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Abstract

We propose a new method of discovering
causal structures, based on the detection
of local, spontaneous changes in the un-
derlying data-generating model. We derive
expressions for the Bayesian score that a
causal structure should obtain from streams
of data produced by locally changing dis-
tributions. Simulation experiments indicate
that dynamic information may improve the
power of discovery up to the theoretical lim-
its set by statistical indistinguishability.

1 Introduction

In recent years, several graph-based algorithms
have been developed for the purpose of infer-
ring causal structures from empirical data. Some
are based on detecting patterns of conditional
independence relationships [Pearl and Verma, 1991,
Spirtes et al., 1993], and some are based on Bayesian
approaches [Heckerman et al., 1997, Cooper, 1999].
These discovery methods assume static environment,
that is, a time-invariant distribution and a time-
invariant data-generating model, while attempting to
infer structures that encode dynamic aspects of the
environment, for example, how probabilities would
change as a result of interventions. This transition,
from static to dynamic information, constitutes a ma-
jor inferential leap, and is severely limited by the inher-
ent indistinguishability (or equivalence) relation that
governs Bayesian networks [Verma and Pearl, 1990].

One way of overcoming this basic limitation is to
augment the data with partial causal knowledge, if
such is available. [Spirtes et al., 1993], for exam-
ple, discussed the use of experimental data to iden-
tify causal relationships. [Cooper and Yoo, 1999] dis-
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cussed a Bayesian method of causal discovery from a
mixture of observational and experimental data.

We propose a new method of discovering causal rela-
tions in data, based on the detection and interpreta-
tion of local spontaneous changes in the environment.
While previous methods are based on static statistical
features of the data, our proposal aims at exploiting
dynamic changes in that data. Such changes are al-
ways present in any realistic domain that is embedded
in a larger background of dynamically changing con-
ditions. For example, natural disasters, armed con-
flicts, epidemics, labor disputes, and even mundane
decisions by other agents, are unexpected eventualities
that are not naturally captured in distribution func-
tions. The occurrence of such eventualities tend to al-
ter the distribution under study and yield changes that
are markedly different from ordinary statistical fluctu-
ations. Whereas static analysis views these changes as
nuisance, and attempts to adjust and compensate for
them, we will view them as a source of information
about the data-generating process. A controlled ex-
perimental study may be thought of as a special case
of these environmental changes, where the external in-
fluence involves fixing a designated variable to some
predetermined value. In general, however, the external
influence may be milder, merely changing the condi-
tional probability of a variable, given its causes. More-
over, in marked contrast to controlled experiments, we
may not know in advance the nature of the change, its
location, or even whether it took place; these may need
to be inferred from the data itself.

The basic idea has its roots in the economic literature.
The economist Kevin Hoover (1990) attempted to in-
fer the direction of causal influences among economic
variables (e.g., employment and money supply) by ob-
serving the changes that sudden modifications in the
economy (e.g., tax reform, labor dispute) induced in
the statistics of these variables. Hoover assumed that
the conditional probability of an effect given its causes
remains invariant to changes in the mechanism that
generates the cause, while the conditional probability



of a cause given the effect would not remain invariant
under such changes. This asymmetry may be useful in
distinguishing cause and effect.

We will assume that we have data generated from a dy-
namically changing environment and our task is to re-
cover the actual causal structures. In a companion pa-
per [Tian and Pearl, 2001] we have analyzed the pat-
terns of distributional changes that such datasets may
induce, and we proposed recovery methods that infer
causal directionality information from those changes.
In this paper, we investigate the Bayesian approach.
The Bayesian approach [Heckerman et al., 1997] gives
us a consistent way of combining dynamic datasets
to get an overall estimation of causal structures.
We show how to derive a Bayesian scoring metric
from various types of dynamic data by assigning ap-
propriate priors over probability parameters. The
Bayesian scores obtained are extensions of previously
derived Bayesian scores [Cooper and Herskovits, 1992,
Heckerman et al., 1995]. For mixed observational and
experimental data we obtained the same score as given
in [Cooper and Yoo, 1999]. We show that dynamic
data increase our power of causal discovery beyond
the limits set by independence equivalence.

2 Causal Models and Mechanism
Change

Let our problem domain be a set of discrete ran-
dom variables V. = {V4,...,V,}. We assume that
a causal model over V is a pair M = <G,0g>,
where G is a DAG over V, called a causal diagram,
and O¢g is a set of probability parameters. We as-
sume that each variable V; can take values from a
finite domain, Dm(V;) = {vi,-... , Vi, }, Where r; is
the number of states of V;. We use Pa; to repre-
sent the set of parents of V; in a causal diagram G
and Dm(Pa;) to represent the set of states of Pas.
Let 0y,:pe;,vi € Dm(V;),pa; € Dm(Pa;) denote the
multinomial parameter corresponding to the condi-
tional probability P(v;|pa;). We will use the follow-
), v € Dm(V)}, ¥, =
Upa;eDm(Pai)fpai;, O = UL;¥;.  Assuming
the Causal Markov condition [Spirtes et al., 1993], a
causal model M = <G, 0> generates a probability
distribution

ing notations: €pa;, = {bu;;pa;

P(v) = Havi;pai- (1)

A probability distribution P(V) is said to be compati-
ble with a causal diagram G if P(V') can be generated
by some causal model M = <G,0g>.

The factorization in Eq. (1) obtains causal character
through the assumption of modularity; each family in
the causal diagram represents an autonomous physical

mechanism and is subjected to change without influ-
encing other mechanisms. We formally define mecha-
nism change as follows.

Definition 1 (Mechanism Change) A mechanism
change to a causal model M = <G,0©g> at a variable
Vi is a transformation of M that produces a new model,
My, = <G, 04>, where O = ¥, U (Og \ ¥;) and ¥}
is a set of parameters having different values with the
parameters in ¥;.

We assume in this paper that the parent set Pa; does
not change in a mechanism change. An intervention
that fixes V; to a particular value is a special case of
a mechanism change. Let P(V) be the distribution
generated by M, as in Eq. (1). Then the distribution
generated by My, is given by

PVi (’U) = eimpai H GUJ‘ZP“J' : (2)
J#i

We will call (P, Py,) a transition pair (TP) and V; the
focal variable of the transition. Assume that a series of
mechanism changes occurred successively to a causal
model M = <G,0%>, and let F = (V;,,...,V;,) de-
note the corresponding sequence of focal variables. We
use Prs = (P°, P',..., P¥) to denote the sequence of
distributions generated by such a series, and call the
pair (Prg, F) a transition sequence (TS), where each
pair (P71 Pi) is a TP with Vj; as the focal vari-
able. Assume that a series of mechanism changes oc-
curred to a same causal model M = <G, 0%>, and let
F = (V4,,...,V;,) denote the sequence of focal vari-
ables, and Pgs = (P°, P,... , P*) the corresponding
sequence of distributions, where each pair (P°, PY) is a
TP with V;; as the focal variable. We will call the pair
(Pgs, F) an experimental sequence (ES). An example
of an ES is a series of experimental studies performed
on a model.

As oracles for cause-and-effect relations, causal mod-
els can predict the effects that any external or sponta-
neous changes have on the distributions. Conversely,
from probability distributions resulted from various
mechanism changes, we obtain information on the
structure of the model generating those distributions.
In this paper, we assume that we are given a TS
(Prs, F) or an ES (Pgs, F) corresponding to some
causal diagram G, and our task is to recover G. We
will then assume that we have a sequence of datasets
D = {D° ..., D"}, where each D is a set of random
samples from a distribution P?, and we will derive
a Bayesian scoring metric for learning causal struc-
tures from this dynamic data. First, we introduce the
Bayesian approach for causal discovery.



3 The Bayesian Approach

Assume that we have a set of random samples D gen-
erated from a causal model M = <G,0¢>. In the
Bayesian approach, we compute the posterior proba-
bility of a causal diagram G given the dataset D as:

P(D|G, &)P(C|¢)
PR ®)

P(GID; &) =

where ¢ represents our background knowledge. The
marginal likelihood of the data given G is computed as

P(DIG,¢) = / P(D|0c.G.£)P(06|G, )dOc. (4)

The term P(D|O¢, G, €) is the probability of the data
given a Bayesian network and is computable. We need
to provide prior distributions for the probability pa-
rameters, P(O¢|G,¢), and causal diagrams, P(G|¢).
The term P(DI¢) is just a proportional constant.

We can then compute the posterior probability of any
hypothesis of interest by averaging over all possible
causal models. For example, the posterior probability
that X causes Y is computed as

P(X —Y|D.§)= Y PGD,E. (5
X—-YeG

where the summation is over all causal diagrams which
contain the edge X — Y. Since the number of possi-
ble diagrams is exponential in the number of variables
n, it is impractical to sum over all diagrams unless
for very small n. One way to deal with this problem
is to use the relative posterior probability P(D,G|¢)
as a scoring metric and search for diagrams with high
scores.

4 Derivation of Bayesian Score

For the case that the dataset D is from a static
distribution, closed form expressions for P(D|G,¢)
have been derived [Cooper and Herskovits, 1992,
Heckerman et al., 1995]. We will extend previous
derivations to incorporate dynamic data.

Assume that we have two data sets, D and D', gener-
ated from a causal diagram G but with different pa-
rameters, O and O, respectively. The marginal like-
lihood is computed as:

P(D.D'|G,¢)
- / P(D,D'|0c, 0, G, ) P(Og, 04|G, £)dO6dOL.
(6)

Assuming that data cases are random samples, and
that the data are complete, that is, every variable is

assigned a value in all data cases, we have

P(D7D1|®G; IGaGag)
= P(D|0g,G,&)P(D'|0,G,€)
N N’
=[[ rcilec. G, [[ P(Cll0g, G, ¢)

=1 =1

n
No; pa; gr™Vo,; pa;
= H H H Oviipa; 0 viipa; (7)

i=1 vi pa;

where N is the number of cases in D, C; represents a
specific case in D, and Ny, pq; is the number of cases
in D for which V; takes the value v; and its parents
Pa; takes the value pa;. We use Hv,- as a shorthand
for HvieDm(Vi) and Hpai for HpaieDm(Pa,-)'

Consider the prior distribution P(Qg, O|G,§). As-
sume that, as a background knowledge, the two
datasets D and D' are from a TP (P, P') with known
focal variable V;. Therefore, the two sets of parame-
ters O¢ and Oy, differ only by those parameters in ¥;.
With this knowledge, we assume the following prior:

P(®G’7 ®’G’|Ga ‘/laf)
= P(9c|G, OP(¥|G,&) [[ 6(¥: -~ ), (8)
i#l
where §(z) is the Dirac delta function. Eq. (8) says
that for i # I, ¥} = ¥;, and the reader can verify
that P(Og, O4|G, Vi, §) integrates to 1 and is a valid
density function. We have put V; as a condition to

reflect the fact that V] is known as the focal variable
of the TP.

For the parameter priors P(Q¢g|G, &) and P(¥}|G,€),
we use the following assumptions given in
[Heckerman et al., 1995]:

e Global Parameter Independence:

P(0¢|G,¢) = [[ P(wilG, ¢) 9)

i=1
e Local Parameter Independence:

P(¥|G,€) = [[ P(6ra,]G. )i =1,... ,n. (10)

pai

e Parameter Modularity: if V; has the same parents
in two causal diagrams GG; and G5, then

-

P(gpai |G1’ f) = P(epai

G, €), pa; € Dm(Pa;).
(1)

While these assumptions were originally made for
learning Bayesian networks, [Heckerman, 1995] dis-
cussed their implications for causal Bayesian networks.



Using Eq.s (7)—(11), and integrating out O \ ¥,
Eq. (6) is transformed to

P(]D)TP|G1‘/17 )

~TII1 [« L6255 P Gy )
i#l pa;

<1 /¢ TP e )
ba;

X H/(Helvl%;zal) ( Pal|£) Pal’ (12)
ba; v

where

_ 1
Mvnpai - Nviypaz + N,

Vi,pai”

(13)

We use the notation Dyp = {D, D’} and put V; as a
condition to emphasize that Eq. (12) is obtained under
the assumption that the datasets D and D’ are from
a TP with known focal variable V;. The standard as-
sumption for P(gpai |€) is a Dirichlet distribution:

P(6pa, 1€)

where @pq; = {Qu;:pa; [vi € Dm(V;)} denotes the set of
parameters for the Dirichlet distribution. Assuming
that the set of parameters 6',,, have the same prior

= DiT(gpai |&pai )1 (14)

distribution as gpa, given by Eq. (14), we obtain

(]D)TP |G ‘/la )
= H H I'(opa;) H (o ipa; + Mo, pa;)
i#l pa; pa; T Mpa ) v; F(avi ?Paz')

% H I'(apa,) H D(avw;par + Noyypar)
I(apa, + Npa,) " (v, pa;)

apa F(avl;pat + Ntl) pa )
M 11 on) (15

apaz pai/ o, F(avl;PU«l)

where I'(+) is the Gamma function, and

Qpa; = E Qu;ipa;; Npa; E Nu, pais Mpa,

5 Likelihood Equivalence

For two independence-equivalent causal diagrams G,
and (4, any distribution compatible with G is also
compatible with G5. Hence, it is reasonable to as-
sume that a dataset D from a static distribution
cannot distinguish between independence-equivalent
causal diagrams, or, P(D|G1,§) = P(D|G>,¢).
[Heckerman et al., 1995] call this assumption likeli-
hood equivalence. They show that it constrains the
space of prior parameters au,;;p,; and call the resulting

Z Mo, pa;-

likelihood-equivalent Bayesian scoring metric the BDe
metric. We will use prior parameters that satisfy the
likelihood equivalence property, and call the associ-
ated metric P(Drp,G|V;, &) = P(Drp|G, Vi, §)P(G|E)
the BDe_TP metric.

The BDe_ TP metric is mnot likelihood equivalent,
and for a good reason. A TP can indeed dis-
tinguish independence-equivalent diagrams: among
those independence-equivalent diagrams compatible
with both P and Py,, a TP (P, Py,) can distinguish
those that can generate Py, from P with a single
mechanism change from those that can not. A causal
diagram G is said to be compatible with a transi-
tion pair (P, Py,) if P can be generated by a causal
model M = <G,0¢> and Py, can be generated by a
causal model My, = <G, ©,> resulted from a mech-
anism change to M at V;. Two causal diagrams G
and G4 are called transition pair equivalent with re-
spect to a TP with focal variable V;, or V;-transition
equivalent, if every TP (P, Py,) compatible with Gy
is also compatible with G2. The graphical conditions
for TP equivalence are given by the following theorem
[Tian and Pearl, 2001].

Theorem 1 (Transition Pair Equivalence) Two
causal diagrams Gy, and Gy are Vi-transition equiv-
alent if and only if they have the same skeletons,
the same sets of v-structures, that is, two converging
arrows whose tails are not connected, and the same
sets of parents for V;.

See Figure 1 for an example of TP equivalence.

It is natural to extend the likelihood equivalence re-
quirement and define a new property: a marginal like-
lihood P(D|G,¢) is said to be Vj-transition likelihood
equivalent if for any dataset D and two Vj-transition
equivalent causal diagrams G; and G2, P(D|G1,¢) =
P(D|G2,§).

Theorem 2 The marginal likelihood P(Dyp|G, Vi, €)
given by Eq. (15) is V,-transition likelihood equivalent.

Proof: Eq. (15) can be rewritten as

(]D)TP |G ‘/la )
_ H H ['(apa;) H I(ay; pa; + Moy, pa;)
i pas I'(apa; + Mpa,) o I'(vw,;pa;)
(H I'(apa) I (@pa, + Mpa,)
[(apa, + Npa, )T (Qpa, + Npa,)

H F(av:;paz + Nvupa:)r(avupaz + Nzl)17pa1

)
. (16
F(avz ;Paz)r(avz spaq + le 710(11) ) ( )

vy

Let G; and G, be two V-transition-equivalent
causal diagrams. Then (G; and G, are independence
equivalent and have the same parent set Pa; by



Theorem 1. The first term in Eq. (16) has exactly
the same form as the BDe score and takes the same
values for two independence-equivalent diagrams
[Heckerman et al., 1995]. The second term obtains
the same values for G; and G5 since they have the
same Pa; set. O

We see that given data from a TP, previously indis-
tinguishable independence-equivalent causal diagrams
may now be distinguished, and in this sense, two
datasets generated from a same causal structure but
with different parameters give us more power to learn
the structure. This power comes from our assumption
(or knowledge) that only a single causal mechanism
has changed in generating the two datasets. Indeed, if
we have no knowledge on how the two sets of parame-
ters O¢ and Oy, differ, we may only assume that they
are independent and have the same distributions:

which leads to a marginal likelihood given by

P(D,D'|G,¢)
= P(D|G,§)P (D'IG £)

— H H apaz H F(avi ;Pai + sz‘ 7paz‘)
I(apa; + Npa;) [(aw;;pa;)

i pa; Ui

8 H H I(apa;) H (@, ipa; + Nz’a 7pa1)
Oépa + Nl ) vi F(avﬁpai) .

(18)

Eq. (18) is a product of two BDe likelihood applied on
datasets D and D’ respectively, and is still likelihood
equivalent. Hence, without knowledge on how they
came about, two datasets do not increase our power of
discrimination, save for providing more samples.

6 Incorporating Experimental Data

Now assume that our knowledge is that the cases in
D' are from an experimental study in which the vari-
able V; is fixed to a value v;; € Dm(V}), denoted by
do(V; = ;) or do(vy;). Then instead of the Dirichlet
distribution, we assign the following prior distribution
to the parameter set 19_71,@,:

P(a_;paz|d0(vlj)>€) - 5 ei)mpat - H 5 vz,paz
vV

(19)
which asserts that

0/ _ 1 if v = vy
vrspag 0 otherwise

Plugging Eq. (19) into Eq. (12
P(Drp|G, dO(vw’) §)

= H H CT) H L(@vipa; + Mo; pas)
i#£l pa; apa + MPU« ) 0 F(avi;pai)

), we obtain

I'(apa,) U(owipar + Nopar)
* H I'(apa, + Npa,) H I'(@w;pai) - @)
Eq. (20) has been given in [Cooper and Yoo, 1999].
Here we show that it can be derived by providing an
informative parameter prior as given by Egs. (8) and
(19). In the derivation of Eq. (20), we have used the
following equation

Nv ,pa
/(H elvlﬂll)at 1)6 vijspa;r H 6 vl,pal pal = 1
v I
(21)
which follows from that for v; # vij, Ny, pe, = 0.

Theorem 3 The likelihood P(Dyp|G,do(vij),€)
given by Eq. (20) is V,-transition likelihood equivalent.

Proof: The same proof for Theorem 2. O

7 Combining Various Types of
Dynamic Data

So far we have only considered the situations with two
datasets. The discussions can be easily extended to
the situations with a sequence of datasets, generated
from a TS or an ES. Let D = {D° D*,... , D*} be a
sequence of datasets generated from some causal dia-
gram G with parameters ©2,, ... , ©% respectively, and
let Z¢ = U¥ (©L. The marginal likelihood is com-
puted as

PG, ) = / PDE6, G, ) P(E6|G, O)d=Za. (22)

The term P(D|Z¢, G, &) can be computed as in Eq. (7).
To give an appropriate parameter prior P(E¢|G, &),
we need to know how these datasets in D came about.
Assume that we have the knowledge that the sequence
of datasets, which will now be denoted by Drg, are
from a TS with a sequence of focal variables F' =
(Viys---,Vi,). Then, we assume the following prior:

P(26|G, F,¢)
= P(0%/G.&)(P

v}, 1G,¢) T] o(w} - vf))

iy
(Pwzic.o T] o(w? - oh))
iio
(P ic.o T owt - wi™).  (23)
iin



where we have used the notation 07 = U, ¥/ j =
0,...,k as before. Eq. (23) is an extension of Eq. (8),
and says that the set of parameters O, differs with
O only by the parameters in \I!fJ Let I =
{i1,... ,ir} be the set of indexes for focal variables.
Using the Dirichlet priors, we obtain the following ex-
pression for the marginal likelihood (22):

P(Drs|G, F, 5)
— H H apaz H F(a’vi 3Pa; + M'Ui ,pai)
z&I Pai I'(apa; + Mpa;) p I'(w;;pa;)
1
y H H O‘pat,) H F(a”iz?P“iz + Mvil,pail)
=1 pa;, apa’z + Mllmn) vy F(a”il?p“iz)
!
X H H apa”) H F(a”"ﬁp% + Lvizvpail)
7
1=1 pas, apaz +Léa,1) v, F(avi,;pai,)
(24)
where
k
vz pa; Z Nij)z pair Mo, pa; = Milfz—'—plal Li}z pa; = Z Ngi pagis

2 : l } :
pal le ,Paj ) Pﬂz va P

and N/ pa; 1 the number of cases in the dataset DJ

for Wthh V; takes the value v; and its parents Pa;
takes the value pa;. Note that My, po; = Li,“pal
M., pa; 18 the number of cases in the whole dataset
Dy s for which V; takes the value v; and its parents Pa;
takes the value pa;. We will call the Bayesian scoring
metric P(Drs,G|F,¢) = P(Drs|G, F,§)P(G|§) (with
parameters auy,;pq; satisfying the likelihood equivalence
property) the BDe_TS metric.

§ M’Uz sPaqs

A TS is simply a series of TP’s. Accordingly, we say
that a causal diagram is compatible with a transition
sequence (Prg, F') if it is compatible with each TP in
the sequence. Likewise, two causal diagrams G and
G, are called transition sequence equivalent with re-
spect to a TS (Prs, F), or F-transition equivalent, if
every TS (Prgs, F') compatible with G is also compat-
ible with G2. The graphical conditions for TS equiva-
lence are given by the following theorem.

Theorem 4 (Transition Sequence Equivalence)

Two causal diagrams are F-transition equivalent if
and only if they have the same skeletons, the same
sets of v-structures, and the same sets of parents for
variables in F'.

A marginal likelihood P(ID|G, £) is said to satisfy the
property of F'-transition likelihood equivalence if for
two F-transition equivalent causal diagrams G; and

G27 P(]D)|G1,£) = P(D|G27€)

Theorem 5 The marginal likelihood P(Dys|G, F,§)
given by Eq. (24) is F-transition likelihood equivalent.

Proof: Similar to the proof of Theorem 2. O
Now assume that we have the knowledge that the

sequence of datasets, which will now be denoted by
Dgs, are from an ES with the focal variables F' =

(Vigs---, Vi, ). We then assume the following prior:
P(26|G. F.€)
ERCIAHSICLCINIENSN | ICZER )
iy
(Pewzic.o T s(ws - o))
iis
(Pebico TTowE—99).  (29)
ii

Eq. (25) is also an extension of Eq. (8), and says that
the set of parameters O, differs with ©% only by the

parameters in ‘I’J Using the Dirichlet distribution,
the marginal hkehhood is given by

P(Dgs|G, F, 5)
_ H H [(apa;) H I'(aw; pa; + My, pa;)
zeI pa; - \Qpa; Mpa,) 0 I'(wiipa;)
Oépaz,) F(avz‘l§Paz‘l + Kf},-l,pail)
XHH T(0pe, + KL )H (o, par)
=1 pay, pai, paig/) gy Vi, ipai,
y H H Oépaz,) H F(avz‘l§Paz‘l + Nf},-l ,pail)
=1 pay, Qpa;, + Néan) Vi, F(a”iﬁp“iz)
(26)
where
! _ 1
Kvil,pai, = My, pa;, — Nv” pag, pal, ZKU” pag,

Vig

(27)

A special case of ES is a series of experimental stud-
ies in which each variable in F' is fixed to some value
respectively. Then we use the prior given in Eq. (19)
for P(lI!fj|G,§),j =1,...,k, and we obtain

P(Dgs|G, do(F),¢§)

— H H O‘pal H F(avi;pai + M’Ui 7pai)
z&I pai I'(apa; + Mpa,) I'(w,;pa;)
X H H apai’) H F(avil;paiz + qu’iwp‘“l)
1
=1 pa;, F apa” + Kpaz'l) vy, F(avil;pail)
(28)

Eq. (28) has been given in [Cooper and Yoo, 1999].



Theorem 6 The marginal likelihood P(Dgs|G, F,§)
in (26) and P(Dgs|G,do(F),§) in (28) is F-transition
likelihood equivalent.

Proof: Similar to the proof of Theorem 2. O

In deriving Eq.s (24), (26), and (28), we have assumed
that mechanism changes occurred at different vari-
ables. The situations in which different mechanism
changes happen at a same variable can be easily in-
corporated. For example, in experimental studies, we
may set a variable to different values. For this case,
Eq. (28) is still applicable while K f)i”pail as expressed
in Eq. (27) should exclude all experimental data for
which V;, is set to some fixed value.

In summary, to compute the marginal likelihood for
dynamic data, we just need to provide an appropriate
prior P(Z¢|G, £) to reflect our knowledge on how those
data came about. We demonstrated this method with
several priors given in Egs. (8), (23), (25) and (19).

8 Experimental Results

We tested the BDe TP score with data generated
from a known network, the Cancer Bayesian net-
work.! We assumed a uniform prior distribution over
all possible network structures. We used the param-
eters: Quw,;pe; = 1/739;, where r; is the number of
states of V; and ¢; is the number of states of Pa;,
which satisfies the likelihood-equivalence requirement
[Heckerman et al., 1995].

A mechanism change at a variable V; is simulated as
follows. Consider parameters in 0pq,. If 0y, .pe; <
0.5 then let €}, .. = 0y;pa; + 0, else let 6, ., =
0v;1:pa; — 0, where ¢ is a parameter for adjusting the
change magnitude. The rest of the parameters in é’pai

are changed in proportional to their original values

. ! — N —
as: 0y, pa; = Wu,jipa;J = 2,...,1i, where a = (1-
/ . .
i1 :pai)/ (1 =0u;1:pa;). When we simulate a mechanism

change at V;, we change parameters in é'pai as above
for each pa; € Dm(Pa;).

The Cancer network is shown in Figure 1(a). It has
only 5 nodes, hence we can exhaustively go through
all 29,281 possible structures to compute the Bayesian
average of any hypothesis of interest and to find the
diagrams with the maximum posterior probabilities.
We computed the probability of each edge in the true
Cancer network as in Eq. (5), and compared the results
given by the BDe TP metric (15) with that by the
BDe metric (18). We experimented with ¢ values of
0.1 and 0.5, and focal variables B and A respectively,

"We used the version downloaded from the web site of
Norsys Software Corporation, http://www.norsys.com.
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Figure 1: (a)The Cancer network. (a)-(d) are indepen-
dence equivalent. (e)-(g) are B-trausition equivalent.
A mechanism change on A determines a unique causal
diagram (h).

and generated a TP dataset Drp = {D°, D'} for each
case by first generating 2000 cases from the original
network as DY, then simulating a mechanism change,
and finally generating another 2000 cases as D*.

The results are shown in Table 1 for the first N cases
in the dataset (N from D° and N from D!). When
using the BDe metric, the Cancer network and its
independence-equivalent diagrams of Figure 1(b)-(d)
obtain the maximum score when the sample size is
large enough, and they obtain a much larger posterior
than all other structures. P(A — B|D) goes to 0.75
because three of the four diagrams of Figure 1(a)-(d)
have the edge A — B and we assumed a uniform distri-
bution over structures. For the same reason, with the
BDe metric, P(A — C|D) goes to 1/2, P(B — D|D)
and P(C — D|D) goes to 1, and P(C — E|D) goes to
3/4. When using the BDe_TP metric and B as the fo-
cal variable, the posterior over structures concentrated
sharply around the three B-transition equivalent dia-
grams of Figure 1(e)-(g) when the sample size is large.
Hence with the increasing sample size, P(A — B|D)
goes to 1, P(A — C|D) goes to 1/3, and P(C — E|D)
goes to 2/3. With A as the focal variable, the BDe_TP
score concentrated sharply around the unique Cancer
network (see Figure 1(h)) for large sample size, and
the posteriors of all five edges go to 1.

9 Conclusion

We have demonstrated, using simulated data, that the
use of information about local changes may improve
the power of discovery up to the theoretical limits
set by statistical indistinguishability. The major ad-



Table 1: The posteriors of edges in the Cancer network.

6 = 0.1, B as the focal variable.

N P(A — B|D) P(A — (D) P(B — D|D) P(C — D|D) P(C — E|D)
BDeT'P BDe BDeTP BDe BDeT'P BDe BDelTP BDe BDelTP BDe
100 | 0.138 0.419 0.103 0.0394 0.997 0.87 0.853 0.86  0.552 0.441
200 | 0.335 0.482 0.354 0.136 1 0.993 0.983 0.993 0.607 0.403
500 | 0.604 0.686 0.43 0457 1 0.999 0.996 1 0.713 0.728
1000 | 0.999 0.733 0.338 0.49 1 1 1 1 0.667 0.74
2000 | 1 0.75  0.336 0.5 1 1 1 1 0.666 0.75
6 = 0.5, B as the focal variable.
100 | 0.999 0.238 0.0325 0.0141 1 0.484 0.284 0.293 0.0733 0.239
200 | 1 0.289 0.212 0.0516 1 0.663 0.83 0.546 0.0476 0.0106
500 | 1 0.658 0.495 0.651 1 0992 1 0.989 0.0476 0.00518
1000 | 1 0.726 0.342 0.547 1 1 1 1 0.645 0.538
2000 | 1 0.75 0.334 0.5 1 1 1 1 0.666 0.75
6 = 0.1, A as the focal variable.
N| P(A= BD P(AS CD) P(B = D|D) P(C = DD) P(C = ED)
BDe TP BDe BDeTP BDe BDeTP BDe BDeTP BDe BDeTP BDe
100 | 0.832 0.471 0.226 0.106  0.979 0.911 0.958 0.84  0.477 0.441
200 | 0.827 0.494 0.278 0.0367 0.985 0.978 0.964 0.972 0.389 0.206
500 | 0.997 0.747 0.961 0.505 1 1 1 1 0.697 0.736
1000 | 0.995 0.75  0.948 0.5 1 1 1 1 0.961 0.75
2000 | 1 0.75  0.99 0.5 1 1 1 1 0.986 0.75
6 = 0.5, A as the focal variable.
100 | 1 0.586 0.832 0.57 0.999 0.916 0.961 0.878 0.0882 0.0171
200 | 1 0.676 0.992 0.642 1 0999 1 0.999 0.47 0.113
500 | 1 0.746 1 0.507 1 1 1 1 0.963 0.739
1000 | 1 0.744 1 0.513 1 1 1 1 0.932 0.731
2000 | 1 075 1 0.5 1 1 1 1 0.994 0.75

vantage of the Bayesian treatment of local changes,
vis-a-vis the purely topological approach reported in
[Tian and Pearl, 2001], lies in that the Bayesian score
is less sensitive to topological errors (e.g., remote de-
scendants of focal variables that do not change). On
the other hand, the Bayesian method is more compu-
tation intensive; hybrid schemes remain to be investi-
gated.
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