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C ABSTRACT

This proposal requests support for a one year continuation of MICRO Grant
98-118, currently sponsored by Rockwell International. The aim of the
proposed research is to develop computer systems capable of operating au-
tonomously in dynamic and uncertain environments. Specifically, we propose
to conduct theoretical and experimental studies in the following areas:

1. Information fusion, situation assessment, diagnosis, and planning under
uncertainty using causal and counterfactual relationships.

2. Automatic generation of natural language explanations of actions, rec-
ommendations, and unexpected eventualities.

3. Learning causal structures from data to facilitate predictions and deci-
sions in e-commerce applications.



D INTRODUCTION

Since the development of belief-network representations in the early 1980’s,
there has been an upsurge of interest in reviving probabilistic formalisms
for AI applications. This interest reflects the recognition that the impor-
tant aspects of probabilistic knowledge can be expressed in network form
(later called Bayesian Belief Networks) and that computations can exploit the
topology of these networks. This capability leads to: simplicity of knowledge
acquisition, reduction in inference complexity, coherent updating of beliefs,
production of meaningful explanations and a reasonable model of cognitive
behavior.

The basic technical background of this development is described in several
texts [Pearl, 1988; Castillo et al., 1997; Jensen, 1996] which formulate the
construction and uses of Belief Networks and demonstrate the feasibility
of updating uncertainties and guiding decisions by local computations. A
major advantage of basing a reasoning system on a probabilistic foundation
is the ability to automatically expand the system’s knowledge as more data is
obtained. Indeed, the past few years have seen an upsurge of research toward
augmenting belief network systems with learning capabilities, i.e., inferring
network structures and probability values from empirical data [Pearl and
Verma, 1991; Spirtes et al., 1993; Cooper and Hershkovitz, 1990; Heckerman
et al., 1994].

A new dimension has been added to Bayesian network research with the
introduction of causal interpretation of the network’s topology [Pearl and
Verma, 1991; Pearl, 1993; Druzdzel and Simon, 1993; Spirtes et al., 1993].
Since the bulk of human knowledge is encoded in the form of causal, rather
than statistical relationships, this interpretation clarifies the assumptions
embedded in the network, and greatly facilitates the construction Bayesian
networks from experts as well as reconfiguring the network to track structural
changes in the domain. In addition, the causal interpretation provides an
economical encoding of the effect of interventions, thus enabling the analysis
of policies [Pearl, 1994] and counterfactuals [Balke and Pearl, 1994, 1995;
Breese and Heckerman, 1996; Heckerman and Shachter, 1994].

The research described in this proposal aims at expanding the capabilities
of causal Bayesian networks along two avenues.

The first project will aim at developing methods for qualitative plan-
ning under uncertainty. Research in this area has shown that many of the



features that made probabilistic reasoning powerful can be retained in a sym-
bolic approximations of probabilities [Goldszmidt and Pearl, 1996; Darwiche
and Pearl, 1997]. These order-of-magnitude approximations (i.e., associating
“q is believed” with “P(—¢) = €”; € being infinitesimal) facilitate reasoning
with qualitative rules, facts, and deductively closed beliefs (as in logic), yet
permit us to retract beliefs in response to changing contexts (as in proba-
bility). Combining this facility with an order-of-magnitude approximation
of utilities [Pearl, 1993; Wilson, 1995; Tan, 1994] has yielded a qualitative
version of decision theory, thus forming a basis for symbolic planning and
control under uncertainty. We now seek to tie this formalism with the pow-
erful planning method proposed by Kautz and Selman [1996], which treats
planning as a propositional satisfiability problem, so as to manage planning
in complex domains under conditions of uncertainty. This capability, which
has many applications in manufacturing and process control, will be based on
a qualitative-probability analysis of counterfactuals, that is, sentences for the
form “It is unlikely that Y would have been different had X been enacted”.

A second project will focus on developing explanation capabilities based
on the action and counterfactual semantics offered by causal networks. This
investigation is motivated by the realization that the notion of explanation,
which so far have been given logical or probabilistic interpretations, is due
for drastic reformulation, to take account of causal and counterfactual con-
siderations and to exploit the operationalization of causal and counterfactual
inferences using network representation. The immediate beneficiaries would
be systems that attempt to explain their actions or recommendations using
a natural and friendly discourse such as complex diagnostic systems.



E TECHNICAL DISCUSSION

E.1 Problem Statement —

The long term objectives of this project are to develop a theory of causality,
specific enough for machine interpretation, so as to guide the construction
of computers program capable of planning, perceiving, and learning in un-
certain dynamic environment. We believe this task is realizable and that
causal graphs will play a key role in its realization. To that end we propose
to develop new theories and techniques of reasoning with causal networks,
primarily those that exploit the counterfactual inferencing capabilities that
these networks provide. The main application of these techniques will be in
the construction of flexible plans the synthesis of reliable models of system
users, and the generation of natural explanations of both physical events
and inferencing steps. The propose project will focus on developing a theory
learning based on spontaneous changes and a theory of explanation based on
counterfactuals.

E.2 Progress Report (March 1, 1997 — February 29,
2000)

E.2.1 Summary of research progress

Starting with functional description of physical mechanisms we were able
to derive the standard probabilistic properties of Bayesian networks and to
show:

e how the effects of unanticipated actions can be predicted from the net-
work topology,

e how qualitative causal judgments can be integrated with statistical
data,

e how actions interact with observations,
e how counterfactuals sentences can be interpreted and evaluated,

e how explanations and single-event causation can be defined in a given
causal model.



Additionally, we have established an axiomatic characterization of causal
dependencies, analogously to the characterization of informational depen-
dencies. Finally, we have demonstrated that network-based identification
techniques, in the presence of hidden variables, have a broad scope of new
applications, ranging from skill acquisition by autonomous agents, to the
analysis of treatment effectiveness in clinical trials.

The following specific results were obtained during the period of perfor-
mance:

e Computer programs were developed to assist clinicians with assessing
the efficacy of treatments in experimental studies for which subject
compliance is imperfect [Chickering and Pearl, 1999].

e Axiomatic characterization was given for causal-relevance relationships
of the form: “Changing X will not affect Y if we hold Z constant”
[Galles and Pearl, 1997]

e The notion of “identification” was extended to non-parametric sys-
tems and techniques were developed for non-parametric identification
of cause-effect relationships from nonexperimental data [Pearl, 1997].

e Methods were developed for selecting sufficient set of measurements
that permit unbiased estimation of causal effects in observational stud-
ies [Greenland et al., 1999].

e Polynomial algorithms were developed for finding minimal separators
in a directed acyclic graphs, namely, finding a set S of nodes that
d-separates a given pair nodes, such that no proper subset of S d-
separates that pair. Versions of this problem include finding a minimal
separator from a restricted set of nodes, finding a minimum-cost sep-
arator, and testing whether a given separator is minimal. We have
confirmed the intuition that any separator which cannot be reduced by
a single node must be minimal [Tian et al., 1998].

e Universal bounds were established for the effectiveness of policies from
imperfect experiments [Balke and Pearl, 1997].

e Methods for estimating or bounding counterfactual probabilities from
statistical data were developed (e.g., John, who was treated and died,
would have had 90% chance of survival had he not been treated) [Balke and Pearl, 1997].
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A formal model has been developed, based on modifiable structural
equations, which generalizes and unifies the structural and counter-
factual approaches to causal inference, explicates their conceptual and

mathematical bases and resolves their technical difficulties [Galles and Pearl, 1998].

It has been proven that the structural and counterfactual formalisms
are equivalent in recursive causal models (i.e., systems without feed-
back) but not when feedback is considered possible. A simple rule was
devised for translating a problem back and forth, between the struc-
tural and counterfactual representations [Galles and Pearl, 1998].

Basic causal concepts such as “confounding” and “exogeneity” were
given mathematically precise explication. It has been shown that, con-
trary to folklore, there is no statistical test for confounding. Traditional
statistical criteria do not ensure unbiased effect estimates, nor do they
follow from the requirement of unbiasedness [Greenland et al., 1999;
Pearl, 2000].

A new semantics for “actual causation” was developed based on a
construct named “causal beam,” that is, a minimally modified causal
model, in reference to which the standard counterfactual criterion is
adequate for identifying causes of singular events [Pearl, 1998a, 2000].

Formal semantics was developed, based on structural models of coun-
terfactuals, for the probabilities that event x is a necessary or sufficient
cause (or both) of another event y [Pearl, 1999].

Conditions were discovered under which probabilities of necessary and
sufficient causation can be learned from data [Pearl, 1999; Tian and
Pearl, 2000].

New methods were developed for eliciting probabilities of causes from a
combination of actions and observations. It was found that data from
both experimental and nonexperimental studies can be combined to
yield information that neither study alone can provide [Pearl, 1999].

New definition of causal explanation was formulated in which explana-
tion is treated as a fragment of knowledge needed to support causation
[Halpern and Pearl, 2000].



E.2.2 List of publications resulting from the micro award (March
1, 1997 — February 29, 2000)

Darwiche, A. & Pearl, J., “On the Logic of Iterated Belief Revision,” Arti-
ficial Intelligence, 89(1-2), 1-29, 1997.

Pearl, J. “Causation, Action, and Counterfactuals,” In M.L. Dalla Chiara et
al. (Eds.), Logic and Scientific Methods, Kluwer Academic Publishers,
Netherlands, 355-375, 1997.

Pearl, J., “On the Identification of Nonparametric Structural Models,” in M.
Berkane (Ed.), Latent Variable Modeling with Application to Causality
Conference, Springer-Verlag, Lecture Notes in Statistics, 29-68, 1997.

Pearl, J., “Graphical Models for Probabilistic and Causal Reasoning,” in
Allen B. Tucker, Jr. (Ed.), The Computer Science and Engineering
Handbook, Chapter 31, CRC Press, Inc., 697-714, 1997.

Pearl, J., “The New Challenge: From a Century of Statistics to an Age of
Causation,” Computing Science and Statistics, 29(2), 415423, 1997.

Galles, D. & Pearl, J., “Axioms of Causal Relevance,” Artificial Intelligence,
97(1-2), 9-43, 1997.

Balke, A. & Pearl, J., “Bounds on Treatment from Studies with Imperfect
Compliance,” Journal of the American Statistical Association (JASA),
92(439), 1171-1176, 1997.

Galles, D., “Structural Causal Models: A Formalism for Reasoning About
Actions and Counterfactuals,” UCLA Cognitive Systems Laboratory,
Technical Report (R-258), Ph.D. Thesis, 1997.

Pearl, J., “On the definition of actual cause,” UCLA Computer Science
Department, Technical Report (R-259), July 1998.

Pearl, J., “TETRAD and SEM,” Commentary on “The TETRAD Project:
Constraint Based Aids to Causal Model Specification” by R. Scheines,
P. Spirtes, C. Glymour, C. Meek, and T. Richardson, in Multivariate
Behavioral Research, Vol. 33 No. 1, 119-128, 1998.



Galles, D. & Pearl, J., “An Axiomatic Characterization of Causal Counter-
factuals,” Foundations of Science, Vol. 3, Issue 1, 151-182, 1998.

Pearl, J., “Graphs, Causality, and Structural Equation Models,” Sociological
Methods and Research, Vol. 27, No. 2, 226284, November 1998.

Pearl, J., “Why There Is No Statistical Test For Confounding, Why Many
Think There Is, and Why They Are Almost Right,” UCLA Computer
Science Department, Technical Report R-256, 1998.

Greenland, S., Pearl, J., and Robins, J., “Causal Diagrams for Epidemio-
logical Research.” Epidemiology, Vol. 1, No. 10, 37-48, January 1999.

Greenland, S., Robins, J., and Pearl, J. “Confounding and collapsibility in
causal inference,” Statistical Science, Vol. 14, No. 1, 29-46, 1999.

Tian, J., Paz, A., and Pearl, J., “Finding Minimal Separating Sets,” UCLA
Computer Science Department, Technical Report R-254, February 1998.

Pearl, J., “Simpson’s paradox: An anatomy,” UCLA Computer Science
Department, Technical Report (R-264), March 1999.

Pearl, J. and Meshkat, P., “Testing Regression Models With Few Regres-
sors,” in D. Heckerman and J. Whittaker (Eds.), Artificial Intelligence
and Statistics 99, Morgan Kaufmann, San Francisco, CA, 255-259,
1999.
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Chickering, D.M. and Pearl, J., “A Clinician’s Tool for Analyzing Non-
compliance,” In C.N. Glymour and G.F. Cooper (Eds.), Computation,
Causation, and Discovery, AAAI/MIT Press, Cambridge, MA, 407-
424, 1999.

Pearl, J., “Reasoning with cause and effect,” Proceedings of the Interna-
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Kaufmann, San Francisco, CA, 1437-1449, 1999.
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E.2.3 Doctoral dissertations supported by the MICRO award (1997—
1999)

Galles, D.J., “Structural Causal Models: A Formalism for Reasoning About
Actions and Counterfactuals,” June 1997.

E.3 Proposed Work
E.3.1 Overview

The ultimate goal of the proposed project will be the development of com-
puter systems capable of:

1. Integrating sensory inputs into a coherent interpretation of a dynamic,
uncertain environment,

2. Selecting actions and goals appropriate for the perceived environment,
and

3. Learning to improve performance as more experience is gathered.

As concrete, realizable steps toward achieving these ambitious goals, we
propose to undertake the following two projects:

e Developing algorithms for planning and learning under uncertainty, us-
ing qualitative approximations of probabilities and causal relationships.
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e Developing a theory of explanation for improved reasoning and learn-
ing.

The theoretical issues underlying these two projects will be described in
the following subsections.

E.3.2 Qualitative planning under uncertainty

The method of qualitative probabilities developed in the past few years
[Goldszmidt, 1992] provides ways of combining logic and probabilities so as
to achieve the benefits of both. In this method, beliefs are represented propo-
sitionally, as in classical logic, and yet are subject to retraction and to varying
degrees of firmness, as in probability.

Quantitative probabilities are order-of-magnitude abstractions of numer-
ical probabilities; instead of measuring probabilities on a scale from zero to
one, we project probability measures onto a quantized logarithmic scale and
then treat beliefs that map onto two different quanta as being of different
orders of magnitude and, finally, take the limit and retain only the order-
of-magnitude of each probability measure. Thus an integer £ = 0,1,2, ...
attached to a proposition p signifies that not-p is believed to a degree k, or
that the probability of p is of the order of €¥. The result is a non-standard
probability calculus on integers, with min replacing addition, and addition
replacing multiplications. Since, in practice, only a few levels of k£ are of
interest, the method above reduces many probabilistic inference to tasks to
a finite sequence of logical operations, one per each level of k£ [Goldszmidt
and Pearl, 1996; Darwiche and Pearl, 1997].

A qualitative version of decision theory can likewise be constructed by
combining order-of-magnitude approximations of utilities and probabilities,
thus providing the basis for qualitative planning under uncertainty [Pearl,
1993; Tan, 1994; Wilson, 1995]. The formalization of actions and persistence
in the language of qualitative causal networks [Pearl, 1995a; Goldszmidt and
Pearl, 1996; Darwiche and Pearl, 1997; Breese and Heckerman, 1996] has fur-
ther facilitated the analysis of policies, their consequences, their interaction
with observations, and their expected utilities, and, hence, the synthesis of
plans and strategies under uncertainty.

We now propose to investigate the feasibility of tying this formalism with
the powerful planning method of Kautz and Selman [1996], which treats

11



planning as a propositional satisfiability problem. Specifically, a planning
problem in the qualitative-probability representation will be translated into
the problem of satisfying the proposition “an effective plan exits” where
effective is defined as having expected utility of order O(1) (i.e, £k = 0). If
no such plan exists, the computation will be repeated for the proposition: “a
risky plan exits” where risky stands for expected utility of order O(¢') (i.e.,
k =1), and so on.

Another issue to be investigated is the exploitation of the topological
features of the causal network within the satisfiability-planning framework.
Still another issue, to be discussed in the next subsection, is the computation

and utilization of counterfactual information in this planning framework.

E.3.3 Reasoning With Counterfactuals

A counterfactual sentence has the form
If A were true, then C' would have been true

where A, the counterfactual antecedent, specifies an event that is contrary
to one’s actual beliefs. A typical example is “If this voltage were low the
system would have failed,” which presumes the factual knowledge that the
voltage is high, contrary to the antecedent of the sentence.

Counterfactual reasoning is at the heart of every planning activity, espe-
cially real-time planning. When a planner discovers that the current state
of affairs deviates from the one expected, a “plan repair” activity need be
invoked to determine what went wrong and how it could be rectified. This
activity amounts to an exercise of counterfactual thinking, as it calls for
rolling back the natural course of events and determining, based on the fac-
tual observations at hand, whether the culprit lies in previous decisions or
in some unexpected, external eventualities. Moreover, in reasoning forward
to determine if things would have been different a new model of the world
must be consulted, one that embodies hypothetical changes in decisions or
eventualities, hence, a breakdown of the old model or theory.

The evaluation of counterfactual sentences is applicable to other tasks
as well. For example, determining liability of actions (e.g., “If you had not
pushed the table, the glass would not have broken). In diagnostic tasks,
counterfactual queries can be used to determine which tests to perform in
order to increase the probability that faulty components are identified.
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The logic-based planning tools used in Al, such as STRIPS and its vari-
ants or those based on the situation calculus, do not readily lend themselves
to counterfactual analysis; as they are not geared for coherent integration of
abduction with prediction, and they do not readily handle theory changes.
Remarkably, the formal system developed in economics and social sciences
under the rubric “structural equations models” does offer such capabilities,
although these capabilities are not well recognized by current practitioners
of structural models.

Recent research on modifiable structural equations has resulted in formal
semantics, representational schemes, and inference algorithms that facilitate
the probabilistic evaluation of counterfactual queries [Balke and Pearl, 1995;
Galles and Pearl, 1997, 1998; Halpern, 1998]. World knowledge is repre-
sented in the language of causal networks, whose links represent functional
mechanisms operating among families of observables. The antecedent of the
query is interpreted as a proposition that is established by an external action,
thus pruning the corresponding links from the network and facilitating stan-
dard Bayesian-network computation to determine the probability of the con-
sequent [Balke and Pearl, 1995]. We propose to explore the computational
feasibility of applying this procedure to planning problems, using qualitative
probabilities.

E.3.4 Evaluating counterfactuals

A general counterfactual sentence can be written succinctly as
a—clo (1)

read: “Given that we have observed o, if a were true, then ¢ would have
been true.” The observations o consists of a set of value assignments to
variables in a set V, e.g., V; = v;, Vi = v;. The counterfactual antecedent
a, consists of a conjunction of value assignments to variables in V' that are
forced to hold true by external intervention. Typically, to justify being called
“counterfactual”, a conflicts with o. Finally, the counterfactual consequent,
¢, stands for the proposition of interest, usually the values attained by some
variables in the system.

The truth (or probability) of a counterfactual conditional a — ¢ | 0 may
then be evaluated by the following procedure:

13



e Use the observations o to update the joint belief' for all root nodes
in the causal network. This joint belief summarizes the state of the
system, because each non-root variable is a deterministic function of
the root variables.

e Replace the structural equation for each variable V} referred to in the
antecedent a with the equation Vj; = a,, where a,, is the value of V}
specified in a. This implements the local intervention that forces the
counterfactual antecedent to hold true.

e Compute the belief of the consequent proposition ¢ according to the
modified set of structural equations.

This procedure will yield a definite value for Belief (¢) whenever we have the
functional form of the mechanisms involved. In cases where the functional
forms are not known, only bounds may be calculated for the belief of a coun-
terfactual consequent. These considerations apply in both the probabilistic
and qualitative formulations of beliefs [Balke, 1995].

We propose to investigate whether computational advantages could be
achieved by casting the counterfactual evaluation problem as a problem in
propositional satisfiability.

E.3.5 Generating explanations

It is a commonplace wisdom that explanation improve understanding, and
that he who understands more, can reason and learn more effectively. The
notion of explanation, on the other hand, is strongly associated with causal
relationships, for which we currently have a computational theory. We there-
fore seek to apply this theory to the task of automatic generation of expla-
nations for a given set of observations, and, subsequently, to investigate how
reasoning and learning can be improved when such explanations are adopted.

The following list, taken from [Galles and Pearl, 1997|, provides brief ex-
amples of concepts used in explanatory discourse and their associate seman-
tics in the modifiable structural model. The notation used in this list is based
on the counterfactual variable Y, (u) which reads: The value that ¥ would

!Here we use the generic term “belief” to refer to either truth assignments or
probabilities.
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take on in state U = u, had X been equal to . The equation-deletion pro-
cedure described in Section E.3.4 permits us to calculate this variable from
a set of structural equations. Likewise, if v is not known, the probabilities of
counterfactuals, such as P(Y, =y & Y = ¥'), can be computed given P(u).

e “X is a cause of Y7, if there exist two values z and z’ of X and a value
u of U such that Y, (u) # Y (u).

e “X is a cause of Y in context Z = 2”7, if there exist two values x and
x' of X and a value u of U such that Y, # Y, (u).

e “X is a direct cause of Y, if there exist two values z and z' of X, and
a value u of U such that Y, (u) # Yz, (u) where r is some realization
of V\X.

e “X is an indirect cause of Y”, if X is a cause of Y, and X is not a
direct cause of Y.

e “Event X = z may have caused Y = y” if

(i) X =z and Y = y are true, and

(ii) There exists a value u of U such that X (u) = z, Y (u) =y, Y;(u) =
y and Yy (u) # y for some 2’ # x.

e “The unobserved event X = x is a likely cause of Y = ¢” if
(i) Y =y is true, and
(i) P(Yy =y, Yy # y|Y =) is high for some ' # x

e “Event Y = y occurred despite X = 2”7, if

(i) X =z and Y = y are true, and
(i) P(Y; =y) is low.
The preceding list demonstrates the flexibility of modifiable structural
models in formalizing nuances of causal expressions. Additional nuances,

invoking notions such as enabling, preventing, maintaining, and producing,
etc. should be formalized as well. We propose to implement this semantics in
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a system that automatically selects the appropriate explanatory expression,
for a given context and for a given query.

Additionally, we will construct semantical and axiomatic characterization
of explanatory sentences, for example: “Event A explains the occurrence of
event B”, or “A would explain B if C were the case”, or “B occurred despite
of A, because C' was true”. Such explanatory sentences should be generated
automatically by a reasoning program, and used to guide future information-
gathering actions, in the pursuit of causal understanding of the environment.
Additionally, the ability to generate such explanatory sentences, or to select
the expression most appropriate for the context will improve the effectiveness
of man-machine conversation.

E.3.6 Learning Causal Structures

The possibility of learning causal relationships from raw data has been on
philosophers’ dream lists since the time of Hume (1711-1776). That possi-
bility entered the realm of formal treatment and feasible computation in the
mid-1980s, when the mathematical relationships between graphs and prob-
abilistic dependencies came into light [Pearl, 1988]. Several systems have
been developed for this purpose [Pearl and Verma, 1991, Spirtes et al., 1993,
which systematically search and identify causal structures (with hidden vari-
ables) from empirical data. Technically, because these algorithms rely merely
on conditional independence relationships, the structures found are valid
only if one is willing to accept weaker forms of guarantees than those ob-
tained through controlled randomized experiments: minimality and stability
[Pear]l and Verma, 1991]. Minimality guarantees that any other structure
compatible with the data is necessarily less specific, and hence less testable
and less trustworthy, than the one(s) inferred. Stability ensures that any
alternative structure compatible with the data must be less stable than the
one(s) inferred; namely, slight fluctuations in experimental conditions will
render that structure no longer compatible with the data. With these forms
of guarantees, the theory provides criteria for identifying genuine and spuri-
ous causes, with or without temporal information.

Alternative methods of identifying structure in data assign prior probabil-
ities to the parameters of the network and use Bayesian updating to score the
degree to which a given network fits the data [Cooper and Herskovits, 1990,
Heckerman et al., 1994]. These methods have the advantage of operating
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well under small sample conditions, but encounter difficulties coping with
hidden variables.

Causal structures in e-commerce applications

The central aim of data analysis in e-commerce is to form a reliable model
of consumer behavior, so as to predict interests in future transactions. Many
statistical routines are being developed for this purpose, often under the en-
terprises of “data mining” or “knowledge mining,” but only few are designed
to build models on causal relationships that can be inferred from the data.
The general attitude is that statistical associations alone would be sufficient,
since the task is one of prediction, rather than manipulation.

We believe this attitude to be erroneous. First, pure black-box predictions
are not as useful as those that are accompanied with causal understanding of
the underlying processes. When a statistical package predicts that a group
of users will be likely to demand a certain product in the future, the question
always arises whether the association discovered is long-lived, and whether it
is transportable across contexts. For example, if one product is functionally
supplementary to another, the association between the two demands is stable.
If, on the other hand, demands for products A and B are correlated merely
because the two were advertised simultaneously in the same medium, the
association is short lived, and will disappear as soon as advertising strategies
change.

Second, consumer behavior models are not used exclusively for passive
predictions. Vendors constantly try new techniques of presentation, and new
methods of capturing users’ attention. These changes are the commercial
analogue of scientific experimentation, and only causal models can capture
the results of these experiments so as to predict response to future changes.

Finally, there is an additional advantage to basing even purely predictive
decisions on causal, rather than associational models. The advantage involves
considerations of “locality.” When some conditions in the environment un-
dergo change, it is usually only a few causal mechanisms that are affected
by the change; the rest remain unaltered. It is simpler and more effective,
then, to reassess (judgmentally) or reestimate (statistically) the model pa-
rameters knowing that the corresponding change in the model is also local,
involving just a few parameters, than to reestimate the entire model from
scratch. In non-causal systems, such as neural nets or those based on regres-
sion equations, a local change in mechanism space would spread its effect
over all model parameters; in causal systems the change remains local.
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Learning from spontaneous changes

The innovative contribution that this proposal makes to knowledge discov-
ery involves a new method of discovering causal relations in data, based on
the detection and interpretation of local spontaneous changes in the envi-
ronment. While all systems of causal discovery are static, that is, assuming
a time-invariant distribution and a time-invariant data-generating model,
our proposal aims at exploiting dynamic changes in the environment. Such
changes are always present in an environment of consumers that is embed-
ded in a larger context such as the general economy. Whereas static analysis
views these changes as nuisance, and (attempts) to adjust and compensate
for them, we view these changes as an invaluable source of information about
the causal structure of the data-generating process.

The basic idea has its roots in the economic literature of the 1980’s. The
economist Kevin Hoover (1990) inferred the direction of causal influences
among economic variables (e.g., employment and money supply) by observ-
ing the changes that sudden modifications in the economy (e.g., tax reform,
labor dispute) induced in the statistics of these variables. Hoover assumed
that the conditional probabilities of an effect given its causes remains invari-
ant to structural changes in the mechanism that generates the cause, while
the conditional probability of a cause given the effect would not remain in-
variant under such changes. Indeed, today we understand more precisely the
conditions under which such asymmetries would prevail and how to interpret
such asymmetries in the context of large, multi variariate systems. Whenever
we obtain reliable information (e.g., from historical or institutional knowl-
edge) that an abrupt local change has taken place in a specific mechanism
fi that constrains a given family (Xj,...,X,,) of variables, we can use the
observed changes in the marginal and conditional probabilities surrounding
those variables to determine whether X is indeed the dependent variable in
that family, thus determining the direction of causal influences in the domain.
The statistical features that remain invariant under such changes, as well as
the causal assumptions underlying this invariance, are displayed vividly and
formally in the causal diagram at hand, and can be used therefore for test-
ing the validity of a given structure, and for automatic restructuring of its
topology.

We propose to initiate a theoretical and experimental program to exploit
these new possibilities in adaptive systems that learn causal structures and
causal parameters. We propose to test these systems in e-commerce applica-
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tions and to compare their performance to static learning systems.
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F RELEVANCE TO MICRO

The problem of reasoning and acting under uncertainty, lies at the center
of computer automation and, in this general sense, the proposed research
is central to the objectives of the MICRO program. More specifically, the
introduction of Bayes networks as the primary scheme for representing un-
certainty in computer systems owes much of its development to the research
conducted at UCLA, partly supported by MICRO projects beginning 1988.
First commercial applications of Bayesian networks were found in medical
diagnosis and include systems such as PATHFINDER, INTELLIPATH and
CPSC. Currently, these systems are used by hundreds of hospitals and med-
ical schools nation wide. Another application system, in the area of power-
generator monitoring (GEMS) has been developed by General Electric (Sch-
enectady, NY) in collaboration with EPRI (Palo Alto CA), and is available
commercially. Pilot systems in such diverse applications as software debug-
ging, information retrieval and system troubleshooting are described in the
March, 1995 issue of the CACM (Special issue on practical applications of
Bayesian networks).

The cooperating company, BizRate.com is a California corporation that is
one of the leading developers of E-commerce systems and services. BizRate.com
has several projects in-house aimed at improved user interface, based on data
mining and advanced models of user preference dynamics. The technical lia-
son person from the cooperating company is:

Dr. George Rebane

VP, Advanced Projects

BizRate.com

4053 Redwood Avenue phone: (310) 305-3506
Los Angeles, CA 90066 fax: (310) 305-7737

23



G PERSONNEL

The major portion of the proposed research will be carried out by the Princi-
pal Investigator, Professor Judea Pearl and two Ph.D. students at the Com-
puter Science Department of UCLA. The following is a biographical sketch
of the principal investigator.

Judea Pearl is a Professor of Computer Science at UCLA where he also
is the Director of the Cognitive Systems Laboratory.

He received the B.S. degree in Electrical Engineering from Technion-Israel
Institute of Technology, Haifa, Israel, in 1960; the MS.C. degree in physics
from Rutgers University, New Brunswick, New Jersey, in 1965; and the Ph.D.
degree in Electrical Engineering from the Polytechnic Institute of Brooklyn,
Brooklyn, NY in 1965.

Before coming to UCLA, he worked at RCA Laboratories, Princeton,
New Jersey, on super-conductive parametric and storage devices, and at Elec-
tronic Memories, Inc., Hawthorne, California, on advanced memory advises.
His present interests include Knowledge-representation, probabilistic reason-
ing, constraint processing, non-standard logics, distributed computation, and
learning.

Professor Pearl serves on the editorial boards of Artificial Intelligence,
AAATI Press, Annals of Mathematics and Al, and the Encyclopedia of AI. He
has published over 150 research papers, has authored two books: Heuristics
(Addison-Wesley, 1984) and Probabilistic Reasoning in Intelligent Systems,
(Morgan Kaufmann, 1988), and has edited Search and Heuristics (North-
Holland, 1983) and Reading in Uncertainty Reasoning (with G. Shafer, Mor-
gan Kaufmann, 1990).

Professor Pearl is a Fellow of IEEE and AAAI, a member of the Na-
tional Academy of Engineering, and the winner of IJCAI Research Excellence
Award for 1999.
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I JUSTIFICATIONS FOR MAJOR ITEMS

The item “Computer Networking Services” provides shared computing re-
sources only available through the department computing facility. Starting
January 1, 1989, the Computer Science Department established a depart-
mental recharge unit approved by the POSSSE (Policy Committee on Sales
and Service Activities and Service Enterprises) committee of the Chancel-
lor’s Office. This recharge is required in all contract and grant budgets. The
recharge is computed at the rate of 7% of the salaries and benefits.
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CURRENT:

Title:
Funding Agency:
Amount:

Contracting Period:

Title:
Funding Agency:

Amount:

Contracting Period:

Title:

Funding Agency:
Amount:

Contracting Period:

PENDING:

Title:
Funding:
Proposed Amount:

Probabilistic Networks for Automated Reasoning
National Science Foundation

$80,719

12/1/99 thru 12/1/00

Advanced Reasoning Methods for Management of Uncertainty
MICRO Research Project supported by Rockwell Science
Center and the State of California
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8/1/99 thru 6/30/00

Dynamic Networks Techniques for
Autonomous Planning and Control

U.S. Air Force/Office of Scientific Research
$60,336

4/1/99 thru 11/30/00

Proposed by a team of seven Principal Investigators:

J. Pearl, A. Darwiche, W. Karplus, E. Coleman, R. Dechter,
S. Irani, D. Roth

An Integrated Approach to Decision Making Under Uncertainty
Office of Naval Research
$2,934,000

Proposed Contracting Period4/1/00 thru 4/1/03
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