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ABSTRACT

The apparent failure of individual probabilistic expressions to distinguish between
uncertainty and ignorance, and between certainty and confidence, have swayed
researchers to seek alternative formalisms, where confidence measures are provided
explicit notation. This paper summarizes how a causal networks formulation of
probabilities facilitates the representation of confidence measures as an integral part
of a knowledge system that does not require the use of higher order probabilities.
We also examine whether Dempster-Shafer intervals represent confidence about
probabilities.
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INTRODUCTION

People make a distinction between sure and unsure probabilistic judgments.
For example, everyone would agree that a typical coin has a 50% chance of
turning up heads, while most people would hesitate to assign a definite
probability to a coin produced in a gambler’s basement. For that reason we
sometimes feel more comfortable assigning a range rather than a point estimate
of uncertainty, thus expressing our ignorance, doubt, or lack of confidence in the
judgment required. We may say, for example, that the probability of the coin
turning up heads lies somewhere between 60% and 40 % , having no idea whether
or how the coin was biased.

The apparent failure of individual probabilistic expressions to distinguish
between uncertainty and ignorance, certainty and confidence, have swayed
researchers to seek alternative formalisms, where confidence measures are
provided explicit notation (Shafer [1]). In a recent paper (Pearl [2]), I have
attempted to demonstrate how the causal networks formulation of probabilities
facilitates the representation of confidence measures as an integral part of one’s
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knowledge system, requiring no specialized notation or the use of higher-order
probabilities (Kyburg, this volume).

In this note I will summarize my earlier argument (Pearl [2]) and then
examine whether probability intervals in the Dempster-Shafer (D-S) formalism
represent two components of confidence measures: insecurity due to uncertain
contengencies and ignorance for lack of a complete model. My conclusion is that
they do not. Although the presence of a nonzero D-S interval is sufficient to
indicate some incompleteness in the probability model, the narrowing of the
interval or even its disappearance does not indicate removal of ignorance or
increased confidence in the model.

ON INSECURITY DUE TO UNCERTAIN CONTINGENCIES

The starting point is a claim that probabilistic statements such as P(A) = p
are in themselves empirical events of no less stature than other sentences
reporting empirical observations. While not referring to an event open to full
public scrutiny, these statements do, nevertheless, report outcomes of genuine
experiments, namely, the mental procedures involved in assessing the belief of a
given proposition A. Thus, stating ‘‘event A has a chance p of occurring”’ is
equivalent to stating ‘‘the mental event of computing the likelihood of A has
produced the outcome p.”’

Having endowed probabilistic statements with event status neutralizes the
syntactic objection against writing sentences such as P[P(A) = p]. Both the
square brackets and parentheses enclose arguments of the same type—empirical
events. True, the latter event is external, while the former is personal. However,
this distinction is not a barrier to useful semantics; the adoption of a
computational model of knowledge representation (e.g., semantic networks,
causal models) permits us to specify the mental procedures involved in belief
assessments with the same clarity and precision with which we specify
experimental procedures in a laboratory setting. What remains to be done is,
first, to explain what renders the event P(4) = p an unknown, random event,
rather than a fixed outcome of a stable procedure and, second, to explicate more
precisely the mental procedures involved in making the two assessments, P(A4)
and P[P(A) = p].

A paradigm answering the first question has been suggested by de Finetti [3]
and has been guiding the Bayesian interpretation of confidence measures for
over a decade (Spiegelhalter [4], Heckerman and Jimison [5]). The basic idea is
that the event P(A) = p is perceived to be a random variable whenever the
assessment of P(A) depends substantially on the occurrence or nonoccurrence
of some other events modeled by the system called contingencies. In the words
of de Finetti:

The information apt to modify the probability assessed for an event E—
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in so far as the observation of H; makes us change from P(E) to
P(E|H;)—can make us view the H;’s as sort of ‘‘noisy’’ signals
concerning the occurrence and non-occurrence of the event E.

Adopting this interpretation, one can show that the procedure involved in the
assessment of P[P(A) = p] is no different from that involved in the assessment
of P(A) and, moreover, that the very information used for calculating P(A) is
sufficient for calculating the confidence interval associated with the statement
P(A) = p. This is based on the observation that by specifying a causal model
for predicting the outcome A, we automatically specify the variance of that
prediction. Formally, if C is a set of contingencies affecting A, then knowing
P(A|c) and P(c) permits us to simulate the behavior of P(A |c) as C takes on
various realizations ¢ with their associated probabilities P(c). The histogram of
P(A|c) then defines the variance of P(A4).

In other words, when a person encodes probabilistic knowledge as a causal
model of interacting variables, that person automatically specifies, not merely
the marginal and joint distributions of the variables in the system, but also a set
of future scenarios, describing how these probabilities would vary in response to
future eventualities. It is this implicitly encoded dynamics that renders
probabilistic statements random events, admitting distributions, intervals and
other confidence measures. Thus, the notions of insecurity and doubt are
intrinsic and indigenous to classical probabilistic formulation; no second-order
probabilities or specialized notational machinery are required to reinstate them
where they flourish so naturally.

ON THE DEMPSTER-SHAFER INTERVALS

I have argued (Pearl [2]) that the Dempster-Shafer (D-C) interval does not
represent the degree of insecurity people feel toward the assessment of point
probability values. My argument was that people’s insecurity is often associated
with a high degree of sensitivity to unknown contingencies, and that such
sensitivity is describable in traditional models of probability theory and, since
the D-S interval vanishes whenever we are in possession of a complete
probabilistic model, it could not possibly reflect this component of people’s
insecurity.

Reiterating the example given in my earlier paper (Pearl, [2]), suppose we
know that a given coin was produced by a defective machine—that precisely
49% of its output consists of double-headed coins, 49% are double-tailed coins,
and the rest are fair. This description constitutes a complete probabilistic model
that predicts that the outcome of the next toss will be heads with probability 50 %
and alerts us to the fact that the prediction is extremely susceptible to new
information regarding the nature of the coin. Most people will hesitate to commit
a point estimate of 50% to the next outcome of the coin, as is attested by the
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natural tendency to lower one’s bet, on heads or tails alike, compared with bets
wagered on a fair coin. Most people would rather wait for some clue or toy with
introspective analysis reflecting on the coin type. The D-S theory nevertheless
assigns the next outcome a belief of 50%, with zero belief interval. Now imagine
that we toss the coin twice and observe a tail and a head. This immediately
implies that the coin is fair, and hence most people would regain confidence to
assign the next toss a 50% chance of turning up heads. Yet such narrowing of the
confidence interval would remain unnoticed in the D-S formalism; the theory
will again assign the next outcome a belief of 50% with zero belief interval.

Next we examine the notion of ignorance due to model incompleteness. The
D-S interval is often interpreted to portray the degree of ignorance we have
about probabilities—namely, the degree to which the information we lack
prevents us from constructing a complete probabilistic model of the domain. If
this were so, then the D-S approach would indeed have a definite advantage over
Bayesian methods, which always provide point probabilities. Unlike the latter,
which often give one a false sense of security in the model, the D-S interval
would have served as a warning device, distinguishing beliefs based on well-
founded probabilities from those based on partially specified models.

Unfortunately, the D-S intervals have little to do with ignorance, nor do they
represent bounds on the probabilities that would ensue once ignorance is
removed. This can be demonstrated using the classical three-prisoners puzzle.!

The story involves three prisoners A, B, and C awaiting their verdict,
knowing that one of them will be found guilty and the other two released.
Prisoner A asks the jailer, who knows the verdict, to pass a letter to some other
prisoner who is to be released. Later, prisoner A asks the jailer for the name of
the letter recipient and, having learned that the jailer gave the letter to prisoner
B, the problem is to assess the belief that A is the one found guilty.

The problem can be formulated in terms of three mutually exclusive and
exhaustive propositions G, Gy, and G¢, where G; stands for ‘‘prisoner i was
found guilty.”” Coupled with these, we also have the jailer’s testimony, which
could have been either ‘B’ or ‘‘C’’ and so can be treated as a bivalued variable
L (connoting ‘‘letter recipient’’) taking on the values {Lg, Lc}.

In the Bayesian treatment of the problem, one assumes equal prior
probabilities on the component of G, #(G,) = 7(Gg) = 7w(Gc) = /3, and
P(Lg|Ga) = 'i2; namely, if A were guilty, the jailer would choose the letter
recipient at random, giving an equal chance to B and C. These two assumptions
yield the answer P(Ga|Lg) = 1/3, meaning that the jailer’s testimony is totally
irrelevant relative to A’s prospects of being released. If, on the other hand, the
letter is not handed at random but the jailer prefers B (or C), then the posterior

! The following analysis contains excerpts from my forthcoming book Probebilistic Reasoning in
Intelligent Systems (Morgan Kaufman, 1988).
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probability P(Ga|Lg) would vary from zero (if B is avoided) to !/2 (if C is
avoided).

In the D-S treatment of the problem we do not assume values for the prior or
conditional probabilities unless we have evidence to substantiate these values.
For example, if we have good reason to believe that the testimonies in the trial
are equally supportive of either prisoner’s innocence, then, and only then, we
would take the liberty of assigning equal weights to the components of G,
m(G,) = m(Gg) = m(Gc) = /3. Assuming this is the case in our story, still,
having no idea of the process by which the letter recipient was selected prevents
us from completing the model and yields Bel (Ga) = Bel (7 Ga) = 1/2;
reflecting a zero interval yet an answer different from that of Bayesian analysis.

This disparity is not surprising in view of the fact that we have an incomplete
probabilistic model on our hands, as the process by which B was selected
remains unspecified. Conservatively speaking, it is quite possible that the jailer’s
choice was not random but marred by a deliberate attempt to avoid choosing C
whenever possible. Under such extreme circumstances, the jailer’s answer Lp
could only be avoided one-third of the time (when B is guilty), thus leaving A
and C an equal chance of being the condemned. What may sound somewhat
counterintuitive is that, from among all possible ways of completing the model,
D-S theory appears to select this extreme and unlikely model, which also
happens to be the one that puzzle books repeatedly warn us to avoid.

Actually the D-S theory never attempts to complete the model, and, although
the jailer’s testimony causes all the weight to be committed to singleton
hypotheses, m(G,) = m(Gc) = 2, the model remains only partially specified,
as we still are in ignorance regarding the letter delivery process. Knowing the
selection process is important because, in Bayesian analysis, it could sway the
posterior probability P(G,|Ls) all the way from zero to '/2. Yet the interval
PI(G,) — Bel (G,) is zero, giving one the false impression that the answer Bel
(G) = ' is based on a complete model (with the jailer attempting to avoid C
whenever possible).

The disparity between the answers produced by the two formalisms stems not
from the weight distribution but rather from the semantics of these answers.
While the probabilistic approach interprets ‘‘belief in A’ to mean the
conditional probability that A is true given the evidence e, the D-S approach
calculates the probability that proposition A becomes provable given the
evidence e. Phrased another way, it computes the probability that some set of
hypotheses suggested by the evidence would materialize (e.g., that the judges
become convinced by an alibi), from which the truth of 4 can be derived out of
logical necessity. Thus, instead of the conditional probability P(A |e), the D-S
theory computes the probability of the logical entailment e = A. The two could
be made as far apart as one wishes, depending on the choice of compatibility
relationships by which proofs are constructed.

Thus, the disappearance of the D-S interval PI/(A) — Bel (A) does not mean
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the removal of ignorance. It simply means that, based on the logical abstraction
chosen to represent compatibility relationships, the available evidence could not
simultaneously be compatible with 4 and its negation — A. It is curious to note
that applying the same interpretation to Bayesian models yields an interval that
never vanishes, because, barring extreme probabilities, a body of (noisy)
evidence is always combatible with both a proposition and its negation.

CONCLUSION

In conclusion, D-S intervals might have a place in the analysis of evidence,
but they do not possess all the qualities that the literature often wishes them to
have. In particular, they do not represent insecurity about probability assess-
ments or ignorance about missing information. The former can be obtained from
the traditional representation of Bayesian networks, while the latter can be
obtained from the bounds produced by Nilsson’s probabilistic logic (Nilsson
[6D.
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