix. This
implies that the mapping from Px′(y

′|w′′) to Px′(y|w′′) is
one to one. If Y ′ and Y share a hidden common parent U
as in Fig. 6 (b), then our result follows by combining the
previous two cases.

The next case is if Y and Y have a common child C which
is either in W′′ or has a descendant in W′′, as in Fig. 6 (a).
Now Px′(y|w′′) =

∑
y′ P (y|y′, c)Px′(y′|w′′). Because all

nodes in W′′ were observed to be 0, P (y|y′, c) is again a 2
by 2 identity matrix.

Finally, we handle the base cases of our induction. In all
such cases, Y is the first node not in H on the path p. Let
Y ′ be the last node in H on the path p.

Assume Y is a parent of Y ′, as shown in Fig. 7 (a). By
Lemma 5, we can assume Y 6∈ An(F \ F ′)H . By con-
struction, (

∑
W′′ = Y + 2 ∗

∑
U) (mod 2) in M1

∗ , and
(
∑

W′′ = Y + 2 ∗
∑

(U ∩ F ′)) (mod 2) in M2
∗ . If every

variable in W′′ is observed to be 0, then Y = (2 ∗
∑

U)
(mod 2) in M1

∗ , and Y = (2 ∗
∑

(U ∩ F ′)) (mod 2)
in M2

∗ . If an intervention do(x) is performed, (
∑

W′′ =
Y +2∗

∑
(U∩F ′)) (mod 2) in M2

∗x, by construction. Thus
if W′′ are all observed to be zero, Y = 0 with probability
1. It was shown in [Shpitser & Pearl, 2006] that in M1

x ,
(
∑

w′′ = x +
∑

U′) (mod 2), where U′ ⊆ U consists
of unobservable nodes with one child in An(X)F and one
child in F \An(X)F . Because Y 6∈ An(F \ F ′)H , we can
conclude that if W′′ are observed to be 0, Y = (x +

∑
U′)

(mod 2) in M1
∗x′ . Thus, Y = 0 with probability less than

1. Therefore, P 1
∗x′(y|w

′′) 6= P 2
∗x′(y|w′′) in this case.

Assume Y is a child of Y ′. Now consider a graph G′ which
is obtained from H ∪ p by removing the (unique) outgoing
arrow from Y ′ in H . If Px′(Y |w′′) is not identifiable in G′,
we are done. Assume Px′(Y |w′′) is identifiable in G′. If
Y ′ ∈ F , and R is the root set of F , then removing the Y ′-
outgoing directed arrow from F results in a new C-forest,
with a root set R ∪ {Y ′}. Because Y is a child of Y ′, the
new C-forests form a hedge for Px′(y, w′′). If Y ′ ∈ H \
F , then removing the Y ′-outgoing directed arrow results
in substituting Y for W ∈ W′′ ∩ De(Y ′)H . Thus in G′,
F, F ′ form a hedge for Px′(y, w′′ \ {w}). In either case,
Px′(y, w′′) is not identifiable in G′.

If Px′(w′′) is identifiable in G′, we are done. If not, con-
sider a smaller hedge H ′ ⊂ H witnessing this fact. Now
consider the segment p′ of p between Y and H ′. We can
repeat the inductive argument for H ′, p′ and Y . See Fig. 7
(b).

If Y and Y ′ have a hidden common parent, as is the case in
Fig. 7 (c), we can combine the first inductive case, and the
first base case to prove our result.

This completes the proof. 2




