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Abstract

The rationale behind the Bayesian paradigm consists on two ma-
jor assumptions: 1. Background information is valuable, and it is silly
not to use what one knows. 2. It is natural and advantageous to
express background information in the language of prior probabilities.
I will argue that the second assumption is false. Since the bulk of
human knowledge consists of causal, not statistical relationships, the
grammar of Bayesian priors is too crude for accomplishing the pri-
mary goal of the Bayesian program. To bring mathematics closer to
where knowledge resides, 1 propose to enrich the language of probabil-
ities with causal vocabulary, and to admit causal judgement into the
Bayesian repretoire.

Keywords: Causal inference, Knowledge representation, Struc-
tural equations 1models, graphical inethods, counterfactuals.
1 Introduction

I turned Bayesian in 1971, as soon as I began reading Savage’s inonograph
The Foundations of Statistical Inference (Savage, 1962). The arguinents were
unassailable: (i) It is plain silly to ignore what we know, (ii) It is natural



and useful to cast what we know in the language of probabilities, and (iii) If
our subjective probabilities are erroneous, their inpact will get washed out
in due tiine, as the nuinber of observations increases.

Thirty years later, I ain still a devout Bayesian in the sense of (i), but
I now doubt the wisdown of (ii) and I know that, in general, (iii) is false.
Like 1nost Bayesians, I believe that the knowledge we carry in our skulls,
be its origin experience, schooling or hearsay, is an invaluable resource in all
huiman activity, and that cownbining this knowledge with einpirical data is
the key to scientific enquiry and intelligent behavior. Thus, in this broad
sense, I aim a still a Bayesian. However, in order to be coinbined with data,
our knowledge 1nust first be cast in sowne forinal language, and what I have
cowne to realize in the past ten years is that the language of probability is
not suitable for the task; the bulk of huiman knowledge is organized around
causal, not probabilistic relationships, and the graimnar of probability calcu-
lus is insufficient for capturing those relationships. Specifically, the building
blocks of our scientific and everyday knowledge are eleinentary facts such as
“tnud does not cause rain” and “syiuaptoins do not cause disease” and those
facts, strangely enough, cannot be expressed in the vocabulary of probability
calculus. It is for this reason that I consider imyself only a half-Bayesian.

In the rest of the paper, I plan to review the dichotoimy between causal
and statistical knowledge, to show the liinitation of probability calculus in
handling the latter, to explain the iwmpact that this litnitation has had on
various scientific disciplines and, finally, 1 will express 1y vision for future
developinent in Bayesian philosophy: the enrichinent of personal probabilities
with causal vocabulary and causal calculus, so as to bring imatheinatical
analysis closer to where knowledge resides.

2 Statistics and Causality: A Brief Summary

The aiin of standard statistical analysis, typified by regression and other es-
tiumation techniques, is to infer parainmeters of a distribution froin saimples
drawn of that population. With the help of such paraineters, one can in-
fer associations aimong variables, estiimate the likelihood of past and future
events, as well as update the likelihood of events in light of new evidence or



new ineasurewnents. These tasks are imanaged well by statistical analysis so
long as experiinental conditions reinain the saine. Causal analysis goes one
step further; its aiim is to infer the structure (naimely, the stable building
blocks) of the data generation process. With the help of such structure, one
can deduce not only the likelihood of events under static conditions, but also
the dynauwnics of events under changing conditions. This capability includes
predicting the effect of actions (e.g., treatinents or policy decisions), identi-
fying causes of reported events, and assessing responsibility and attribution
(e.g., whether event = was necessary for the occurrence of event y).

Alinost by definition, causal and statistical concepts do not 1mix. Statis-
tics deals with behavior under uncertain, yet static conditions, while causal
analysis deals with changing conditions. There is nothing in the joint distri-
bution of syinptoins and diseases to tell us that curing the foriner would not
cure the latter. In general, there is nothing in a distribution function that
would tell us how that distribution would differ if external conditions were
to change—say froiun observational to experiinental setup—every conceivable
difference in the distribution would be perfectly cownpatible with the laws of
probability theory, no wnatter how slight the change in conditions. !

Drawing analogy to visual perception, the inforimation contained in
a probability function is analogous to a precise description of a three-
ditnensional object; it is sufficient for predicting how that object will be
viewed frown any angle outside the object, but it is insufficient for predicting
how the object will be viewed if inanipulated and squeezed by external forces.
The additional inforination needed for inaking such predictions (e.g., the ob-
ject’s resilience or elasticity) is analogous to the inforimation that causal
odels provide using the vocabulary of directed graphs and/or structural
equations. The role of this inforimation is to identify those aspects of the
world that reinain invariant when external conditions change, say due to an
action.

These considerations iinply that the slogan “correlation does not iumply

!Even the theory of stochastic processes, which provides probabilistic characterization
of dynamic phenomena, assumes a fixed density function over time-indexed variables.
There is nothing in such a function to tell us how it would be altered if external conditions
were to change. If a parametric family of distributions is used, we can represent some
changes by selecting a different set of parameters. But we are still unable to represent
changes that do not correspond to parameter selection; for example, restricting a variable
to a certain value, or forcing one variable to equal another.



causation” can be translated into a useful principle: one cannot substantiate
causal claiins frown associations alone, even at the population level—behind
every causal conclusion there imust lie soime causal assuinption that is not
testable in observational studies. Nancy Cartwright (1989) expressed this
principle as “no causes in, no causes out”, imeaning we cannot convert sta-
tistical knowledge into causal knowledge.

The deinarcation line between causal and statistical concepts is thus clear
and crisp. A statistical concept is any concept that can be defined in terims
of a distribution (be it personal or frequency-based) of observed variables,
and a causal concept is any concept about changes in variables that can-
not be defined froiwn the distribution alone. Exainples of statistical concepts
are: correlation, regression, dependence, conditional independence, associa-
tion, likelihood, collapsibility, risk ratio, odd ratio, and so on.? Exainples
of causal concepts are: randoinization, influence, effect, confounding, distur-
bance, spurious correlation, instruimental variables, intervention, explana-
tion, attribution, and so on. The purpose of this deimarcation line is not to
exclude causal concepts froun the province of statistical analysis but, rather,
to 1make it easy for investigators and philosophers to trace the assuinptions
that are needed for substantiating causal claiins. Every claiin invoking causal
concepts 1oust be traced to soine preinmises that invoke such concepts; it can-
not be derived or inferred froiun statistical claiias alone.

This principle inay sound obvious, alinost tautological, yet it has soine far
reaching consequences. It iinplies, for exainple, that any systeinatic approach
to causal analysis umust acquire new inmatheinatical notation for expressing
causal assuinptions and causal claiins. The vocabulary of probability calcu-
lus, with its powerful operators of conditionalization and 1narginalization, is
sitnply insufficient for expressing causal inforination. To illustrate, the syn-
tax of probability calculus does not perinit us to express the sitnple fact that
“syinptoins do not cause diseases”, let alone draw 1natheinatical conclusions
froin such facts. All we can say is that two events are dependent—imeaning
that if we find one, we can expect to encounter the other, but we cannot
distinguish statistical dependence, quantified by the conditional probability
P(disease|symptom) froun causal dependence, for which we have no expres-

2“The term ‘risk ratio’ and ‘risk factors’ have been used ambivalently in the literature;
some authors insist on a risk factor having causal influence on the outcome, and some
embrace factors that are merely associated with the outcome.”



sion in standard probability calculus. ® Scientists seeking to express causal
relationships tnust therefore suppleinent the language of probability with a
vocabulary for causality, one in which the syinbolic representation for the
relation “syinptoins cause disease” is distinct froun the syinbolic representa-
tion of “sywnptoins are associated with disease.” Only after achieving such
distinction can we label the forimer sentence “false,” and the latter “true.”

The preceding two requirewnents: (1) to coummence causal analysis with
untested,? judginentally based assuinptions, and (2) to extend the syntax of
probability calculus, constitute, in iny experience, the two 1main obstacles
to the acceptance of causal analysis ainong statisticians, philosophers and
professionals with traditional training in statistics. We shall now explore in
wnore detail the nature of these two barriers, and why they have been so
tough to cross.

2.1 The Barrier of Untested Assumptions

Many statistical studies are based on soine untested assuinptions. For exain-
ples, we often assuine that variables are inultivariate norinal, that the density
function has certain simoothness properties, or that a certain paraineter falls
in a given range. The question thus arises why innocent causal assuinptions,
say, that sywaptoins do not cause disease or that imud does not cause rain,
invite wmistrust and resistance ainong statisticians, especially of the Bayesian
school.

There are three fundainental differences between statistical and causal
assuinoptions. First, statistical assuimptions, even untested, are testable in
principle, given sufficiently large sainple and sufficiently fine ineasureinents.
Causal assutnptions, in contrast, cannot be verified even in principle, unless
one resorts to experiinental control. This difference is especially accentuated
in Bayesian analysis. Though the priors that Bayesians coimmonly assign to
statistical paraineters are untested quantities, the sensitivity to these priors
tends to ditminish with increasing sainple size. In contrast, sensitivity to
priors of causal paraineters, say the effect of sinoking on lung cancer, reinains

3 Attempts to define causal dependence by conditioning on the entire past (e.g., Suppes,
1970) violate the statistical requirement of limiting the analysis to “observed variables”,
and encounter other insurmountable difficulties (see Eells (1991), Pearl (2000), pp. 249-
257).

4By “untested” I mean untested using frequency data in nonexperimental studies.



finite regardless of (nonexperiinental) sainple size.

Second, statistical assuinptions can be expressed in the fainiliar language
of probability calculus, and thus assuine an aura of scholarship and scientific
respectability. Causal assuinptions, as we have seen before, are deprived of
that honor, and thus becoine itmnediate suspect of inforimal, anecdotal or
wnetaphysical thinking. Again, this difference becownes illuininated aimong
Bayesians, who are accustowned to accepting untested, judginental assuinp-
tions, and should therefore invite causal assuinptions with open arims—they
don’t. A Bayesian is prepared to accept experts judginent, however esoteric
and untestable, so long as the judginent is wrapped in the safety blanket of a
probability expression. Bayesians turn extrewnely suspicious when that saine
judginent is cast in plain English, as in “umud does not cause rain.” A typical
exawnple can be seen in Lindley and Novick’s (1981) treatinent of Siimpson’s
paradox.

Lindley and Novick showed that decisions on whether to use conditional
or wnarginal contingency tables should depend on the story behind the ta-
bles, that is, on one’s assuinption about how the tables were generated. For
exawnple, to decide whether a treatinent X = z is beneficial (Y = y) in a
population, one should cownpare ¥, P(y|z, z) to X, P(y|a’, z) if Z stands for
the gender of patients. In contrast, if Z stands for a factor that is affected
by the treatinent (say blood pressure), one should cowpare the inarginal
probabilities, P(y|z) vis-a-vis P(y|z'), and refrain frown conditioning on Z
(see (Pearl, 2000; pp. 174-182) for details). Rewnarkably, instead of at-
tributing this difference to the causal relationships in the story, Lindley and
Novick wrote: “We have not chosen to do this; nor to discuss causation, be-
cause the concept, although widely used, does not seein to be well-defined”
(p. 51). Thus, instead of discussing causation, they attribute the change
in strategy to another untestable relationship in the story—exchangeability
[DeFinetti, 1974] which is cognitively forimidable yet, at least forimally, can
be cast in a probability expression. In Section 4.2, we will return to discuss
this trend ainong Bayesians of equating “definability” with expressibility in
probabilistic language.

The third resistance to causal (vis-a-vis statistical) assuinptions steins
froun their intiimidating clarity. Assuinptions about abstract properties of
density functions or about conditional independencies ainong variables are,
congnitively speaking, rather opaque, hence they tend to be forgiven, rather
than debated. In contrast, assuwnptions about how variables cause one



another are shockingly transparent, and tend therefore to invite counter-
arguinients and counter-hypotheses. A co-reviewer on a paper I have read
recently offered the following objection to the causal imodel postulated by
the author:

“A thoughtful and knowledgeable epideiniologist could write
down two or 1more equally plausible 1models that leads to different
conclusions regarding confounding.”

Indeed, since the bulk of scientific knowledge is organized in causal scheina,
scientists are incredibly creative in constructing coinpeting alternatives to
any causal hypothesis, however plausible. Statistical hypotheses in contrast,
having been several levels reinoved frown our store of knowledge, are relatively
protected frown such challenge.

I conclude this subsection with a suggestion that statisticians’ suspicion of
causal assuinptions, vis-a-vis probabilistic assuinptions is unjustified. Con-
sidering the language of scientific knowledge, it inakes prefect sense that we
perinit scientists to articulate what they know in plain causal expressions,
and not force thewn to cownproinise reliability by converting to the “higher
level” language of prior probabilities, conditional independence and other
cognitively unfriendly terininology. °

2.2 The Barrier of New Notation

If reluctance to imaking causal assuinptions has been a hindrance to causal
analysis, finding a 1natheinatical way of expressing such assuinptions encoun-
tered a forimidable inental block. The need to adopt a new notation, foreign
to the province of probability theory, has been trauinatic to wmost persons
trained in statistics; partly because the adaptation of a new language is dif-
ficult in general, and partly because statisticians have been accustoined to
assuining that all phenoinena, processes, thoughts, and inodes of inference
can be captured in the powerful language of probability theory.®

®Similar observations were expressed by J. Heckman (2001).

6Commenting on my set(z) notation [Pearl, 1995a, b], a leading statistician wrote: “Is
this a concept in some new theory of probability or expectation? If so, please provide it.
Otherwise, ‘metaphysics’ may remain the leading explanation.” Another statistician, com-
menting on the do(z) notation used in Causality [Pearl, 2000a], insisted: “...the calculus
of probability is the calculus of causality.”



Not surprisingly, in the bulk of the statistical literature, causal claiins
never appear in the imatheinatics. They surface only in the verbal inter-
pretation that investigators occasionally attach to certain associations, and
in the verbal description with which investigators justify assuinptions. For
exainple, the assuinption that a covariate is not affected by a treatinent, a
necessary assutaption for the control of confounding [Cox, 1958], is expressed
in plain English, not in a inatheinatical equation.

In sowne applications (e.g., epidetmiology), the absence of notational dis-
tinction between causal and statistical dependencies seeined unnecessary, be-
cause investigators were able to keep such distinctions iwmplicitly in their
heads, and 1managed to confine the inatheinatics to conventional probability
expressions. In others, as in econoinics and the social sciences, investigators
rebelled against this notational tyrany by leaving imainstreain statistics and
constructing their own 1matheinatical inachinery (called Structural Equations
Models). Unfortunately, this inachinery has reinained a iaystery to outsiders,
and eventually becaine a mystery to insiders as well. 7

But such tensions could not reinain dorimant forever. “Every science is
only so far exact as it knows how to express one thing by one sign,” said
Augustus de Morgan in 1858 — the harsh consequences of not having the
signs for expressing causality surfaced in the 1980-90’s. Probleins such as the
control of confounding, the estiimation of treatinent effects, the distinction
between direct and indirect effects, the estiination of probability of causation,
and the cownbination of experiimental and nonexperiinental data becaine a
source of endless disputes aimong the users of statistics, and statisticians
could not coine to the rescue. (Pearl, 2000) describes several such disputes,
and why they could not be resolved by conventional statistical inethodology.

"Most econometric texts in the last decade have refrained from defining what an eco-
nomic model is, and those that attempted a definition, erroneously view structural equa-
tions models as compact representations of density functions (see Pearl, 2000, pp. 135-138).



3 Languages for Causal Analysis

3.1 The language of diagrams and structural equations

How can one express inatheinatically the coummon understanding that syinp-
towns do not cause diseases? The earliest atteinpt to forimulate such relation-
ship 1natheinatically was inade in the 1920’s by the geneticist Sewall Wright
(1921). Wright used a cowbination of equations and graphs to coumpunicate
causal relationships. For exainple, if X stands for a disease variable and Y
stands for a certain sywptoin of the disease, Wright would write a linear
equation:

y=azr+u (1)

supplewnented with the diagrain X — Y, where x stands for the level (or
severity) of the disease, y stands for the level (or severity) of the sywptoun,
and u stands for all factors, other than the disease in question, that could
possibly affect Y (U is called “exogeneous”; “background”, or “disturbance”.)
The diagrain encodes the possible existence of (direct) causal influence of X
on Y, and the absence of causal influence of Y on X, while the equation
encodes the quantitative relationships aimong the variables involved, to be
deterinined froin the data. The paraineter a in the equation is called a “path
coefficient” and it quantifies the (direct) causal effect of X on Y given the
nuinerical value of a, the equation claiins that, ceteris paribus, a unit increase
in X would result in an a-unit increase of Y. If correlation between X and
U is presutned possible, it is custowmary to add a double arrow between X
and Y.

The asyiumnetry induced by the diagrain renders the equality sign in Eq.
(1) different froim algebraic equaltity, reseinbling instead the assigninent syin-
bol ( :=) in prograimning languages. Indeed, the distinctive characteristic
of structural equations, setting thein apart froin algebraic equations, is that
they stand for a value-assigninent process — an autonoimous tnechanisin by
which the value of Y (not X) is deterinined. In this assigninent process, Y is

coumnitted to track changes in X, while X is not subject to such coimmnitinent
8

8(Clearly, if we intevene on X, Y would continue to track changes in X. Not so when we
intervene on Y, X is not commitment to track changes in Y. Such intervention would alter



Wright’s inajor contribution to causal analysis, aside froun introducing the
language of path diagrains, has been the developinent of graphical rules for
writing down (by inspection) the covariance of any pair of observed variables
in terins of path coefficients and of covariances ainong disturbances. Under
certain causal assuwnptions, (e.g. if Cov(U, X) = 0), the resulting equations
1nay allow one to solve for the path coefficients in terin of observed covariance
terins only, and this aimounts to inferring the wmagnitude of (direct) causal
effects froin observed, nonexperiinental associations, assuining of course that
one is prepared to defend the causal assuinptions encoded in the diagrain.

The causal assuinptions ewnbdied in the diagrain (e.g, the absence of
arrow fromn Y to X, or Cov(U,X) = 0) are not generally testable frown
nonexperitnental data. However, the fact that each causal assuinption in
isolation cannot be tested does not inean that the suin total of all causal as-
suiaptions in a 1nodel does not have testable iimplications. The chain 1model
X — Y — Z for exainple, encodes 1nany causal assuinptions, each cor-
responding to a inissing arrow or a inissing double-arrow between a pair of
variables. None of those assuinptions is testable in isolation, yet the totality
of all those assuinptions iwnplies that Z is unassociated with X, conditioned
on Y. Such testable iinplications can be read off the diagrains (see [Pearl
2000, pp. 16-19]), and these constitute the only opening through which the
assuwaption eiwnbodies in structural equation imodels can be tested in obser-
vational studies. Every conceivable statistical test that can be applied to the
wnodel is entailed by those iwaplications.

3.2 From path-diagrams to do-calculus

Structural equation wodeling (SEM) has been the inain vehicle for causal
analysis in econoinics, and the behavioral and social sciences [Goldberger
1972; Duncan 1975]. However, the bulk of SEM inethodology was devel-
oped for linear analysis and, until recently, no coinparable inethodology has
been devised to extend its capabilities to imodels involving discrete variables,
nonlinear dependencies, or situations in which the functional forium of the
equations is unknown. A central requireinent for any such extension is to de-
tach the notion of “effect” froin its algebraic representation as a coefficient in
an equation, and redefine “effect” as a general capacity to transinit changes

the assignment mechanism for Y and, naturally, would cause the equality to be violated.

10



atnong variables. One such extension, based on sitmulating hypothetical in-
terventions in the wnodel, is presented in Pearl (1995a, 2000)

The central idea is to exploit the invariant characteristics of structural
equations without coimnitting to a specific functional forin. For exaimple,
the non-parainetric interpretation of the chain imodel 7 — X — Y
corresponds to a set of three functions, each corresponding to one of the
variables:

z = fz(w)
x = fx(z,v) (2)
Yy = fY(xau)

together with the assuinption that the background variables W,V U (not
shown in the chain) are jointly independent but, otherwise, arbitrarily dis-
tributed. Each of these functions represents a causal process (or wnechanisin)
that deterinines the value of the left variable (output) froun those on the
right variables (input). The absence of a variable froin the right hand side of
an equations encodes the assuinption that it has no direct effect on the left
variable. For exainple, the absence of variable Z froin the arguinents of fy
indicates that variations in Z will leave Y unchanged, as long as variables U
and X reiwnain constant. A systeiwn of such functions are said to be structural
(or modular) if they are asswined to be autonownous, that is, each function is
invariant to possible changes in the forin of the other functions [Sitmon 1953;
Koopimans 1953].

This feature of invariance perinits us to use structural equation as a basis
for inodeling actions and counterfactuals. This is done through a imatheinat-
ical operator called do(x) which siimulates physical interventions by deleting
certain functions frown the 1nodel, replacing thein by constants, while keeping
the rest of the inodel unchanged. For exainple, to represent an intervention
that sets the value of X to x, the wnodel for Eq. (2) would becoine

z = fz(w)
T = (3)
Y= fy(SC,U)

The distribution of Y and Z calculated frown this inodified 1nodel characterizes
the effect of the action do(X = x¢) and is denoted as P(y, z|do(z)). It is not

11



hard to show that, as expected, the wnodel of Eq. (2) yields P(y|do(x¢)) =
P(y|zo) and P(z|do(xg)) = P(z) regardless of the functions fx, fy and fy.
Additional features of this transforimation are discussed in the Appendix; see
(Pearl, 2000; chapter 7) for full details.

The 1main task of causal analysis is to infer causal quantities froun the
observed distribution P(x,y, z), or froun sainples of that distribution. Such
analysis requires 1natheinatical ineans of transforining causal quantities, rep-
resented by expressions such as P(y|do(x)), into do-free expressions deriv-
able froun P(z,z,y), since only do-free expressions are estiimable froun non-
experitnental data. When such a transforination is feasible, we say that the
causal quantity is identifiable. A calculus for perforining such transforina-
tions, called do-calculus, was developed in [Pearl, 1995a]. Rewnarkably, the
rules governing this calculus depend inerely on the topology of the diagraim;
it takes no notice of the functional forin of the equations, nor of the distri-
bution of the disturbance terins. This calculus perinits the investigator to
inspect the causal diagrain and

1. Decide whether the assuinptions einbodied in the 1model are sufficient
to obtain consistent estiinates of the target quantity;

2. Derive (if the answer to itewn 1 is affirinative) a closed-forin expression
for the target quantity in terins of distributions of observed quantities;
and

3. Suggest (if the answer to itewn 1 is negative) a set of observations and
experiinents that, if perforined, would render a consistent estiimate fea-
sible.

4 On the Definition of Causality

In this section, I return to discuss concerns expressed by soine Bayesians that
causality is an undefined concept and that, although the do-calculus can be
an effective inatheinatical tool in certain tasks, it does not bring us any closer
to the deep and ultiinate understanding of causality, one that is based solely
on classical probability theory.

12



4.1 Is causality reducible to probabilities?

Unfortunately, aspirations for reducing causality to probability are both un-
tenable and unwarranted. Philosophers have given up such aspirations twenty
years ago, and were forced to adinit extra-probabilistic priwmitives (such as
“counterfactuals” or “causal relevance”) into the analysis of causation (see
Eells (1991) and Pearl (2000), Section 7.5). The basic reason was alluded to
in Section 2: probability theory deals with beliefs about an uncertain, yet
static world, while causality deals with changes that occur in the world itself,
or in one’s theory of the world. Causality deals with how probability func-
tions change in response to new conditions and interventions that originate
froun outside the probability space, while probability theory, even when given
a fully specified joint density function on all (teinporally-indexed) variables
in the space, cannot tell us how that function would change under external
interventions. Thus, “doing” is not reducible to “seeing”, and there is no
point trying to fuse the two together.

Many philosophers have aspired to show that the calculus of probabilities,
endowed with a tiime dynawnic, would be sufficient for causation (Suppes,
1970). A well known dewnonstration of the iumpossibility of such reduction
(following Otte (1981)) goes as follows. Consider a switch X that turns
on two lights, Y and Z, and assuine that, due to differences in location, Z
turns on a split second before Y. Consider now a variant of this exainple
where the switch X activates Z, and Z, in turns, activates Y. This case is
probabilistically identical to the previous one, because both the functional
and teinporal relationships are identical. Yet few people would perceive the
causal relationships to be the saine in the two situations; the latter represents
cascaded process, X — Z — Y, while the forimer represents a branching
process, Y «— X — Z. The difference shows, of course, when we consider
interventions; intervening on Z would affect Y in the cascaded case, but not
in the branching case.

The preceding exainple illustrates the essential role of mechanisms in
defining causation. In the branching case, although all three variables are
syumnetrically constrained by the functional relationships: X =Y, X =Y,
Z =Y, these relationships in theinselves do not reveal the inforination that
the three equalities are sustained by only two imechanisins, ¥ = X and
7 = X, and that the first equality would still be sustained when the second
is violated. A set of imechanisims, each represented by an equation, is not

13



equivalent to the set of algebraic equations that can be assewnbled frown those
wnechanisins. Matheiwnatically, the latter is defined as one set of n equations,
whereas the foriner is defined as n separate sets, each containing one equation.
These are two distinct imatheinatical objects that adimit two distinct types
of solution-preserving operations. The calculus of causality deals with the
dynainics of such imodular systeiuns of equations, where the addition and
deletion of equations represent interventions (see Appendix).

4.2 1Is causality well-defined?

JFromn a inatheinatical perspective, it is a inistake to say that causality is
undefined. The do calculus, for exainple, is based on two well-defined 1nathe-
inatical objects: a probability function P and a directed acyclic graph (DAG)
D:; the first is standard in statistical analysis while the second is a new-
cowner that tells us (in a qualitative, yet forinal language) which inechanisins
would rewnain invariant to a given intervention. Given these two inathe-
wnatical objects, the definition of “cause” is clear and crisp; variable X is a
probabilistic-cause of variable Y if P(y|do(x)) # P(y) for soiwne values x and
y. Since each of P(y|do(z)) and P(y) is well-defined in terins of the pair
(P, D), the relation “probabilistic cause” is, likewise, well-defined. Siimilar
definitions can be constructed for other nuances of causal discourse, for exain-
ple, “causal effect”, “direct cause”, “indirect cause” “event-to-event cause”,
“scenario-specific cause”, “necessary cause”, “sufficient cause”, “likely cause”
and “actual cause” (see (Pearl, 2000), pages 222-3, 286-7, 319; sowne of these
definitions invoke functional imodels).

Not all statisticians/philosophers are satisfied with these imatheinatical
definitions. Sowme suspect definitions that are based on unfainiliar non-
algebraic objects (i.e., the DAG) and sowne inistrust abstract definitions that
are based on unverifiable 1nodels. Indeed, no inatheinatical imachinery can
ever verify whether a given DAG really represents the causal inechanisins
that generate the data — such verification is left either to huinan judgiment
or to experiinental studies that invoke interventions. I subinit, however, that
neither suspicion nor inistrust are justified in the case at hand; DAGs are no
less forimal than inatheinatical equations, and questions of 1model verification
need be kept apart froun those of conceptual definition.

Consider, for exainple, the concept of a distribution mean. Even non-
Bayesians perceive this notion to be well-defined, for it can be coinputed froin
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any given (non-pathological) distribution function, even before ensuring that
we can estitnate that distribution frown the data. We would certainly not
declare the 1mean “ill-defined” if, for any reason, we find it hard to estiinate
the distribution frown the available data. Quite the contrary; by defining the
imean in the abstract, as a functional of any hypothetical distribution, we
can often prove that the defining distribution need not be estiimated at all,
and that the imean can be estiinated (consistently) directly froun the data.
Reiwnarkably, by taking seriously the abstract (and untestable) notion of a
distribution, we obtain a lisence to ignore it. An analogous logic applies to
causation. Causal quantities are first defined in the abstract, using the pair
(P, D), and the abstract definition then provides a theoretical frainework for
deciding, given the type of data available, which of the assuinptions einbodied
in the DAG are ignorable, and which are absolutely necessary for establishing
the target causal quantity froin the data. °

The separation between concept definition and 1nodel verification is even
umore pronounced in the Bayesian frainework, where purely judginental con-
cepts, such as the prior distribution of the imean, are perfectly acceptable,
as long as they can be assessed reliably froiun one’s experience or knowledge.
Dennis Lindley has reimarked recently (personal coummunication) that “causal
umechanisins 1may be easier to cowme by than one imight initially think”. In-
deed, froun a Bayesian perspective, the newcoiner concept of a DAG is not
an alien at all — it is at least as legitiimate as the probability assessiments
that a Bayesian decision-tnaker pronounces in constructing a decision tree.
In such construction, the probabilities that are assigned to branches eina-
nating froun a decision variable X correspond to assessinents of P(y|do(z))
and those assigned to branches einanating froun a chance variable X corre-
spond to assessiments of P(y|x). If a Bayesian decision-inaker is free to as-
sess P(y|x) and P(y|do(z)) in any way, as separate evaluations, the Bayesian
should also be perinitted to express his/her conception of the imechanisios
that entail those evaluations. It is only by envisioning these imechanisins
that a decision tmaker can generate a coherent list of such a vast nuiaber of
P(y|do(x)) type assessinents.’’ The structure of the DAG can certainly be

9T have used a similar logic in defense of counterfactuals (Pearl, 2000a), which Dawid
(2000) deemed dangerous on account of being untestable. (See, also Dawid (2001), this
volume.) Had Bernoulli been constrained by Dawid’s precautions, the notion of a “distri-
bution” would have had to wait for another adventurous metaphysician to be created.

19Coherence requires, for example, that for any =z, y, and z, the inequality
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recovered frown judginents of the forun P(y|do(x)) and, conversely, the DAG
cownbined with a probability function P dictates all judginents of the forin
P(y|do(x)). Accordingly the structure of the DAG can be viewed as a qual-
itative parsitmonious scheine of encoding and imaintaining coherence aimong
those assessiments. And there is no need to translate the DAG into the lan-
guage of probabilities to render the analysis legitiinate. Adding probabilistic
veneer to the imechanisins portrayed in the DAG 1nay wnake the do calculus
appear tnore traditional, but would not change the fact that the objects of
assessiment are still causal imechanisims, and that these objects have their
own special graimnar of generating predictions about the effect of actions.
In sutmnary, recalling the unltiinate Bayesian inission of fusing judginent, it
is not the language in which we cast judginents that legitiinizes the analy-
sis, but whether those judginents can reliably be assessed froin our store of
knowledge and froin the peculiar forin in which this knowledge is organized.

If it were not for loss of reliability (of judgiment), one could easily trans-
late the inforimation conveyed in a DAG into purely probabilistic forimu-
lae, using hypothetical variables. (Translation rules are provided in (Pearl,
2000, p. 232) Indeed, this is how the potential-outcoine approach of Neyinan
[Neyiman, 1923Jand Rubin [Rubin, 1974] has achieved statistical legitiimacy:
judgiments about causal relationships aimong observables are expressed as
statetnents about probability functions that involve inixtures of observable
and counterfactual variables. The difficulty with this approach, and the inain
reason for its slow acceptance in statistics, is that judginents about counter-
factuals are imuch harder to assess than judginents about causal inechanisins.
For instance, to coummunicate the siinple assuinption that syinptoins do not
cause diseases, we would have to use a rather roundabout expression and say
that the probability of the counterfactual event “disease had syinptoins been
absent” is equal to the probability of “disease had syiuaptoins been present”.
Judginents of conditional independencies aimong such counterfactual events
are even harder for researchers to comnprehend or to evaluate.

P(y|do(z),do(z)) > P(y,z|do(z)) be satisfied. This follows from the property of com-
position (see Appendix, Eq. (6), or (Pearl, 2000; pp. 229)
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5 Summary

This paper calls attention to a basic conflict between inission and practice
in Bayesian imethodology. The 1imission is to express prior knowledge 1nath-
ewnatically and reliably so as to assist the interpretation of data, hence the
acquisition of new knowledge. The practice is to express prior knowledge
as prior probabilities — too crude a vocabulary, given the grand imission.
Considerations of reliability (of judgeinent) call for enriching the language of
probabilities with causal vocabulary and for adinitting causal judginents into
the Bayesian repertoire. The inatheinatics for interpreting causal judginents
has imatured, and tools for using such judginents in the acquisition of new
knowledge have been developed. The grounds are now ready for inission-
oriented Bayesianisim.

6 Appendix - Causal Models, Actions and
Counterfactuals

This appendix presents a brief swumnary of the structural-equation seinantics
of causation and counterfactuals as defined in Balke and Pearl (1995), Galles
and Pearl (1997, 1998), and Halpern (1998). For detailed exposition of the
structural account and its applications see [Pearl, 2000a].

Causal 1nodels are generalizations of the structural equations used in en-
gineering, biology, econownics and social science.'* World knowledge is repre-
sented as a inodular collection of stable and autonoinous relationships called
“tnechanisins,” each represented as a function, and changes due to interven-
tions or uninodelled eventualities are treated as local inodifications of these
functions.

A causal 1nodel is a natheinatical object that assigns truth values to
sentences involving causal relationships, actions, and counterfactuals. We
will first define causal 1models, then discuss how causal sentences are evaluated
in such 1nodels. We will restrict our discussion to recursive (or feedback-free)

1nodels; extensions to non-recursive inodels can be found in Galles and Pearl
(1997, 1998) and Halpern (1998).

HSimilar models, called “neuron diagrams” [Lewis, 1986, p. 200; Hall, 1998] are used
informally by philosophers to illustrate chains of causal processes.
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Definition 6.1 (Causal model)
A causal 1nodel is a triple

M= (UV,F)
where

(1) U is a set of variables, called exogenous. (These variables will represent
background conditions, that is, variables whose values are determined
outside the model.)

(ii) V is an ordered set {Vy,Va,...,V,} of variables, called endogenous.
(These represent variables that are determined in the model, namely,
by variables in U UV.)

(iii) F' is a set of functions {fi, fo, ..., fn} where each f; is a mapping from
Ux (Vi x...x Vi) toV;. In other words, each f; tells us the value
of Vi given the values of U and all predecessors of V;. Symbolically, the
set of equations F' can be represented by writing *

vi:fi(pai,ui) izl,...,n

where pa; is any realization of the unique minimal set of variables PA;
in V' (connoting parents) sufficient for representing f;.'> Likewise,
U; C U stands for the unique minimal set of variables in U that is
sufficient for representing f;.

Every causal inodel M can be associated with a directed graph, G(M), in
which each node corresponds to a variable in V' and the directed edges point
froun wewmbers of PA; toward V; (by convention, the exogenous variables
are usually not shown explicitly in the graph). We call such a graph the
causal graph associated with M. This graph nerely identifies the endogenous
variables PA; that have direct influence on each V; but it does not specify
the functional forim of f;.

12We use capital letters (e.g., X, Y) as names of variables and sets of variables, and
lower-case letters (e.g., x, y) for specific values (called realizations) of the corresponding
variables.

13A set of variables X is sufficient for representing a given function y = f(z,2) if f is
trivial in Z—that is, if for every z, z, 2’ we have f(z,z) = f(z, 2').
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For any causal inodel, we can define an action operator, do(x), which,
froiun a conceptual viewpoint, sitnulates the effect of external action that sets
the value of X to x and, froin a forinal viewpoint, transforins the inodel into
a submodel, that is, a causal 1model containing fewer functions.

Definition 6.2 (Submodel)

Let M be a causal model, X be a set of variables in V', and x be a particular
assignment of values to the variables in X. A subinodel M, of M 1is the
causal model

Mx: <U:‘/:F:c>

where

Fo={fi:Vi¢ X} U{X =z} (4)

In words, F, is forined by deleting froun F' all functions f; corresponding
to wneiwnbers of set X and replacing thein with the set of constant functions
X =u.

If we interpret each function f; in F' as an independent physical inecha-
nisin and define the action do(X = z) as the 1niniinal change in M required
to imake X = x hold true under any wu, then M, represents the imodel that
results frown such a iminiimal change, since it differs froun M by only those
imechanisins that directly deterinine the variables in X. The transforimation
froom M to M, inodifies the algebraic content of F', which is the reason for
the naine modifiable structural equations used in [Galles and Pearl, 1998].'4

Definition 6.3 (Effect of action)

Let M be a causal model, X be a set of variables in V', and x be a particular
realization of X. The effect of action do(X = x) on M is given by the
submodel M.

Definition 6.4 (Potential response)
Let Y be a variable in V', let X be a subset of V', and let u be a particular

HMStructural modifications date back to Marschak (1950) and Simon (1953). An ex-
plicit translation of interventions into “wiping out” equations from the model was first
proposed by Strotz and Wold (1960) and later used in Fisher (1970), Sobel (1990), Spirtes
et al. (1993), and Pearl (1995). A similar notion of sub-model is introduced in Fine (1985),
though not specifically for representing actions and counterfactuals.
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value of U. The potential response of Y to action do(X = x) in situation u,
denoted Yy (u), is the (unique) solution for'Y of the set of equations F.

We will confine our attention to actions in the forin of do(X = z). Con-
ditional actions, of the forin “do(X = z) if Z = 2” can be forunalized us-
ing the replaceinent of equations by functions of Z, rather than by con-
stants [Pearl, 1994]. We will not consider disjunctive actions, of the forin
“do(X =z or X = a')”, since these cownplicate the probabilistic treatiment
of counterfactuals.

Definition 6.5 (Counterfactual)

Let'Y be a variable in'V, and let X be a subset of V. The counterfactual ez-
pression “The value that Y would have obtained, had X been x” is interpreted
as denoting the potential response Y (u).

Definition 5 thus interprets the counterfactual phrase “had X been z” in
terins of a hypothetical external action that imodifies the actual course
of history and iwmposes the condition “X = 2”7 with inminiinal change of
inechanisims.  This is a crucial step in the seimantics of counterfactuals
[Balke and Pearl, 1994, as it perwnits = to differ froun the actual value X (u)
of X without creating logical contradiction; it also suppresses abductive in-
ferences (or backtracking) froun the counterfactual antecedent X = z.'°

It can easily be shown [Galles and Pearl, 1997] that the counterfactual
relationship just defined, Y, (u), satisfies the following two properties:
Effectiveness:
For any two disjoint sets of variables, Y and W, we have

Yyu(u) = y. (5)

In words, setting the variables in W to w has no effect on Y, once we set the
value of Y to y.
Composition:
For any two disjoint sets of variables X and W, and any set of variables Y,

Wa(u) = w == You(u) = Yo (u). (6)

15Simon and Rescher (1966, p. 339) did not include this step in their account of coun-
terfactuals and noted that backward inferences triggered by the antecedents can lead to
ambiguous interpretations.
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In words, once we set X to x, setting the variables in W to the saine values,
w, that they would attain (under x) should have no effect on Y. Further-
wnore, effectiveness and cownposition are complete whenever M is recursive
(i.e., G(M) is acyclic) [Galles and Pearl, 1998, Halpern, 1998], that is, every
property of counterfactuals that follows froiun the structural inodel seinantics
can be derived by repeated application of effectiveness and cotnposition.
A corollary of cowposition is a property called consistency by
[Robins, 1987]:
(X(u) =2) = (Yo(u) =Y (u)) (7)

Consistency states that, if in a certain context u we find variable X at value
x, and we intervene and set X to that saine value, x, we should not expect
any change in the response variable Y. Cowposition and consistency are
used in several derivations of Section 3.

The structural forinulation generalizes naturally to probabilistic systeins,
as is seen below.

Definition 6.6 (Probabilistic causal model)
A probabilistic causal inodel is a pair

(M, P(u))

where M is a causal model and P(u) is a probability function defined over

the domain of U.

P(u), together with the fact that each endogenous variable is a function
of U, defines a probability distribution over the endogenous variables. That
is, for every set of variables Y C V', we have

Py)=PY =y)= > P(u) (8)
fu | Y(w=y)

The probability of counterfactual stateinents is defined in the saine inanner,
through the function Y, (u) induced by the subimodel M,. For exainple, the
causal effect of x on y is defined as:

PY,=y)= > P (9)
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Likewise, a probabilistic causal imodel defines a joint distribution on coun-
terfactual statewnents, i.e., P(Y, =y, Z, = z) is defined for any sets of vari-
ables Y, X, Z, W, not necessarily disjoint. In particular, P(Y, = y, X = 2')
and P(Y, =y,Y, = y') are well defined for z # ', and are given by

P(Y, =y, X =) = > P (10)

{ulYe(uw)=y & X(u)=a'}

and
P(Y,=yYy=y)= ) P(u). (11)
{u | Ya(u)=y & Yy (u)=y'}

When 2 and 2’ are incownpatible, Y, and Y, cannot be ineasured siimul-
taneously, and it imay seein 1meaningless to attribute probability to the joint
statetnent “Y would be y if X = x and Y would be 3 if X = 2’.” Such
concerns have been a source of recent objections to treating counterfactu-
als as jointly distributed randown variables [Dawid, 2000]. The definition of
Y, and Y,/ in terins of two distinct subinodels, driven by a standard proba-
bility space over U, deinonstrates that joint probabilities of counterfactuals
have solid 1matheinatical and conceptual underpinning and, imoreover, these
probabilities can be encoded rather parsitmoniously using P(u) and F.
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