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Abstract

We examine the thesis that the major forces shaping
bounded rationality stem from the requirement of lo-
cal computation, namely, from the need to consider
only a few data items at any inference step and the
need to avoid both the search for these items as well
as the decision where to store intermediate results.
We explore how this requirement constraing the kind
of representations we can handle and the kind of
inferences we can make, Additionally, we propose a
paradigm whereby the requirement of locality, by
virtue of inducing a modular perception of reality,
can be used to extract approximate inference stra-
tegies that are both computationally attractive and ra-
tionally defensible.

Rationality and Its Origin

We take the position that rationality stands for a set of
principles that a calture accepts as means for justifying ac-
tions and beliefs, these principles being plausible generali-
zation of concrete familiar experiences. A generalization
is plausible if it is not readily violated by some concrete
familiar experience.

EXAMPLE 1: Modus Ponen in logic.

a) Familiar experience; I believe that whenever it
rains the ground is wet. It rains today, and I con-
clude that the ground is wet today.

b) Generalization: for any two propositions A and B

A=B
A is True

B is True
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c) Test for plausibility: I am unable to recall any ex-
perience where the first two sentences are strong-
ly believed and the third is doubted.

The process of scanning our experiences to test
the plausibililty of a gencralization is often fallible, be-
cause it is laden with hidden assumptions tending to limit
the scope of experiences within which we search for viola-
tion.

EXAMPLE 2: Polya’s pattern of induction (Polya 1954).

a) Familiar experience: I believe that whenever it
rains the ground is wet, I notice that the ground is
wet, and I feel that the conjecture "It rained last
night" becomes more credible.

b) Generalization: For any two propositions A and
B:

A=B
B becomes True

A becomes more credible

c) Test for plausibility: It is hard to generate coun-
terexamples; even Polya believed the universality
of this pattern as long as it only concems the
direction, not the degree of the change in credibil-
ity. The hidden assumption made in this case is
that B is the only new fact learned (similar to the
close- world assumption). This assumption (or
convention) causes us to miss the following type
of violating experience: Initially, we have some
inconclusive evidence that the ground is wet, then
the truth of "The ground is wet"” is firmly esta-
blished (by prediction) from a new fact "The
sprinkler is on”. In this case, B becomes true and
A becomes less credible, in violation of the in-
ductive pattern.
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EXAMPLE 3: Transitivity of Preferences

a) Familiar experience: Yesterday I preferred coffee
to tea, tea to milk, and coffee to milk.

b) Plausible generalization: Whenever I am offered
three items A, B and C,if I prefer A to B and B
to C, then I would also prefer A to C.

b") Further generalization: Whenever [ am facing a
choice between three situations A, B and C, if 1
prefer A to B and B to C, I would also prefer A
to C.

) Test for plausibility: It is generally hard to ima-
gine experiences that violate transitivity, but such
experiences nevertheless can be reconstructed.
Examples are choices among lotteries that were
contrived by experimental psychologists to
specifically prove this point.

Limits to Rationality

Any set of generalizations that pass the plausibility cri-
terion can be assembled as axioms and proclaimed a nor-
mative criterion for rational behavior. Normally, the select
set also enjoys the features of consistency, compaciness
(non-redundancy) and power, in the sense that it captures a
wide spectrum of reasoning patterns. Examples are the ax-
ioms of fogic, of probability theory, of utility theory of
relevance theory etc.

Once we accept such a normative criterion, it can
further be used to generate, not merely justify, choice
behavior. In their new role as an inference mechanism, the
normative axioms lead to both epistemological and com-
putational difficulties.

Epistemologically, the axioms are now in a posi-
tion to expose the empirical exceptions that were ignored
while the plausibility of the individual axioms was tested
and accepted. For example, accepting Polya’s inductive
pattern as a syllogistic rule of inference would quickly re-
veal counter intuitive conclusions such as a systematic in-
crease in the credibility of "Rain" as soon as one discovers
the truth of "The sprinkler is on".

Computationally, two difficulties arise. First, the
rationality axioms in themselves are normally too weak to
generate intersting inferences, and the information re-
quired to unleash such inferences is often too voluminous.
For example, in probabilistic reasoning, too many combi-
nations of events need be considered and assessed before a

complete probabilistic model is specified and reasoning
can commence. In symbolic nonmonotonic reasoning, too
many exceptions and ¢xceptions 10 exceptions need to be
enumerated before commonsensical conclusions can be
derived. Had the axioms been used simply as guardians
against gross violations of some normative principles, we
could just fill the gaps with any arbitrary set of assump-
tions (or parameters, or exceptions) and still be protected
from gross violations. However, as generators of rational
behavior, the added assumptions must now reflect real-life
experience, and assembling such a body of knowledge, in
a format acceptable to the inference mechanism, requires
an enormous labor and storage.

Second, even if we obtain the information re-
quired by the rationality axioms, the process of drawing
rational conclusions is, in general, intractable. For exam-
ple, even if we obtain all the probabilities necessary for
constructing a probabilistic model of some phenomenon,
the task of computing P(xly) is in most practical cases
NP-hard. Simple decisions in the propositional logic are,
likewise, NP-complete.

In addition to the usual limitations on resources
such as time and memory, we now wish to focus on locali-
ty as another constraint that makes rational behavior limit-
ed. While it might be possible to relate (or reduce) locality
to more basic computational restrictions, it nevertheless
deserves consideration as an independent fundamental
force that shapes human rationality.

Locality as an Architectural Constraint

All realistic models of human reasoning invoke the notion
of locality in one form or another. For example, spreading
activation in conceptual memories is grounded in the no-
tion that activity spreads locally, among conceptually
neighboring entities, but does not leap across neighbors to-
ward some designated address. Communication takes
place only along the pathways laid down through the ini-
tial organization of knowledge. Firmly embodied in the
notion of locality is also that of autonomy, i.e., the absence
of central supervision or control. We normally envision lo-
cal processing steps to be triggered either by local events
(i.e., a significant change in neighbors’ activity) or totally
at random -- timing information is not critical.

Whereas the principle of locality is a biological
necessity in low level reasoning tasks such as perception,
it also seems to dominate high level reasoning. Here the
picture of parallel processors working autonomously and
distributedly is only a useful metaphor, still it carrics
several advantages: There are only few data items partici-



pating in each inference step, and these items bear mean-
ingful conceptual relationships to one another. Partial
results are stored exactly where they will be useful. Com-
putational steps can be performed in any order, and there
is no need to remember which part of the knowledge has
been processed and which part has not. (Note that many
of these features are satisfied by the paradigm of logical
deduction, for example, order invariance. However, in log-
ical deduction partial results are stored in an unstructured
database, thus rendering it difficult to identify those data
items that are relevant to the next inference task).

Locality as a Principle for
Bounding Rationality

Granted that we wish to conform to the architectural con-
straints imposed by locality, the question remains, what are
the local procedures that we should adopt in our inference
systems, knowing that the final outcome is bound to be
merely an approximation to the inference that should be
produced, were it not limited by locality considerations,

One way of going about choosing these pro-
cedures is, again, t0 consult our intuition and ask what are
the basic inferential steps that seem (o make up our every-
day reasoning process. Once we assemble a reasonable
collection of such procedures, they can be incorporated in
software systems and used effectively for both inferencing
and explanations. Indeed, this has been the predominant
practice in most work in Al, especially in the area of ex-
pert systems. The Mycin experiment (Shortliffe, 1976) is
a typical example of such practice. Adhering to the local
policy of attributing 10 each consequent (of a knowledge
rule) a degree of certainty that is function of the uncer-
tainties of antecedents and the uncertainty tagging the rule
itself, the combining functions were originally selected to
match familiar experiences in medical diagnosis. They
were later tuned to produce as reasonable results as possi-
ble, subject to the prevailing strategy of considering each
rufe in isolation. This strategy (often called rule-based,
syntactical, extensional, truth-functional or componential)
also governs the calculus of fuzzy logic, and in fact every
commercially available uncertainty management system in
existence. Similar strategies have also been guiding works
in the area of truth maintenance systems (sacrificing com-
pleteness for locality} and inheritance networks (generaliz-
ing from resolving local conflicts among defaults to resolv-
ing global conflicts among arguments).

There is a more disciplined strategy of generating
and positing rational local approximations to a given
domain of problems. Rather than attempting to find a solu-
tion that approximates the entire domain, we adopt an ex-

act solution to a simplified model of the domain. In other
words, we can reason backward and ask what idealized
models of reality lend themselves to exact solution, given
the architectural constraints we wish to satisfy. If we find
such a2 model, we then identify the computational pro-
cedures that make up an exact solution to that model, and
posit them as the basic building blocks of rational (albeit
approximate) reasoning. The advantage of following this
strategy are that the procedures so discovered are
guaranteed to be consistent, that they are known to pro-
duce exact results on at least a subset of problem domains,
and that it is possibie to determine in advance when the en-
vironment lies outside their range of applicability.

Retumning to the Mycin example, we can ask what
models of reality are solved coherently by the local, rule-
based computations proposed by the Mycin architecture.
The answer, phrased in probabilistic terms , is that the
dependencies among the variables in any such reality must
form a tree structure. Additionally, the updating functions
in any such reality must form an ordered Abelian group,
i.e., any monotone transformation on the likelihood ratio
update (Hajek 1985, Heckerman 1986). Consequently,
we conclude that the appropriate updating procedure to
adopt is any monotone variant of the message passing
technique developed for Bayesian trees (Pearl 1982,
1986).

We can go further and ask: Suppose we permit
belief updating functions to have a slightly broader scope
than those of Mycin; for example, suppose we admit com-
bining functions that consider not only the rules that con-
verge onto a given hypothesis but also those that diverge
from the hypothesis. The answer in this case is that the
dependencies in the domain must conform to a polytree
structure (i.e., directed, singly connected networks) (Pearl
1986, 1988). Again, this structure dictates the precise na-
ture of the updating functions which, unlike those of My-
cin, provide a coherent account of bi-directional inferences
(i.e., from evidence to hypothesis and from hypothesis to
expectations). Thus, the propagation rules that emerge
reflect richer patterns of qualitative reasoning and can be
used to better approximate complex situations, where nei-
ther the assumption of tree dependence nor that of polytree
dependence are valid,

The process of successive approximation can be
continued in a similar manner, where at cach step we
widen the scope of the updating function. For example,
we can add into consideration all rules that emanate from
the antecedents of a given rule, all those that emanate from
their consequents, and so on... In cach levet of locality, we



obtain precise prescription of what the updating functions
ought to be, and these functions, we conjecture, embody
richer and richer structure of qualitative arguments that
can be used to support reasoning and explanations,

This process of successively incrementing the
scope of local operations resembles the practice of enforc-
ing wider and wider levels of local consistency in Con-
straint Satisfaction Problems (so called X -consistency
{(Freuder 1982, Dechter 1987)). In truth maintenance sys-
tems it is embodied in the practice of applying hyperreso-
lution with higher and higher arity (De Kleer 1989). How-
ever, whereas in these latter two applications, it is fairly
obvious what the local operations should be at any given
level of locality, the same is not true for reasoning under
uncertainty -- additional analysis is needed to determine
the precise nature of these operations.
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