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Abstract: This review presents empirical researcherswith recent advances
in causal inference, and stresses the paradigmatic shifts that must be un-
dertaken in moving from traditional statistical analysis to causal analysis of
multivariate data. Special emphasis is placed on the assumptions that un-
derly all causal inferences, the languages used in formulating those assump-
tions, the conditional nature of all causal and counterfactual claims, and
the methods that have been developed for the assessment of such claims.
These advances are illustrated using a general theory of causation based
on the Structural Causal Model (SCM) described in Pearl (2000a), which
subsumes and unifies other approaches to causation, and provides a coher-
ent mathematical foundation for the analysis of causes and counterfactuals.
In particular, the paper surveys the development of mathematical tools for
inferring (from a combination of data and assumptions) answers to three
types of causal queries: (1) queries about the effects of potential interven-
tions, (also called “causal effects” or “policy evaluation”) (2) queries about
probabilities of counterfactuals, (including assessment of “regret,” “attri-
bution” or “causes of effects”) and (3) queries about direct and indirect
effects (also known as “mediation”). Finally, the paper defines the formal
and conceptual relationships between the structural and potential-outcome
frameworks and presents tools for a symbiotic analysis that uses the strong
features of both.
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1. Introduction

The questions that motivate most studies in the health, social and behavioral
sciences are not associational but causal in nature. For example, what is the
efficacy of a given drug in a given population? Whether data can prove an
employer guilty of hiring discrimination? What fraction of past crimes could
have been avoided by a given policy? What was the cause of death of a given
individual, in a specific incident? These are causal questions because they require
some knowledge of the data-generating process; they cannot be computed from
the data alone, nor from the distributions that govern the data.

Remarkably, although much of the conceptual framework and algorithmic
tools needed for tackling such problems are now well established, they are hardly
known to researchers who could put them into practical use. The main reason is
educational. Solving causal problems systematically requires certain extensions
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in the standard mathematical language of statistics, and these extensions are not
generally emphasized in the mainstream literature and education. As a result,
large segments of the statistical research community find it hard to appreciate
and benefit from the many results that causal analysis has produced in the past
two decades. These results rest on contemporary advances in four areas:

1. Counterfactual analysis
2. Nonparametric structural equations
3. Graphical models
4. Symbiosis between counterfactual and graphical methods.

This survey aims at making these advances more accessible to the general re-
search community by, first, contrasting causal analysis with standard statistical
analysis, second, presenting a unifying theory, called “structural,” within which
most (if not all) aspects of causation can be formulated, analyzed and compared,
thirdly, presenting a set of simple yet effective tools, spawned by the structural
theory, for solving a wide variety of causal problems and, finally, demonstrating
how former approaches to causal analysis emerge as special cases of the general
structural theory.

To this end, Section 2 begins by illuminating two conceptual barriers that im-
pede the transition from statistical to causal analysis: (i) coping with untested
assumptions and (ii) acquiring new mathematical notation. Crossing these bar-
riers, Section 3.1 then introduces the fundamentals of the structural theory
of causation, with emphasis on the formal representation of causal assump-
tions, and formal definitions of causal effects, counterfactuals and joint prob-
abilities of counterfactuals. Section 3.2 uses these modeling fundamentals to
represent interventions and develop mathematical tools for estimating causal
effects (Section 3.3) and counterfactual quantities (Section 3.4). These tools are
demonstrated by attending to the analysis of instrumental variables and their
role in bounding treatment effects in experiments marred by noncompliance
(Section 3.5).

The tools described in this section permit investigators to communicate causal
assumptions formally using diagrams, then inspect the diagram and

1. Decide whether the assumptions made are sufficient for obtaining consis-
tent estimates of the target quantity;

2. Derive (if the answer to item 1 is affirmative) a closed-form expression for
the target quantity in terms of distributions of observed quantities; and

3. Suggest (if the answer to item 1 is negative) a set of observations and ex-
periments that, if performed, would render a consistent estimate feasible.

Section 4 relates these tools to those used in the potential-outcome frame-
work, and offers a formal mapping between the two frameworks and a symbiosis
(Section 4.3) that exploits the best features of both. Finally, the benefit of this
symbiosis is demonstrated in Section 5, in which the structure-based logic of
counterfactuals is harnessed to estimate causal quantities that cannot be de-
fined within the paradigm of controlled randomized experiments. These include
direct and indirect effects, the effect of treatment on the treated, and ques-
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tions of attribution, i.e., whether one event can be deemed “responsible” for
another.

2. From association to causation

2.1. The basic distinction: Coping with change

The aim of standard statistical analysis, typified by regression, estimation, and
hypothesis testing techniques, is to assess parameters of a distribution from
samples drawn of that distribution. With the help of such parameters, one can
infer associations among variables, estimate beliefs or probabilities of past and
future events, as well as update those probabilities in light of new evidence
or new measurements. These tasks are managed well by standard statistical
analysis so long as experimental conditions remain the same. Causal analysis
goes one step further; its aim is to infer not only beliefs or probabilities under
static conditions, but also the dynamics of beliefs under changing conditions,
for example, changes induced by treatments or external interventions.

This distinction implies that causal and associational concepts do not mix.
There is nothing in the joint distribution of symptoms and diseases to tell us
that curing the former would or would not cure the latter. More generally, there
is nothing in a distribution function to tell us how that distribution would differ
if external conditions were to change—say from observational to experimental
setup—because the laws of probability theory do not dictate how one property
of a distribution ought to change when another property is modified. This in-
formation must be provided by causal assumptions which identify relationships
that remain invariant when external conditions change.

These considerations imply that the slogan “correlation does not imply cau-
sation” can be translated into a useful principle: one cannot substantiate causal
claims from associations alone, even at the population level—behind every
causal conclusion there must lie some causal assumption that is not testable
in observational studies.1

2.2. Formulating the basic distinction

A useful demarcation line that makes the distinction between associational and
causal concepts crisp and easy to apply, can be formulated as follows. An as-
sociational concept is any relationship that can be defined in terms of a joint
distribution of observed variables, and a causal concept is any relationship that
cannot be defined from the distribution alone. Examples of associational con-
cepts are: correlation, regression, dependence, conditional independence, like-
lihood, collapsibility, propensity score, risk ratio, odds ratio, marginalization,

1The methodology of “causal discovery” (Spirtes et al. 2000; Pearl 2000a, Chapter 2) is
likewise based on the causal assumption of “faithfulness” or “stability,” a problem-independent
assumption that concerns relationships between the structure of a model and the data it
generates.
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conditionalization, “controlling for,” and so on. Examples of causal concepts are:
randomization, influence, effect, confounding, “holding constant,” disturbance,
spurious correlation, faithfulness/stability, instrumental variables, intervention,
explanation, attribution, and so on. The former can, while the latter cannot be
defined in term of distribution functions.

This demarcation line is extremely useful in causal analysis for it helps in-
vestigators to trace the assumptions that are needed for substantiating various
types of scientific claims. Every claim invoking causal concepts must rely on
some premises that invoke such concepts; it cannot be inferred from, or even
defined in terms statistical associations alone.

2.3. Ramifications of the basic distinction

This principle has far reaching consequences that are not generally recognized
in the standard statistical literature. Many researchers, for example, are still
convinced that confounding is solidly founded in standard, frequentist statis-
tics, and that it can be given an associational definition saying (roughly): “U is
a potential confounder for examining the effect of treatment X on outcome Y
when both U and X and U and Y are not independent.” That this definition
and all its many variants must fail (Pearl, 2000a, Section 6.2)2 is obvious from
the demarcation line above; if confounding were definable in terms of statistical
associations, we would have been able to identify confounders from features of
nonexperimental data, adjust for those confounders and obtain unbiased esti-
mates of causal effects. This would have violated our golden rule: behind any
causal conclusion there must be some causal assumption, untested in obser-
vational studies. Hence the definition must be false. Therefore, to the bitter
disappointment of generations of epidemiologist and social science researchers,
confounding bias cannot be detected or corrected by statistical methods alone;
one must make some judgmental assumptions regarding causal relationships in
the problem before an adjustment (e.g., by stratification) can safely correct for
confounding bias.

Another ramification of the sharp distinction between associational and causal
concepts is that any mathematical approach to causal analysis must acquire new
notation for expressing causal relations – probability calculus is insufficient. To
illustrate, the syntax of probability calculus does not permit us to express the
simple fact that “symptoms do not cause diseases,” let alone draw mathematical
conclusions from such facts. All we can say is that two events are dependent—
meaning that if we find one, we can expect to encounter the other, but we can-
not distinguish statistical dependence, quantified by the conditional probability
P (disease|symptom) from causal dependence, for which we have no expression
in standard probability calculus. Scientists seeking to express causal relation-
ships must therefore supplement the language of probability with a vocabulary

2For example, any intermediate variable U on a causal path from X to Y satisfies this
definition, without confounding the effect of X on Y .
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for causality, one in which the symbolic representation for the relation “symp-
toms cause disease” is distinct from the symbolic representation of “symptoms
are associated with disease.”

2.4. Two mental barriers: Untested assumptions and new notation

The preceding two requirements: (1) to commence causal analysis with untested,3

theoretically or judgmentally based assumptions, and (2) to extend the syntax
of probability calculus, constitute the two main obstacles to the acceptance of
causal analysis among statisticians and among professionals with traditional
training in statistics.

Associational assumptions, even untested, are testable in principle, given suf-
ficiently large sample and sufficiently fine measurements. Causal assumptions, in
contrast, cannot be verified even in principle, unless one resorts to experimental
control. This difference stands out in Bayesian analysis. Though the priors that
Bayesians commonly assign to statistical parameters are untested quantities,
the sensitivity to these priors tends to diminish with increasing sample size. In
contrast, sensitivity to prior causal assumptions, say that treatment does not
change gender, remains substantial regardless of sample size.

This makes it doubly important that the notation we use for expressing causal
assumptions be meaningful and unambiguous so that one can clearly judge the
plausibility or inevitability of the assumptions articulated. Statisticians can no
longer ignore the mental representation in which scientists store experiential
knowledge, since it is this representation, and the language used to access it that
determine the reliability of the judgments upon which the analysis so crucially
depends.

How does one recognize causal expressions in the statistical literature? Those
versed in the potential-outcome notation (Neyman, 1923; Rubin, 1974; Holland,
1988), can recognize such expressions through the subscripts that are attached
to counterfactual events and variables, e.g. Yx(u) or Zxy. (Some authors use
parenthetical expressions, e.g. Y (0), Y (1), Y (x, u) or Z(x, y).) The expression
Yx(u), for example, stands for the value that outcome Y would take in indi-
vidual u, had treatment X been at level x. If u is chosen at random, Yx is a
random variable, and one can talk about the probability that Yx would attain
a value y in the population, written P (Yx = y) (see Section 4 for semantics).
Alternatively, Pearl (1995a) used expressions of the form P (Y = y|set(X = x))
or P (Y = y|do(X = x)) to denote the probability (or frequency) that event
(Y = y) would occur if treatment condition X = x were enforced uniformly
over the population.4 Still a third notation that distinguishes causal expressions
is provided by graphical models, where the arrows convey causal directionality.5

3By “untested” I mean untested using frequency data in nonexperimental studies.
4Clearly, P (Y = y|do(X = x)) is equivalent to P (Yx = y). This is what we normally assess

in a controlled experiment, with X randomized, in which the distribution of Y is estimated
for each level x of X .

5These notational clues should be useful for detecting inadequate definitions of causal
concepts; any definition of confounding, randomization or instrumental variables that is cast in
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However, few have taken seriously the textbook requirement that any intro-
duction of new notation must entail a systematic definition of the syntax and
semantics that governs the notation. Moreover, in the bulk of the statistical liter-
ature before 2000, causal claims rarely appear in the mathematics. They surface
only in the verbal interpretation that investigators occasionally attach to cer-
tain associations, and in the verbal description with which investigators justify
assumptions. For example, the assumption that a covariate not be affected by
a treatment, a necessary assumption for the control of confounding (Cox, 1958,
p. 48), is expressed in plain English, not in a mathematical expression.

Remarkably, though the necessity of explicit causal notation is now recognized
by many academic scholars, the use of such notation has remained enigmatic
to most rank and file researchers, and its potentials still lay grossly underuti-
lized in the statistics based sciences. The reason for this, can be traced to the
unfriendly semi-formal way in which causal analysis has been presented to the
research community, resting primarily on the restricted paradigm of controlled
randomized trials.

The next section provides a conceptualization that overcomes these mental
barriers by offering a friendly mathematical machinery for cause-effect analysis
and a formal foundation for counterfactual analysis.

3. Structural models, diagrams, causal effects, and counterfactuals

Any conception of causation worthy of the title “theory” must be able to (1)
represent causal questions in some mathematical language, (2) provide a precise
language for communicating assumptions under which the questions need to
be answered, (3) provide a systematic way of answering at least some of these
questions and labeling others “unanswerable,” and (4) provide a method of
determining what assumptions or new measurements would be needed to answer
the “unanswerable” questions.

A “general theory” should do more. In addition to embracing all questions
judged to have causal character, a general theory must also subsume any other
theory or method that scientists have found useful in exploring the various
aspects of causation. In other words, any alternative theory needs to evolve as
a special case of the “general theory” when restrictions are imposed on either
the model, the type of assumptions admitted, or the language in which those
assumptions are cast.

The structural theory that we use in this survey satisfies the criteria above.
It is based on the Structural Causal Model (SCM) developed in (Pearl, 1995a,
2000a) which combines features of the structural equation models (SEM) used in
economics and social science (Goldberger, 1973; Duncan, 1975), the potential-
outcome framework of Neyman (1923) and Rubin (1974), and the graphical
models developed for probabilistic reasoning and causal analysis (Pearl, 1988;
Lauritzen, 1996; Spirtes et al., 2000; Pearl, 2000a).

standard probability expressions, void of graphs, counterfactual subscripts or do(∗) operators,
can safely be discarded as inadequate.
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Although the basic elements of SCM were introduced in the mid 1990’s (Pearl,
1995a), and have been adapted widely by epidemiologists (Greenland et al.,
1999; Glymour and Greenland, 2008), statisticians (Cox and Wermuth, 2004;
Lauritzen, 2001), and social scientists (Morgan and Winship, 2007), its poten-
tials as a comprehensive theory of causation are yet to be fully utilized. Its
ramifications thus far include:

1. The unification of the graphical, potential outcome, structural equations,
decision analytical (Dawid, 2002), interventional (Woodward, 2003), suf-
ficient component (Rothman, 1976) and probabilistic (Suppes, 1970) ap-
proaches to causation; with each approach viewed as a restricted version
of the SCM.

2. The definition, axiomatization and algorithmization of counterfactuals and
joint probabilities of counterfactuals

3. Reducing the evaluation of “effects of causes,” “mediated effects,” and
“causes of effects” to an algorithmic level of analysis.

4. Solidifying the mathematical foundations of the potential-outcome model,
and formulating the counterfactual foundations of structural equation
models.

5. Demystifying enigmatic notions such as “confounding,” “mediation,” “ig-
norability,” “comparability,” “exchangeability (of populations),” “superex-
ogeneity” and others within a single and familiar conceptual framework.

6. Weeding out myths and misconceptions from outdated traditions
(Meek and Glymour, 1994; Greenland et al., 1999; Cole and Hernán, 2002;
Arah, 2008; Shrier, 2009; Pearl, 2009b).

This section provides a gentle introduction to the structural framework and
uses it to present the main advances in causal inference that have emerged in
the past two decades.

3.1. Introduction to structural equation models

How can one express mathematically the common understanding that symp-
toms do not cause diseases? The earliest attempt to formulate such relationship
mathematically was made in the 1920’s by the geneticist Sewall Wright (1921).
Wright used a combination of equations and graphs to communicate causal re-
lationships. For example, if X stands for a disease variable and Y stands for a
certain symptom of the disease, Wright would write a linear equation:6

y = βx + uY (1)

where x stands for the level (or severity) of the disease, y stands for the level (or
severity) of the symptom, and uY stands for all factors, other than the disease in
question, that could possibly affect Y when X is held constant. In interpreting

6Linear relations are used here for illustration purposes only; they do not represent typical
disease-symptom relations but illustrate the historical development of path analysis. Addi-
tionally, we will use standardized variables, that is, zero mean and unit variance.
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this equation one should think of a physical process whereby Nature examines
the values of x and u and, accordingly, assigns variable Y the value y = βx+uY .
Similarly, to “explain” the occurrence of disease X, one could write x = uX ,
where UX stands for all factors affecting X.

Equation (1) still does not properly express the causal relationship implied by
this assignment process, because algebraic equations are symmetrical objects; if
we re-write (1) as

x = (y − uY )/β (2)

it might be misinterpreted to mean that the symptom influences the disease.
To express the directionality of the underlying process, Wright augmented the
equation with a diagram, later called “path diagram,” in which arrows are drawn
from (perceived) causes to their (perceived) effects, and more importantly, the
absence of an arrow makes the empirical claim that Nature assigns values to
one variable irrespective of another. In Fig. 1, for example, the absence of arrow
from Y to X represents the claim that symptom Y is not among the factors UX

which affect disease X. Thus, in our example, the complete model of a symptom
and a disease would be written as in Fig. 1: The diagram encodes the possible
existence of (direct) causal influence of X on Y , and the absence of causal
influence of Y on X, while the equations encode the quantitative relationships
among the variables involved, to be determined from the data. The parameter β
in the equation is called a “path coefficient” and it quantifies the (direct) causal
effect of X on Y ; given the numerical values of β and UY , the equation claims
that, a unit increase for X would result in β units increase of Y regardless of
the values taken by other variables in the model, and regardless of whether the
increase in X originates from external or internal influences.

The variables UX and UY are called “exogenous;” they represent observed or
unobserved background factors that the modeler decides to keep unexplained,
that is, factors that influence but are not influenced by the other variables
(called “endogenous”) in the model. Unobserved exogenous variables are some-
times called “disturbances” or “errors”, they represent factors omitted from the
model but judged to be relevant for explaining the behavior of variables in the
model. Variable UX , for example, represents factors that contribute to the dis-
ease X, which may or may not be correlated with UY (the factors that influence
the symptom Y ). Thus, background factors in structural equations differ funda-
mentally from residual terms in regression equations. The latters are artifacts
of analysis which, by definition, are uncorrelated with the regressors. The form-
ers are part of physical reality (e.g., genetic factors, socio-economic conditions)
which are responsible for variations observed in the data; they are treated as
any other variable, though we often cannot measure their values precisely and
must resign to merely acknowledging their existence and assessing qualitatively
how they relate to other variables in the system.

If correlation is presumed possible, it is customary to connect the two vari-
ables, UY and UX , by a dashed double arrow, as shown in Fig. 1(b).

In reading path diagrams, it is common to use kinship relations such as
parent, child, ancestor, and descendent, the interpretation of which is usually
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X Y X Y

Y

X

βX YβX Y

U U U U

x = u

βy =   x + u

(b)(a)

Fig 1. A simple structural equation model, and its associated diagrams. Unobserved exogenous
variables are connected by dashed arrows.

self evident. For example, an arrow X → Y designates X as a parent of Y and Y
as a child of X. A “path” is any consecutive sequence of edges, solid or dashed.
For example, there are two paths between X and Y in Fig. 1(b), one consisting
of the direct arrow X → Y while the other tracing the nodes X, UX , UY and Y .

Wright’s major contribution to causal analysis, aside from introducing the
language of path diagrams, has been the development of graphical rules for
writing down the covariance of any pair of observed variables in terms of path
coefficients and of covariances among the error terms. In our simple example,
one can immediately write the relations

Cov(X, Y ) = β (3)

for Fig. 1(a), and
Cov(X, Y ) = β + Cov(UY , UX) (4)

for Fig. 1(b) (These can be derived of course from the equations, but, for large
models, algebraic methods tend to obscure the origin of the derived quantities).
Under certain conditions, (e.g. if Cov(UY , UX) = 0), such relationships may
allow one to solve for the path coefficients in term of observed covariance terms
only, and this amounts to inferring the magnitude of (direct) causal effects from
observed, nonexperimental associations, assuming of course that one is prepared
to defend the causal assumptions encoded in the diagram.

It is important to note that, in path diagrams, causal assumptions are en-
coded not in the links but, rather, in the missing links. An arrow merely in-
dicates the possibility of causal connection, the strength of which remains to
be determined (from data); a missing arrow represents a claim of zero influ-
ence, while a missing double arrow represents a claim of zero covariance. In Fig.
1(a), for example, the assumptions that permits us to identify the direct ef-
fect β are encoded by the missing double arrow between UX and UY , indicating
Cov(UY , UX)=0, together with the missing arrow from Y to X. Had any of these
two links been added to the diagram, we would not have been able to identify
the direct effect β. Such additions would amount to relaxing the assumption
Cov(UY , UX) = 0, or the assumption that Y does not effect X, respectively.
Note also that both assumptions are causal, not associational, since none can
be determined from the joint density of the observed variables, X and Y ; the
association between the unobserved terms, UY and UX , can only be uncovered
in an experimental setting; or (in more intricate models, as in Fig. 5) from other
causal assumptions.
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Z X YZ X Y
U U U

Z X

0
x

(b)

Y

U U U

(a)

X YZ

Fig 2. (a) The diagram associated with the structural model of Eq. (5). (b) The diagram
associated with the modified model of Eq. (6), representing the intervention do(X = x0).

Although each causal assumption in isolation cannot be tested, the sum to-
tal of all causal assumptions in a model often has testable implications. The
chain model of Fig. 2(a), for example, encodes seven causal assumptions, each
corresponding to a missing arrow or a missing double-arrow between a pair of
variables. None of those assumptions is testable in isolation, yet the totality of
all those assumptions implies that Z is unassociated with Y in every stratum
of X. Such testable implications can be read off the diagrams using a graphical
criterion known as d-separation (Pearl, 1988).

Definition 1 (d-separation). A set S of nodes is said to block a path p if either
(i) p contains at least one arrow-emitting node that is in S, or (ii) p contains
at least one collision node that is outside S and has no descendant in S. If S
blocks all paths from X to Y , it is said to “d-separate X and Y,” and then, X
and Y are independent given S, written X⊥⊥Y |S.

To illustrate, the path UZ → Z → X → Y is blocked by S = {Z} and by
S = {X}, since each emits an arrow along that path. Consequently we can infer
that the conditional independencies UX⊥⊥Y |Z and UZ⊥⊥Y |X will be satisfied
in any probability function that this model can generate, regardless of how we
parametrize the arrows. Likewise, the path UZ → Z → X ← UX is blocked by
the null set {∅} but is not blocked by S = {Y }, since Y is a descendant of the
collider X. Consequently, the marginal independence UZ⊥⊥UX will hold in the
distribution, but UZ⊥⊥UX |Y may or may not hold. This special handling of col-
liders (e.g., Z → X ← UX)) reflects a general phenomenon known as Berkson’s
paradox (Berkson, 1946), whereby observations on a common consequence of
two independent causes render those causes dependent. For example, the out-
comes of two independent coins are rendered dependent by the testimony that
at least one of them is a tail.

The conditional independencies induced by d-separation constitute the main
opening through which the assumptions embodied in structural equation models
can confront the scrutiny of nonexperimental data. In other words, almost all
statistical tests capable of invalidating the model are entailed by those implica-
tions.7

7Additional implications called “dormant independence” (Shpitser and Pearl, 2008) may
be deduced from some graphs with correlated errors.
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3.2. From linear to nonparametric models and graphs

Structural equation modeling (SEM) has been the main vehicle for effect analysis
in economics and the behavioral and social sciences (Goldberger, 1972; Duncan,
1975; Bollen, 1989). However, the bulk of SEM methodology was developed for
linear analysis and, until recently, no comparable methodology has been devised
to extend its capabilities to models involving dichotomous variables or nonlinear
dependencies. A central requirement for any such extension is to detach the
notion of “effect” from its algebraic representation as a coefficient in an equation,
and redefine “effect” as a general capacity to transmit changes among variables.
Such an extension, based on simulating hypothetical interventions in the model,
was proposed in (Haavelmo, 1943; Strotz and Wold, 1960; Spirtes et al., 1993;
Pearl, 1993a, 2000a; Lindley, 2002) and has led to new ways of defining and
estimating causal effects in nonlinear and nonparametric models (that is, models
in which the functional form of the equations is unknown).

The central idea is to exploit the invariant characteristics of structural equa-
tions without committing to a specific functional form. For example, the non-
parametric interpretation of the diagram of Fig. 2(a) corresponds to a set of
three functions, each corresponding to one of the observed variables:

z = fZ(uZ)

x = fX(z, uX) (5)

y = fY (x, uY )

where UZ , UX and UY are assumed to be jointly independent but, otherwise,
arbitrarily distributed. Each of these functions represents a causal process (or
mechanism) that determines the value of the left variable (output) from those
on the right variables (inputs). The absence of a variable from the right hand
side of an equation encodes the assumption that Nature ignores that variable
in the process of determining the value of the output variable. For example, the
absence of variable Z from the arguments of fY conveys the empirical claim
that variations in Z will leave Y unchanged, as long as variables UY , and X
remain constant. A system of such functions are said to be structural if they
are assumed to be autonomous, that is, each function is invariant to possible
changes in the form of the other functions (Simon, 1953; Koopmans, 1953).

3.2.1. Representing interventions

This feature of invariance permits us to use structural equations as a basis for
modeling causal effects and counterfactuals. This is done through a mathemat-
ical operator called do(x) which simulates physical interventions by deleting
certain functions from the model, replacing them by a constant X = x, while
keeping the rest of the model unchanged. For example, to emulate an interven-
tion do(x0) that holds X constant (at X = x0) in model M of Fig. 2(a), we
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replace the equation for x in Eq. (5) with x = x0, and obtain a new model, Mx0
,

z = fZ(uZ)

x = x0 (6)

y = fY (x, uY )

the graphical description of which is shown in Fig. 2(b).
The joint distribution associated with the modified model, denoted P (z, y|

do(x0)) describes the post-intervention distribution of variables Y and Z (also
called “controlled” or “experimental” distribution), to be distinguished from the
pre-intervention distribution, P (x, y, z), associated with the original model of
Eq. (5). For example, if X represents a treatment variable, Y a response variable,
and Z some covariate that affects the amount of treatment received, then the
distribution P (z, y|do(x0)) gives the proportion of individuals that would attain
response level Y = y and covariate level Z = z under the hypothetical situation
in which treatment X = x0 is administered uniformly to the population.

In general, we can formally define the post-intervention distribution by the
equation:

PM(y|do(x))
∆
= PMx

(y) (7)

In words: In the framework of model M , the post-intervention distribution of
outcome Y is defined as the probability that model Mx assigns to each outcome
level Y = y.

From this distribution, one is able to assess treatment efficacy by compar-
ing aspects of this distribution at different levels of x0. A common measure of
treatment efficacy is the average difference

E(Y |do(x′
0))− E(Y |do(x0)) (8)

where x′
0 and x0 are two levels (or types) of treatment selected for comparison.

Another measure is the experimental Risk Ratio

E(Y |do(x′
0))/E(Y |do(x0)). (9)

The variance V ar(Y |do(x0)), or any other distributional parameter, may also
enter the comparison; all these measures can be obtained from the controlled dis-
tribution function P (Y = y|do(x)) =

∑

z P (z, y|do(x)) which was called “causal
effect” in Pearl (2000a, 1995a) (see footnote 4). The central question in the
analysis of causal effects is the question of identification: Can the controlled
(post-intervention) distribution, P (Y = y|do(x)), be estimated from data gov-
erned by the pre-intervention distribution, P (z, x, y)?

The problem of identification has received considerable attention in econo-
metrics (Hurwicz, 1950; Marschak, 1950; Koopmans, 1953) and social science
(Duncan, 1975; Bollen, 1989), usually in linear parametric settings, were it re-
duces to asking whether some model parameter, β, has a unique solution in
terms of the parameters of P (the distribution of the observed variables). In
the nonparametric formulation, identification is more involved, since the notion
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of “has a unique solution” does not directly apply to causal quantities such as
Q(M) = P (y|do(x)) which have no distinct parametric signature, and are de-
fined procedurally by simulating an intervention in a causal model M (7). The
following definition overcomes these difficulties:

Definition 2 (Identifiability (Pearl, 2000a, p. 77)). A quantity Q(M) is iden-
tifiable, given a set of assumptions A, if for any two models M1 and M2 that
satisfy A, we have

P (M1) = P (M1)⇒ Q(M1) = Q(M2) (10)

In words, the details of M1 and M2 do not matter; what matters is that
the assumptions in A (e.g., those encoded in the diagram) would constrain
the variability of those details in such a way that equality of P ’s would entail
equality of Q’s. When this happens, Q depends on P only, and should therefore
be expressible in terms of the parameters of P . The next subsections exemplify
and operationalize this notion.

3.2.2. Estimating the effect of interventions

To understand how hypothetical quantities such as P (y|do(x)) or E(Y |do(x0))
can be estimated from actual data and a partially specified model let us be-
gin with a simple demonstration on the model of Fig. 2(a). We will show that,
despite our ignorance of fX , fY , fZ and P (u), E(Y |do(x0)) is nevertheless iden-
tifiable and is given by the conditional expectation E(Y |X = x0). We do this
by deriving and comparing the expressions for these two quantities, as defined
by (5) and (6), respectively. The mutilated model in Eq. (6) dictates:

E(Y |do(x0)) = E(fY (x0, uY )), (11)

whereas the pre-intervention model of Eq. (5) gives

E(Y |X = x0)) = E(fY (X, uY )|X = x0)

= E(fY (x0, uY )|X = x0) (12)

= E(fY (x0, uY ))

which is identical to (11). Therefore,

E(Y |do(x0)) = E(Y |X = x0)) (13)

Using a similar derivation, though somewhat more involved, we can show that
P (y|do(x)) is identifiable and given by the conditional probability P (y|x).

We see that the derivation of (13) was enabled by two assumptions; first, Y
is a function of X and UY only, and, second, UY is independent of {UZ , UX},
hence of X. The latter assumption parallels the celebrated “orthogonality” con-
dition in linear models, Cov(X, UY ) = 0, which has been used routinely, often
thoughtlessly, to justify the estimation of structural coefficients by regression
techniques.
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Naturally, if we were to apply this derivation to the linear models of Fig. 1(a)
or 1(b), we would get the expected dependence between Y and the intervention
do(x0):

E(Y |do(x0)) = E(fY (x0, uY ))

= E(βx0 + uY )

= βx0

(14)

This equality endows β with its causal meaning as “effect coefficient.” It is
extremely important to keep in mind that in structural (as opposed to regres-
sional) models, β is not “interpreted” as an effect coefficient but is “proven”
to be one by the derivation above. β will retain this causal interpretation re-
gardless of how X is actually selected (through the function fX , Fig. 2(a)) and
regardless of whether UX and UY are correlated (as in Fig. 1(b)) or uncorrelated
(as in Fig. 1(a)). Correlations may only impede our ability to estimate β from
nonexperimental data, but will not change its definition as given in (14). Ac-
cordingly, and contrary to endless confusions in the literature (see footnote 15)
structural equations say absolutely nothing about the conditional expectation
E(Y |X = x). Such connection may be exist under special circumstances, e.g.,
if cov(X, UY ) = 0, as in Eq. (13), but is otherwise irrelevant to the definition or
interpretation of β as effect coefficient, or to the empirical claims of Eq. (1).

The next subsection will circumvent these derivations altogether by reduc-
ing the identification problem to a graphical procedure. Indeed, since graphs
encode all the information that non-parametric structural equations represent,
they should permit us to solve the identification problem without resorting to
algebraic analysis.

3.2.3. Causal effects from data and graphs

Causal analysis in graphical models begins with the realization that all causal
effects are identifiable whenever the model is Markovian, that is, the graph is
acyclic (i.e., containing no directed cycles) and all the error terms are jointly
independent. Non-Markovian models, such as those involving correlated errors
(resulting from unmeasured confounders), permit identification only under cer-
tain conditions, and these conditions too can be determined from the graph
structure (Section 3.3). The key to these results rests with the following basic
theorem.

Theorem 1 (The Causal Markov Condition). Any distribution generated by a
Markovian model M can be factorized as:

P (v1, v2, . . . , vn) =
∏

i

P (vi|pai) (15)

where V1, V2, . . . , Vn are the endogenous variables in M , and pai are (values of)
the endogenous “parents” of Vi in the causal diagram associated with M .
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For example, the distribution associated with the model in Fig. 2(a) can be
factorized as

P (z, y, x) = P (z)P (x|z)P (y|x) (16)

since X is the (endogenous) parent of Y, Z is the parent of X, and Z has no
parents.

Corollary 1 (Truncated factorization). For any Markovian model, the distri-
bution generated by an intervention do(X = x0) on a set X of endogenous
variables is given by the truncated factorization

P (v1, v2, . . . , vk|do(x0)) =
∏

i|Vi 6∈X

P (vi|pai) |x=x0
(17)

where P (vi|pai) are the pre-intervention conditional probabilities.8

Corollary 1 instructs us to remove from the product of Eq. (15) all factors
associated with the intervened variables (members of set X). This follows from
the fact that the post-intervention model is Markovian as well, hence, following
Theorem 1, it must generate a distribution that is factorized according to the
modified graph, yielding the truncated product of Corollary 1. In our example
of Fig. 2(b), the distribution P (z, y|do(x0)) associated with the modified model
is given by

P (z, y|do(x0)) = P (z)P (y|x0)

where P (z) and P (y|x0) are identical to those associated with the pre-intervention
distribution of Eq. (16). As expected, the distribution of Z is not affected by
the intervention, since

P (z|do(x0)) =
∑

y

P (z, y|do(x0)) =
∑

y

P (z)P (y|x0) = P (z)

while that of Y is sensitive to x0, and is given by

P (y|do(x0)) =
∑

z

P (z, y|do(x0)) =
∑

z

P (z)P (y|x0) = P (y|x0)

This example demonstrates how the (causal) assumptions embedded in the
model M permit us to predict the post-intervention distribution from the pre-
intervention distribution, which further permits us to estimate the causal effect
of X on Y from nonexperimental data, since P (y|x0) is estimable from such
data. Note that we have made no assumption whatsoever on the form of the
equations or the distribution of the error terms; it is the structure of the graph
alone (specifically, the identity of X’s parents) that permits the derivation to
go through.

8A simple proof of the Causal Markov Theorem is given in Pearl (2000a, p. 30). This
theorem was first presented in Pearl and Verma (1991), but it is implicit in the works
of Kiiveri et al. (1984) and others. Corollary 1 was named “Manipulation Theorem” in
Spirtes et al. (1993), and is also implicit in Robins’ (1987) G-computation formula. See
Lauritzen (2001).
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Y

X

Fig 3. Markovian model illustrating the derivation of the causal effect of X on Y , Eq. (20).
Error terms are not shown explicitly.

The truncated factorization formula enables us to derive causal quantities
directly, without dealing with equations or equation modification as in Eqs.
(11)–(13). Consider, for example, the model shown in Fig. 3, in which the er-
ror variables are kept implicit. Instead of writing down the corresponding five
nonparametric equations, we can write the joint distribution directly as

P (x, z1, z2, z3, y) = P (z1)P (z2)P (z3|z1, z2)P (x|z1, z3)P (y|z2, z3, x) (18)

where each marginal or conditional probability on the right hand side is directly
estimable from the data. Now suppose we intervene and set variable X to x0.
The post-intervention distribution can readily be written (using the truncated
factorization formula (17)) as

P (z1, z2, z3, y|do(x0)) = P (z1)P (z2)P (z3|z1, z2)P (y|z2, z3, x0) (19)

and the causal effect of X on Y can be obtained immediately by marginalizing
over the Z variables, giving

P (y|do(x0)) =
∑

z1,z2,z3

P (z1)P (z2)P (z3|z1, z2)P (y|z2, z3, x0) (20)

Note that this formula corresponds precisely to what is commonly called “ad-
justing for Z1, Z2 and Z3” and, moreover, we can write down this formula by
inspection, without thinking on whether Z1, Z2 and Z3 are confounders, whether
they lie on the causal pathways, and so on. Though such questions can be an-
swered explicitly from the topology of the graph, they are dealt with automati-
cally when we write down the truncated factorization formula and marginalize.

Note also that the truncated factorization formula is not restricted to in-
terventions on a single variable; it is applicable to simultaneous or sequential
interventions such as those invoked in the analysis of time varying treatment
with time varying confounders (Robins, 1986; Arjas and Parner, 2004). For ex-
ample, if X and Z2 are both treatment variables, and Z1 and Z3 are measured
covariates, then the post-intervention distribution would be

P (z1, z3, y|do(x), do(z2)) = P (z1)P (z3|z1, z2)P (y|z2, z3, x) (21)

and the causal effect of the treatment sequence do(X = x), do(Z2 = z2)
9 would

be
P (y|do(x), do(z2)) =

∑

z1,z3

P (z1)P (z3|z1, z2)P (y|z2, z3, x) (22)

9For clarity, we drop the (superfluous) subscript 0 from x0 and z20
.



J. Pearl/Causal inference in statistics 113

This expression coincides with Robins’ (1987) G-computation formula, which
was derived from a more complicated set of (counterfactual) assumptions. As
noted by Robins, the formula dictates an adjustment for covariates (e.g., Z3)
that might be affected by previous treatments (e.g., Z2).

3.3. Coping with unmeasured confounders

Things are more complicated when we face unmeasured confounders. For exam-
ple, it is not immediately clear whether the formula in Eq. (20) can be estimated
if any of Z1, Z2 and Z3 is not measured. A few but challenging algebraic steps
would reveal that one can perform the summation over Z2 to obtain

P (y|do(x0)) =
∑

z1,z3

P (z1)P (z3|z1)P (y|z1, z3, x0) (23)

which means that we need only adjust for Z1 and Z3 without ever measuring
Z2. In general, it can be shown (Pearl, 2000a, p. 73) that, whenever the graph
is Markovian the post-interventional distribution P (Y = y|do(X = x)) is given
by the following expression:

P (Y = y|do(X = x)) =
∑

t

P (y|t, x)P (t) (24)

where T is the set of direct causes of X (also called “parents”) in the graph.
This allows us to write (23) directly from the graph, thus skipping the algebra
that led to (23). It further implies that, no matter how complicated the model,
the parents of X are the only variables that need to be measured to estimate
the causal effects of X.

It is not immediately clear however whether other sets of variables beside X’s
parents suffice for estimating the effect of X, whether some algebraic manipu-
lation can further reduce Eq. (23), or that measurement of Z3 (unlike Z1, or
Z2) is necessary in any estimation of P (y|do(x0)). Such considerations become
transparent from a graphical criterion to be discussed next.

3.3.1. Covariate selection – the back-door criterion

Consider an observational study where we wish to find the effect of X on Y , for
example, treatment on response, and assume that the factors deemed relevant
to the problem are structured as in Fig. 4; some are affecting the response, some
are affecting the treatment and some are affecting both treatment and response.
Some of these factors may be unmeasurable, such as genetic trait or life style,
others are measurable, such as gender, age, and salary level. Our problem is
to select a subset of these factors for measurement and adjustment, namely,
that if we compare treated vs. untreated subjects having the same values of the
selected factors, we get the correct treatment effect in that subpopulation of
subjects. Such a set of factors is called a “sufficient set” or “admissible set” for
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Fig 4. Markovian model illustrating the back-door criterion. Error terms are not shown ex-
plicitly.

adjustment. The problem of defining an admissible set, let alone finding one, has
baffled epidemiologists and social scientists for decades (see (Greenland et al.,
1999; Pearl, 1998) for review).

The following criterion, named “back-door” in (Pearl, 1993a), settles this
problem by providing a graphical method of selecting admissible sets of factors
for adjustment.

Definition 3 (Admissible sets – the back-door criterion). A set S is admissible
(or “sufficient”) for adjustment if two conditions hold:

1. No element of S is a descendant of X
2. The elements of S “block” all “back-door” paths from X to Y , namely all

paths that end with an arrow pointing to X.

In this criterion, “blocking” is interpreted as in Definition 1. For example, the
set S = {Z3} blocks the path X ← W1 ← Z1 → Z3 → Y , because the arrow-
emitting node Z3 is in S. However, the set S = {Z3} does not block the path
X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y , because none of the arrow-emitting
nodes, Z1 and Z2, is in S, and the collision node Z3 is not outside S.

Based on this criterion we see, for example, that the sets {Z1, Z2, Z3}, {Z1, Z3},
{W1, Z3}, and {W2, Z3}, each is sufficient for adjustment, because each blocks
all back-door paths between X and Y . The set {Z3}, however, is not suffi-
cient for adjustment because, as explained above, it does not block the path
X ←W1 ← Z1 → Z3 ← Z2 →W2 → Y .

The intuition behind the back-door criterion is as follows. The back-door
paths in the diagram carry spurious associations from X to Y , while the paths
directed along the arrows from X to Y carry causative associations. Blocking
the former paths (by conditioning on S) ensures that the measured association
between X and Y is purely causative, namely, it correctly represents the target
quantity: the causal effect of X on Y . The reason for excluding descendants of
X (e.g., W3 or any of its descendants) is given in (Pearl, 2009a, p. 338–41).

Formally, the implication of finding an admissible set S is that, stratifying on
S is guaranteed to remove all confounding bias relative the causal effect of X
on Y . In other words, the risk difference in each stratum of S gives the correct
causal effect in that stratum. In the binary case, for example, the risk difference
in stratum s of S is given by

P (Y = 1|X = 1, S = s) − P (Y = 1|X = 0, S = s)
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while the causal effect (of X on Y ) at that stratum is given by

P (Y = 1|do(X = 1), S = s) − P (Y = 1|do(X = 0), S = s).

These two expressions are guaranteed to be equal whenever S is a sufficient
set, such as {Z1, Z3} or {Z2, Z3} in Fig. 4. Likewise, the average stratified risk
difference, taken over all strata,

∑

s

[P (Y = 1|X = 1, S = s) − P (Y = 1|X = 0, S = s)]P (S = s),

gives the correct causal effect of X on Y in the entire population

P (Y = 1|do(X = 1)) − P (Y = 1|do(X = 0)).

In general, for multivalued variables X and Y , finding a sufficient set S
permits us to write

P (Y = y|do(X = x), S = s) = P (Y = y|X = x, S = s)

and
P (Y = y|do(X = x)) =

∑

s

P (Y = y|X = x, S = s)P (S = s) (25)

Since all factors on the right hand side of the equation are estimable (e.g., by
regression) from the pre-interventional data, the causal effect can likewise be
estimated from such data without bias.

Interestingly, it can be shown that any irreducible sufficient set, S, taken as
a unit, satisfies the associational criterion that epidemiologists have been using
to define “confounders”. In other words, S must be associated with X and,
simultaneously, associated with Y , given X. This need not hold for any specific
members of S. For example, the variable Z3 in Fig. 4, though it is a member
of every sufficient set and hence a confounder, can be unassociated with both
Y and X (Pearl, 2000a, p. 195). Conversely, a pre-treatment variable Z that
is associated with both Y and X may need to be excluded from entering a
sufficient set.

The back-door criterion allows us to write Eq. (25) directly, by selecting a
sufficient set S directly from the diagram, without manipulating the truncated
factorization formula. The selection criterion can be applied systematically to
diagrams of any size and shape, thus freeing analysts from judging whether
“X is conditionally ignorable given S,” a formidable mental task required in
the potential-response framework (Rosenbaum and Rubin, 1983). The criterion
also enables the analyst to search for an optimal set of covariate—namely, a set
S that minimizes measurement cost or sampling variability (Tian et al., 1998).

All in all, one can safely state that, armed with the back-door criterion,
causality has removed “confounding” from its store of enigmatic and controver-
sial concepts.
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3.3.2. General control of confounding

Adjusting for covariates is only one of many methods that permits us to es-
timate causal effects in nonexperimental studies. Pearl (1995a) has presented
examples in which there exists no set of variables that is sufficient for adjust-
ment and where the causal effect can nevertheless be estimated consistently.
The estimation, in such cases, employs multi-stage adjustments. For example,
if W3 is the only observed covariate in the model of Fig. 4, then there exists no
sufficient set for adjustment (because no set of observed covariates can block the
paths from X to Y through Z3), yet P (y|do(x)) can be estimated in two steps;
first we estimate P (w3|do(x)) = P (w3|x) (by virtue of the fact that there exists
no unblocked back-door path from X to W3), second we estimate P (y|do(w3))
(since X constitutes a sufficient set for the effect of W3 on Y ) and, finally, we
combine the two effects together and obtain

P (y|do(x)) =
∑

w3

P (w3|do(x))P (y|do(w3)) (26)

In this example, the variable W3 acts as a “mediating instrumental variable”
(Pearl, 1993b; Chalak and White, 2006).

The analysis used in the derivation and validation of such results invokes
mathematical rules of transforming causal quantities, represented by expressions
such as P (Y = y|do(x)), into do-free expressions derivable from P (z, x, y), since
only do-free expressions are estimable from non-experimental data. When such a
transformation is feasible, we are ensured that the causal quantity is identifiable.

Applications of this calculus to problems involving multiple interventions
(e.g., time varying treatments), conditional policies, and surrogate experiments
were developed in Pearl and Robins (1995), Kuroki and Miyakawa (1999), and
Pearl (2000a, Chapters 3–4).

A recent analysis (Tian and Pearl, 2002) shows that the key to identifiability
lies not in blocking paths between X and Y but, rather, in blocking paths
between X and its immediate successors on the pathways to Y . All existing
criteria for identification are special cases of the one defined in the following
theorem:

Theorem 2 (Tian and Pearl, 2002). A sufficient condition for identifying the
causal effect P (y|do(x)) is that every path between X and any of its children
traces at least one arrow emanating from a measured variable.10

For example, if W3 is the only observed covariate in the model of Fig. 4,
P (y|do(x)) can be estimated since every path from X to W3 (the only child of
X) traces either the arrow X → W3, or the arrow W3 → Y , both emanating
from a measured variable (W3).

More recent results extend this theorem by (1) presenting a necessary and suf-
ficient condition for identification (Shpitser and Pearl, 2006), and (2) extending

10Before applying this criterion, one may delete from the causal graph all nodes that are
not ancestors of Y .
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the condition from causal effects to any counterfactual expression (Shpitser and
Pearl, 2007). The corresponding unbiased estimands for these causal quantities
are readable directly from the diagram.

3.3.3. From identification to estimation

The mathematical derivation of causal effect estimands, like Eqs. (25) and (26)
is merely a first step toward computing quantitative estimates of those effects
from finite samples, using the rich traditions of statistical estimation and ma-
chine learning Bayesian as well as non-Bayesian. Although the estimands derived
in (25) and (26) are non-parametric, this does not mean that one should refrain
from using parametric forms in the estimation phase of the study. Parametriza-
tion is in fact necessary when the dimensionality of a problem is high. For exam-
ple, if the assumptions of Gaussian, zero-mean disturbances and additive inter-
actions are deemed reasonable, then the estimand given in (26) can be converted
to the product E(Y |do(x)) = rW3XrY W3·Xx, where rY Z·X is the (standardized)
coefficient of Z in the regression of Y on Z and X. More sophisticated estima-
tion techniques are the “marginal structural models” of (Robins, 1999), and the
“propensity score” method of (Rosenbaum and Rubin, 1983) which were found
to be particularly useful when dimensionality is high and data are sparse (see
Pearl (2009a, pp. 348–52)).

It should be emphasized, however, that contrary to conventional wisdom (e.g.,
(Rubin, 2007, 2009)), propensity score methods are merely efficient estimators
of the right hand side of (25); they cannot be expected to reduce bias in case the
set S does not satisfy the back-door criterion (Pearl, 2009a,b,c). Consequently,
the prevailing practice of conditioning on as many pre-treatment measurements
as possible should be approached with great caution; some covariates (e.g., Z3

in Fig. 3) may actually increase bias if included in the analysis (see footnote 20).
Using simulation and parametric analysis, Heckman and Navarro-Lozano (2004)
and Wooldridge (2009) indeed confirmed the bias-raising potential of certain co-
variates in propensity-score methods. The graphical tools presented in this sec-
tion unveil the character of these covariates and show precisely what covariates
should, and should not be included in the conditioning set for propensity-score
matching (see also (Pearl and Paz, 2009)).

3.3.4. Bayesianism and causality, or where do the probabilities come from?

Looking back at the derivation of causal effects in Sections 3.2 and 3.3, the
reader should note that at no time did the analysis require numerical assess-
ment of probabilities. True, we assumed that the causal model M is loaded
with a probability function P (u) over the exogenous variables in U , and we
likewise assumed that the functions vi = fi(pai, u) map P (u) into a proba-
bility P (v1, v2, . . . , vn) over the endogenous observed variables. But we never
used or required any numerical assessment of P (u) nor any assumption on the
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form of the structural equations fi. The question naturally arises: Where do the
numerical values of the post-intervention probabilities P (y|do(x)) come from?

The answer is, of course, that they come from the data together with stan-
dard estimation techniques that turn data into numerical estimates of statisti-
cal parameters (i.e., aspects of a probability distribution). Subjective judgments
were required only in qualitative form, to jump start the identification process,
the purpose of which was to determine what statistical parameters need be es-
timated. Moreover, even the qualitative judgments were not about properties
of probability distributions but about cause-effect relationships, the latter be-
ing more transparent, communicable and meaningful. For example, judgments
about potential correlations between two U variables were essentially judgments
about whether the two have a latent common cause or not.

Naturally, the influx of traditional estimation techniques into causal analy-
sis carries with it traditional debates between Bayesians and frequentists, sub-
jectivists and objectivists. However, this debate is orthogonal to the distinct
problems confronted by causal analysis, as delineated by the demarcation line
between causal and statistical analysis (Section 2).

As is well known, many estimation methods in statistics invoke subjective
judgment at some level or another; for example, what parametric family of
functions one should select, what type of prior one should assign to the model
parameters, and more. However, these judgments all refer to properties or pa-
rameters of a static distribution function and, accordingly, they are expressible
in the language of probability theory. The new ingredient that causal analysis
brings to this tradition is the necessity of obtaining explicit judgments not about
properties of distributions but about the invariants of a distribution, namely,
judgment about cause-effect relationships, and those, as we discussed in Section
2, cannot be expressed in the language of probability.

Causal judgments are tacitly being used at many levels of traditional sta-
tistical estimation. For example, most judgments about conditional indepen-
dence emanate from our understanding of cause effect relationships. Likewise,
the standard decision to assume independence among certain statistical pa-
rameters and not others (in a Bayesian prior) rely on causal information (see
discussions with Joseph Kadane and Serafin Moral (Pearl, 2003)). However the
causal rationale for these judgments has remained implicit for many decades, for
lack of adequate language; only their probabilistic ramifications received formal
representation. Causal analysis now requires explicit articulation of the under-
lying causal assumptions, a vocabulary that differs substantially from the one
Bayesian statisticians have been accustomed to articulate.

The classical example demonstrating the obstacle of causal vocabulary is
Simpson’s paradox (Simpson, 1951) – a reversal phenomenon that earns its
claim to fame only through a causal interpretation of the data (Pearl, 2000a,
Chapter 6). The phenomenon was discovered by statisticians a century ago
(Pearson et al., 1899; Yule, 1903) analyzed by statisticians for half a century
(Simpson, 1951; Blyth, 1972; Cox and Wermuth, 2003) lamented by statisticians
(Good and Mittal, 1987; Bishop et al., 1975) and wrestled with by statisticians
till this very day (Chen et al., 2009; Pavlides and Perlman, 2009). Still, to the
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best of my knowledge, Wasserman (2004) is the first statistics textbook to treat
Simpson’s paradox in its correct causal context (Pearl, 2000a, p. 200).

Lindley and Novick (1981) explained this century-long impediment to the
understanding of Simpson’s paradox as a case of linguistic handicap: “We have
not chosen to do this; nor to discuss causation, because the concept, although
widely used, does not seem to be well-defined” (p. 51). Instead, they attribute
the paradox to another untestable relationship in the story—exchangeability
(DeFinetti, 1974) which is cognitively formidable yet, at least formally, can be
cast as a property of some imaginary probability function.

The same reluctance to extending the boundaries of probability language can
be found among some scholars in the potential-outcome framework (Section 4),
where judgments about conditional independence of counterfactual variables,
however incomprehensible, are preferred to plain causal talk: “Mud does not
cause rain.”

This reluctance however is diminishing among Bayesians primarily due to
recognition that, orthogonal to the traditional debate between frequentists and
subjectivists, causal analysis is about change, and change demands a new vocab-
ulary that distinguishes “seeing” from “doing” (Lindley, 2002) (see discussion
with Dennis Lindley (Pearl, 2009a, 2nd Edition, Chapter 11).

Indeed, whether the conditional probabilities that enter Eqs. (15)–(25) origi-
nate from frequency data or subjective assessment matters not in causal analysis.
Likewise, whether the causal effect P (y|do(x)) is interpreted as one’s degree of
belief in the effect of action do(x), or as the fraction of the population that will
be affected by the action matters not in causal analysis. What matters is one’s
readiness to accept and formulate qualitative judgments about cause-effect re-
lationship with the same seriousness that one accepts and formulates subjective
judgment about prior distributions in Bayesian analysis.

Trained to accept the human mind as a reliable transducer of experience,
and human experience as a faithful mirror of reality, Bayesian statisticians are
beginning to accept the language chosen by the mind to communicate experience
– the language of cause and effect.

3.4. Counterfactual analysis in structural models

Not all questions of causal character can be encoded in P (y|do(x)) type ex-
pressions, thus implying that not all causal questions can be answered from
experimental studies. For example, questions of attribution (e.g., what fraction
of death cases are due to specific exposure?) or of susceptibility (what fraction
of the healthy unexposed population would have gotten the disease had they
been exposed?) cannot be answered from experimental studies, and naturally,
this kind of questions cannot be expressed in P (y|do(x)) notation.11 To answer

11The reason for this fundamental limitation is that no death case can be tested twice,
with and without treatment. For example, if we measure equal proportions of deaths in the
treatment and control groups, we cannot tell how many death cases are actually attributable
to the treatment itself; it is quite possible that many of those who died under treatment would
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such questions, a probabilistic analysis of counterfactuals is required, one dedi-
cated to the relation “Y would be y had X been x in situation U = u,” denoted
Yx(u) = y. Remarkably, unknown to most economists and philosophers, struc-
tural equation models provide the formal interpretation and symbolic machinery
for analyzing such counterfactual relationships.12

The key idea is to interpret the phrase “had X been x” as an instruction to
make a minimal modification in the current model, which may have assigned X
a different value, say X = x′, so as to ensure the specified condition X = x. Such
a minimal modification amounts to replacing the equation for X by a constant
x, as we have done in Eq. (6). This replacement permits the constant x to differ
from the actual value of X (namely fX(z, uX)) without rendering the system of
equations inconsistent, thus yielding a formal interpretation of counterfactuals
in multi-stage models, where the dependent variable in one equation may be an
independent variable in another.

Definition 4 (Unit-level Counterfactuals, Pearl (2000a, p. 98)). Let M be a
structural model and Mx a modified version of M , with the equation(s) of X
replaced by X = x. Denote the solution for Y in the equations of Mx by the
symbol YMx

(u). The counterfactual Yx(u) (Read: “The value of Y in unit u,
had X been x” is given by:

Yx(u)
∆
= YMx

(u). (27)

We see that the unit-level counterfactual Yx(u), which in the Neyman-Rubin
approach is treated as a primitive, undefined quantity, is actually a derived
quantity in the structural framework. The fact that we equate the experimental
unit u with a vector of background conditions, U = u, in M , reflects the un-
derstanding that the name of a unit or its identity do not matter; it is only the
vector U = u of attributes characterizing a unit which determines its behavior
or response. As we go from one unit to another, the laws of nature, as they
are reflected in the functions fX , fY , etc. remain invariant; only the attributes
U = u vary from individual to individual.13

To illustrate, consider the solution of Y in the modified model Mx0
of Eq. (6),

which Definition 4 endows with the symbol Yx0
(uX , uY , uZ). This entity has a

be alive if untreated and, simultaneously, many of those who survived with treatment would
have died if not treated.

12Connections between structural equations and a restricted class of counterfactuals were
first recognizedby Simon and Rescher (1966). These were later generalizedby Balke and Pearl
(1995) to permit endogenous variables to serve as counterfactual antecedents.

13The distinction between general, or population-level causes (e.g., “Drinking hemlock
causes death”) and singular or unit-level causes (e.g., “Socrates’ drinking hemlock caused his
death”), which many philosophers have regarded as irreconcilable (Eells, 1991), introduces no
tension at all in the structural theory. The two types of sentences differ merely in the level of
situation-specific information that is brought to bear on a problem, that is, in the specificity
of the evidence e that enters the quantity P (Yx = y|e). When e includes all factors u, we have
a deterministic, unit-level causation on our hand; when e contains only a few known attributes
(e.g., age, income, occupation etc.) while others are assigned probabilities, a population-level
analysis ensues.
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clear counterfactual interpretation, for it stands for the way an individual with
characteristics (uX , uY , uZ) would respond, had the treatment been x0, rather
than the treatment x = fX(z, uX) actually received by that individual. In our
example, since Y does not depend on uX and uZ , we can write:

Yx0
(u) = Yx0

(uY , uX , uZ) = fY (x0, uY ). (28)

In a similar fashion, we can derive

Yz0
(u) = fY (fX(z0 , uX), uY ),

Xz0,y0
(u) = fX(z0, uX),

and so on. These examples reveal the counterfactual reading of each individual
structural equation in the model of Eq. (5). The equation x = fX(z, uX), for
example, advertises the empirical claim that, regardless of the values taken by
other variables in the system, had Z been z0, X would take on no other value
but x = fX(z0, uX).

Clearly, the distribution P (uY , uX , uZ) induces a well defined probability on
the counterfactual event Yx0

= y, as well as on joint counterfactual events, such
as ‘Yx0

= y AND Yx1
= y′,’ which are, in principle, unobservable if x0 6= x1.

Thus, to answer attributional questions, such as whether Y would be y1 if X were
x1, given that in fact Y is y0 and X is x0, we need to compute the conditional
probability P (Yx1

= y1|Y = y0, X = x0) which is well defined once we know the
forms of the structural equations and the distribution of the exogenous variables
in the model. For example, assuming linear equations (as in Fig. 1),

x = uX y = βx + uX ,

the conditioning events Y = y0 and X = x0 yield UX = x0 and UY = y0 − βx0,
and we can conclude that, with probability one, Yx1

must take on the value:
Yx1

= βx1 + UY = β(x1 − x0) + y0. In other words, if X were x1 instead of x0,
Y would increase by β times the difference (x1− x0). In nonlinear systems, the
result would also depend on the distribution of {UX , UY } and, for that reason,
attributional queries are generally not identifiable in nonparametric models (see
Section 5.2 and 2000a, Chapter 9).

In general, if x and x′ are incompatible then Yx and Yx′ cannot be measured
simultaneously, and it may seem meaningless to attribute probability to the
joint statement “Y would be y if X = x and Y would be y′ if X = x′.”14

Such concerns have been a source of objections to treating counterfactuals as
jointly distributed random variables (Dawid, 2000). The definition of Yx and Yx′

in terms of two distinct submodels neutralizes these objections (Pearl, 2000b),
since the contradictory joint statement is mapped into an ordinary event, one
where the background variables satisfy both statements simultaneously, each in
its own distinct submodel; such events have well defined probabilities.

14For example, “The probability is 80% that Joe belongs to the class of patients who will
be cured if they take the drug and die otherwise.”
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The structural definition of counterfactuals also provides the conceptual and
formal basis for the Neyman-Rubin potential-outcome framework, an approach
to causation that takes a controlled randomized trial (CRT) as its ruling paradigm,
assuming that nothing is known to the experimenter about the science behind
the data. This “black-box” approach, which has thus far been denied the bene-
fits of graphical or structural analyses, was developed by statisticians who found
it difficult to cross the two mental barriers discussed in Section 2.4. Section 4 es-
tablishes the precise relationship between the structural and potential-outcome
paradigms, and outlines how the latter can benefit from the richer representa-
tional power of the former.

3.5. An example: Non-compliance in clinical trials

To illustrate the methodology of the structural approach to causation, let us
consider the practical problem of estimating treatment effect in a typical clinical
trial with partial compliance. Treatment effect in such a setting is in general
nonidentifiable, yet this example is well suited for illustrating the four major
steps that should be part of every exercise in causal inference:

1. Define: Express the target quantity Q as a function Q(M) that can be
computed from any model M .

2. Assume: Formulate causal assumptions using ordinary scientific language
and represent their structural part in graphical form.

3. Identify: Determine if the target quantity is identifiable.
4. Estimate: Estimate the target quantity if it is identifiable, or approximate

it, if it is not.

3.5.1. Defining the target quantity

The definition phase in our example is not altered by the specifics of the ex-
perimental setup under discussion. The structural modeling approach insists on
defining the target quantity, in our case “causal effect,” before specifying the
process of treatment selection, and without making functional form or distri-
butional assumptions. The formal definition of the causal effect P (y|do(x)), as
given in Eq. (7), is universally applicable to all models, and invokes the forma-
tion of a submodel Mx. By defining causal effect procedurally, thus divorcing
it from its traditional parametric representation, the structural theory avoids
the many confusions and controversies that have plagued the interpretation of
structural equations and econometric parameters for the past half century (see
footnote 15).

3.5.2. Formulating the assumptions – Instrumental variables

The experimental setup in a typical clinical trial with partial compliance can
be represented by the model of Fig. 5(a) and Eq. (5) where Z represents a ran-
domized treatment assignment, X is the treatment actually received, and Y is
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Fig 5. (a) Causal diagram representing a clinical trial with imperfect compliance. (b) A
diagram representing interventional treatment control.

the observed response. The UY term represents all factors (unobserved) that
influence the way a subject responds to treatments; hence, an arrow is drawn
from UY to Y . Similarly, UX denotes all factors that influence the subject’s
compliance with the assignment, and UZ represents the random device used in
deciding assignment. The dependence between UX and UY allows for certain fac-
tors (e.g., socio economic status or predisposition to disease and complications)
to influence both compliance and response. In Eq. (5), fX represents the pro-
cess by which subjects select treatment level and fY represents th process that
determines the outcome Y . Clearly, perfect compliance would amount to setting
fX(z, uX) = z while any dependence on uX represents imperfect compliance.

The graphical model of Fig. 5(a) reflects two assumptions.

1. The assignment Z does not influence Y directly but rather through the
actual treatment taken, X. This type of assumption is called “exclusion”
restriction, for it excludes a variable (Z) from being a determining argu-
ment of the function fY , as in Eq. (5).

2. The variable Z is independent of UY and UX ; this is ensured through the
randomization of Z, which rules out a common cause for both Z and UY

(as well as for Z and UX).

By drawing the diagram of Fig. 5(a) an investigator encodes an unambiguous
specification of these two assumptions, and permits the technical part of the
analysis to commence, under the interpretation provided by Eq. (5).

The target of causal analysis in this setting is to estimate the causal effect of
the treatment (X) on the outcome (Y ), as defined by the modified model of Eq.
(6) and the corresponding distribution P (y|do(x0)). In words, this distribution
describes the response of the population to a hypothetical experiment in which
we administer treatment at level X = x0 uniformly to the entire population
and let x0 take different values on hypothetical copies of the population. An
inspection of the diagram in Fig. 5(a) reveals immediately that this distribution
is not identifiable by adjusting for confounders. The graphical criterion for such
identification (Definition 3) requires the existence of observed covariates on the
“back-door” path X ← UX ↔ UY → Y , that blocks the spurious associations
created by that path. Had UX (or UY ) been observable, the treatment effect
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would have been obtained by stratification on the levels of UX .

P (Y = y|do(x0)) =
∑

u
X

P (Y = y|X = x0, UX = uX)P (UX = uX) (29)

thus yielding an estimable expression that requires no measurement of UY and
no assumptions relative the dependence between UY and UX . However, since
UX (and UY ) are assumed to be unobserved, and since no other blocking co-
variates exist, the investigator can conclude that confounding bias cannot be
removed by adjustment. Moreover, it can be shown that, in the absence of ad-
ditional assumptions, the treatment effect in such graphs cannot be identified
by any method whatsoever (Balke and Pearl, 1997); one must therefore resort
to approximate methods of assessment.

It is interesting to note that it is our insistence on allowing arbitrary functions
in Eq. (5) that curtails our ability to infer the treatment effect from nonexperi-
mental data (when UX and UY are unobserved). In linear systems, for example,
the causal effect of X on Y is identifiable, as can be seen by writing:15

y = fY (x, u) = βx + uY ; (30)

multiplying this equation by z and taking expectations, gives

β = Cov(Z, Y )/(Cov(Z, X) (31)

which reduces β to correlations among observed measurements. Eq. (31) is
known as the instrumental variable estimand (Bowden and Turkington, 1984).
Similarly, Angrist and Imbens (1991) have shown that a broader class of nonlin-
ear functions fX and fY may render the causal effect identifiable. Angrist et al.
(1996) and Heckman and Vytlacil (2005) further refined this analysis by con-
sidering a variety of causal effect measures, each applicable to a special (albeit
non-identifiable and transient) segment of the population.

3.5.3. Bounding causal effects

When conditions for identification are not met, the best one can do is derive
bounds for the quantities of interest—namely, a range of possible values that
represents our ignorance about the data-generating process and that cannot be
improved with increasing sample size. In our example, this amounts to bound-
ing the average difference of Eq. (8) subject to the constraint provided by the

15Note that β represents the incremental causal effect of X on Y , defined by

β
∆
= E(Y |do(x0 + 1)) − E(Y |do(x0)) =

δ

δx
E(Y |do(x)) =

δ

δx
E(Yx).

Naturally, all attempts to give β statistical interpretation have ended in frustrations (Holland,
1988; Whittaker, 1990; Wermuth, 1992; Wermuth and Cox, 1993), some persisting well into
the 21st century (Sobel, 2008).
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observed distribution

P (x, y|z) =
∑

uX,uY

P (x, y, uX , uY |z)

=
∑

uX,uY

P (y|x, uY , uX)P (x|z, uX)P (uY , uX) (32)

where the product decomposition is licensed by the conditional independencies
shown in Fig. 5(a). Likewise, since the causal effect is governed by the modified
model of Fig. 5(b), it can be written

P (y|do(x′))− P (y|do(x′′)) =
∑

u

[P (y|x′, uY )− P (y|x′′, uY )]P (uY ) (33)

Our task is then to bound the expression in Eq. (33) given the observed prob-
abilities P (y, x|z) as expressed in Eq. (32). This task amounts to a constrained
optimization exercise of finding the highest and lowest values of Eq. (33) subject
to the equality constraints in Eq. (32), where the maximization ranges over all
possible functions P (uY , uX), P (y|x, uY , uX) and P (x|z, uY ) that satisfy those
constraints.

Realizing that units in this example fall into 16 equivalent classes, each
representing a binary function X = f(z) paired with a binary function y =
g(x), Balke and Pearl (1997) were able to derive closed-form solutions for these
bounds.16 They showed that despite the imperfection of the experiments, the
derived bounds can yield significant and sometimes accurate information on
the treatment efficacy. Chickering and Pearl (1997) further used Bayesian tech-
niques (with Gibbs sampling) to investigate the sharpness of these bounds as a
function of sample size.

3.5.4. Testable implications of instrumental variables

The two assumptions embodied in the model of Fig. 5(a), that Z is randomized
and has no direct effect on Y , are untestable in general (Bonet, 2001). However, if
the treatment variable may take only a finite number of values, the combination
of these two assumptions yields testable implications, and these can be used
to alert investigators to possible violations of these assumptions. The testable
implications take the form of inequalities which restrict aspects of the observed
conditional distribution P (x, y|z) from exceeding certain bounds (Pearl, 1995b).

One specially convenient form that these restrictions assume is given by the
inequality

max
x

∑

y

[max
z

P (x, y|z)] ≤ 1 (34)

Pearl (1995b) called this restriction an instrumental inequality, because it con-
stitutes a necessary condition for any variable Z to qualify as an instrument

16These equivalence classes were later called “principal stratification” by Frangakis and
Rubin (2002). Looser bounds were derived earlier by Robins (1989) and Manski (1990).
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relative to the pair (X, Y ). This inequality is sharp for binary valued X, but
becomes loose when the cardinality of X increases.17

If all observed variables are binary, Eq. (34) reduces to the four inequalities

P (Y = 0, X = 0|Z = 0) + P (Y = 1, X = 0|Z = 1) ≤ 1

P (Y = 0, X = 1|Z = 0) + P (Y = 1, X = 1|Z = 1) ≤ 1

P (Y = 1, X = 0|Z = 0) + P (Y = 0, X = 0|Z = 1) ≤ 1

P (Y = 1, X = 1|Z = 0) + P (Y = 0, X = 1|Z = 1) ≤ 1 (35)

We see that the instrumental inequality is violated when the controlling instru-
ment Z manages to produce significant changes in the response variable Y while
the direct cause, X, remains constant.

The instrumental inequality can be used in the detection of undesirable side-
effects. Violations of this inequality can be attributed to one of two possibilities:
either there is a direct causal effect of the assignment (Z) on the response (Y ),
unmediated by the treatment (X), or there is a common causal factor influ-
encing both variables. If the assignment is carefully randomized, then the latter
possibility is ruled out and any violation of the instrumental inequality (even un-
der conditions of imperfect compliance) can safely be attributed to some direct
influence of the assignment process on subjects’ response (e.g., psychological
aversion to being treated). Alternatively, if one can rule out any direct effects
of Z on Y , say through effective use of a placebo, then any observed violation
of the instrumental inequality can safely be attributed to spurious dependence
between Z and UY , namely, to selection bias.

4. The potential outcome framework

This section compares the structural theory presented in Sections 1–3 to the
potential-outcome framework, usually associated with the names of Neyman
(1923) and Rubin (1974), which takes the randomized experiment as its rul-
ing paradigm and has appealed therefore to researchers who do not find that
paradigm overly constraining. This framework is not a contender for a com-
prehensive theory of causation for it is subsumed by the structural theory and
excludes ordinary cause-effect relationships from its assumption vocabulary. We
here explicate the logical foundation of the Neyman-Rubin framework, its for-
mal subsumption by the structural causal model, and how it can benefit from
the insights provided by the broader perspective of the structural theory.

The primitive object of analysis in the potential-outcome framework is the
unit-based response variable, denoted Yx(u), read: “the value that outcome Y
would obtain in experimental unit u, had treatment X been x.” Here, unit
may stand for an individual patient, an experimental subject, or an agricultural
plot. In Section 3.4 (Eq. (27) we saw that this counterfactual entity has a nat-
ural interpretation in the SCM; it is the solution for Y in a modified system

17The inequality is sharp in the sense that every distribution P (x, y, z) satisfying Eq. (34)
can be generated by the model defined in Fig. 5(a).
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of equations, where unit is interpreted a vector u of background factors that
characterize an experimental unit. Each structural equation model thus carries
a collection of assumptions about the behavior of hypothetical units, and these
assumptions permit us to derive the counterfactual quantities of interest. In the
potential-outcome framework, however, no equations are available for guidance
and Yx(u) is taken as primitive, that is, an undefined quantity in terms of which
other quantities are defined; not a quantity that can be derived from the model.
In this sense the structural interpretation of Yx(u) given in (27) provides the
formal basis for the potential-outcome approach; the formation of the submodel
Mx explicates mathematically how the hypothetical condition “had X been x”
is realized, and what the logical consequences are of such a condition.

4.1. The “Black-Box” missing-data paradigm

The distinct characteristic of the potential-outcome approach is that, although
investigators must think and communicate in terms of undefined, hypothetical
quantities such as Yx(u), the analysis itself is conducted almost entirely within
the axiomatic framework of probability theory. This is accomplished, by postu-
lating a “super” probability function on both hypothetical and real events. If
U is treated as a random variable then the value of the counterfactual Yx(u)
becomes a random variable as well, denoted as Yx. The potential-outcome analy-
sis proceeds by treating the observed distribution P (x1, . . . , xn) as the marginal
distribution of an augmented probability function P ∗ defined over both observed
and counterfactual variables. Queries about causal effects (written P (y|do(x)) in
the structural analysis) are phrased as queries about the marginal distribution
of the counterfactual variable of interest, written P ∗(Yx = y). The new hypo-
thetical entities Yx are treated as ordinary random variables; for example, they
are assumed to obey the axioms of probability calculus, the laws of conditioning,
and the axioms of conditional independence.

Naturally, these hypothetical entities are not entirely whimsy. They are as-
sumed to be connected to observed variables via consistency constraints (Robins,
1986) such as

X = x =⇒ Yx = Y, (36)

which states that, for every u, if the actual value of X turns out to be x, then
the value that Y would take on if ‘X were x’ is equal to the actual value of Y .
For example, a person who chose treatment x and recovered, would also have
recovered if given treatment x by design. When X is binary, it is sometimes
more convenient to write (36) as:

Y = xY1 + (1− x)Y0

Whether additional constraints should tie the observables to the unobservables
is not a question that can be answered in the potential-outcome framework; for
it lacks an underlying model to define its axioms.

The main conceptual difference between the two approaches is that, whereas
the structural approach views the intervention do(x) as an operation that changes
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a distribution but keeps the variables the same, the potential-outcome approach
views the variable Y under do(x) to be a different variable, Yx, loosely con-
nected to Y through relations such as (36), but remaining unobserved whenever
X 6= x. The problem of inferring probabilistic properties of Yx, then becomes
one of “missing-data” for which estimation techniques have been developed in
the statistical literature.

Pearl (2000a, Chapter 7) shows, using the structural interpretation of Yx(u),
that it is indeed legitimate to treat counterfactuals as jointly distributed random
variables in all respects, that consistency constraints like (36) are automatically
satisfied in the structural interpretation and, moreover, that investigators need
not be concerned about any additional constraints except the following two:

Yyz = y for all y, subsets Z, and values z for Z (37)

Xz = x⇒ Yxz = Yz for all x, subsets Z, and values z for Z (38)

Equation (37) ensures that the interventions do(Y = y) results in the condition
Y = y, regardless of concurrent interventions, say do(Z = z), that may be
applied to variables other than Y . Equation (38) generalizes (36) to cases where
Z is held fixed, at z.

4.2. Problem formulation and the demystification of “ignorability”

The main drawback of this black-box approach surfaces in problem formula-
tion, namely, the phase where a researcher begins to articulate the “science” or
“causal assumptions” behind the problem at hand. Such knowledge, as we have
seen in Section 1, must be articulated at the onset of every problem in causal
analysis – causal conclusions are only as valid as the causal assumptions upon
which they rest.

To communicate scientific knowledge, the potential-outcome analyst must
express assumptions as constraints on P ∗, usually in the form of conditional
independence assertions involving counterfactual variables. For instance, in our
example of Fig. 5(a), to communicate the understanding that Z is randomized
(hence independent of UX and UY ), the potential-outcome analyst would use
the independence constraint Z⊥⊥{Yz1

, Yz2
, . . . , Yzk

}.18 To further formulate the
understanding that Z does not affect Y directly, except through X, the analyst
would write a, so called, “exclusion restriction”: Yxz = Yx.

A collection of constraints of this type might sometimes be sufficient to permit
a unique solution to the query of interest. For example, if one can plausibly
assume that, in Fig. 4, a set Z of covariates satisfies the conditional independence

Yx⊥⊥X|Z (39)

(an assumption termed “conditional ignorability” by Rosenbaum and Rubin
(1983),) then the causal effect P (y|do(x)) = P ∗(Yx = y) can readily be evaluated

18The notation Y ⊥⊥X |Z stands for the conditional independence relationship P (Y =
y, X = x|Z = z) = P (Y = y|Z = z)P (X = x|Z = z) (Dawid, 1979).
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to yield

P ∗(Yx = y) =
∑

z

P ∗(Yx = y|z)P (z)

=
∑

z

P ∗(Yx = y|x, z)P (z) (using (39))

=
∑

z

P ∗(Y = y|x, z)P (z) (using (36))

=
∑

z

P (y|x, z)P (z). (40)

The last expression contains no counterfactual quantities (thus permitting us to
drop the asterisk from P ∗) and coincides precisely with the standard covariate-
adjustment formula of Eq. (25).

We see that the assumption of conditional ignorability (39) qualifies Z as
an admissible covariate for adjustment; it mirrors therefore the “back-door”
criterion of Definition 3, which bases the admissibility of Z on an explicit causal
structure encoded in the diagram.

The derivation above may explain why the potential-outcome approach ap-
peals to mathematical statisticians; instead of constructing new vocabulary (e.g.,
arrows), new operators (do(x)) and new logic for causal analysis, almost all
mathematical operations in this framework are conducted within the safe con-
fines of probability calculus. Save for an occasional application of rule (38) or
(36)), the analyst may forget that Yx stands for a counterfactual quantity—it
is treated as any other random variable, and the entire derivation follows the
course of routine probability exercises.

This orthodoxy exacts a high cost: Instead of bringing the theory to the
problem, the problem must be reformulated to fit the theory; all background
knowledge pertaining to a given problem must first be translated into the lan-
guage of counterfactuals (e.g., ignorability conditions) before analysis can com-
mence. This translation may in fact be the hardest part of the problem. The
reader may appreciate this aspect by attempting to judge whether the assump-
tion of conditional ignorability (39), the key to the derivation of (40), holds in
any familiar situation, say in the experimental setup of Fig. 2(a). This assump-
tion reads: “the value that Y would obtain had X been x, is independent of
X, given Z”. Even the most experienced potential-outcome expert would be
unable to discern whether any subset Z of covariates in Fig. 4 would satisfy
this conditional independence condition.19 Likewise, to derive Eq. (39) in the
language of potential-outcome (see (Pearl, 2000a, p. 223)), one would need to
convey the structure of the chain X → W3 → Y using the cryptic expression:
W3x
⊥⊥{Yw3

, X}, read: “the value that W3 would obtain had X been x is inde-
pendent of the value that Y would obtain had W3 been w3 jointly with the value
of X.” Such assumptions are cast in a language so far removed from ordinary

19Inquisitive readers are invited to guess whether Xz⊥⊥Z|Y holds in Fig. 2(a), then reflect
on why causality is so slow in penetrating statistical education.
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understanding of scientific theories that, for all practical purposes, they cannot
be comprehended or ascertained by ordinary mortals. As a result, researchers
in the graph-less potential-outcome camp rarely use “conditional ignorability”
(39) to guide the choice of covariates; they view this condition as a hoped-for
miracle of nature rather than a target to be achieved by reasoned design.20

Replacing “ignorability” with a conceptually meaningful condition (i.e., back-
door) in a graphical model permits researchers to understand what conditions
covariates must fulfill before they eliminate bias, what to watch for and what to
think about when covariates are selected, and what experiments we can do to
test, at least partially, if we have the knowledge needed for covariate selection.

Aside from offering no guidance in covariate selection, formulating a problem
in the potential-outcome language encounters three additional hurdles. When
counterfactual variables are not viewed as byproducts of a deeper, process-based
model, it is hard to ascertain whether all relevant judgments have been articu-
lated, whether the judgments articulated are redundant, or whether those judg-
ments are self-consistent. The need to express, defend, and manage formidable
counterfactual relationships of this type explain the slow acceptance of causal
analysis among health scientists and statisticians, and why most economists
and social scientists continue to use structural equation models (Wooldridge,
2002; Stock and Watson, 2003; Heckman, 2008) instead of the potential-outcome
alternatives advocated in Angrist et al. (1996); Holland (1988); Sobel (1998,
2008).

On the other hand, the algebraic machinery offered by the counterfactual no-
tation, Yx(u), once a problem is properly formalized, can be extremely powerful
in refining assumptions (Angrist et al., 1996; Heckman and Vytlacil, 2005), de-
riving consistent estimands (Robins, 1986), bounding probabilities of necessary
and sufficient causation (Tian and Pearl, 2000), and combining data from exper-
imental and nonexperimental studies (Pearl, 2000a). The next subsection (4.3)
presents a way of combining the best features of the two approaches. It is based
on encoding causal assumptions in the language of diagrams, translating these
assumptions into counterfactual notation, performing the mathematics in the
algebraic language of counterfactuals (using (36), (37), and (38)) and, finally,
interpreting the result in graphical terms or plain causal language. The media-
tion problem of Section 5.1 illustrates how such symbiosis clarifies the definition
and identification of direct and indirect effects.

In contrast, when the mediation problem is approached from an orthodox
potential-outcome viewpoint, void of the structural guidance of Eq. (27), para-
doxical results ensue. For example, the direct effect is definable only in units
absent of indirect effects (Rubin, 2004, 2005). This means that a grandfather

20The opaqueness of counterfactual independencies explains why many researchers within
the potential-outcome camp are unaware of the fact that adding a covariate to the analysis
(e.g., Z3 in Fig. 4, Z in Fig. 5a) may actually increase confounding bias in propensity-score
matching. Paul Rosenbaum, for example, writes: “there is little or no reason to avoid adjust-
ment for a true covariate, a variable describing subjects before treatment” (Rosenbaum, 2002,
p. 76). Rubin (2009) goes as far as stating that refraining from conditioning on an available
measurement is “nonscientific ad hockery” for it goes against the tenets of Bayesian philosophy
(see (Pearl, 2009b,c; Heckman and Navarro-Lozano, 2004) for a discussion of this fallacy).
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would be deemed to have no direct effect on his grandson’s behavior in families
where he has had some effect on the father. This precludes from the analy-
sis all typical families, in which a father and a grandfather have simultaneous,
complementary influences on children’s upbringing. In linear systems, to take a
sharper example, the direct effect would be undefined whenever indirect paths
exist from the cause to its effect. The emergence of such paradoxical conclusions
underscores the wisdom, if not necessity of a symbiotic analysis, in which the
counterfactual notation Yx(u) is governed by its structural definition, Eq. (27).21

4.3. Combining graphs and potential outcomes

The formulation of causal assumptions using graphs was discussed in Section 3.
In this subsection we will systematize the translation of these assumptions from
graphs to counterfactual notation.

Structural equation models embody causal information in both the equa-
tions and the probability function P (u) assigned to the exogenous variables;
the former is encoded as missing arrows in the diagrams the latter as missing
(double arrows) dashed arcs. Each parent-child family (PAi, Xi) in a causal
diagram G corresponds to an equation in the model M . Hence, missing arrows
encode exclusion assumptions, that is, claims that manipulating variables that
are excluded from an equation will not change the outcome of the hypothetical
experiment described by that equation. Missing dashed arcs encode independen-
cies among error terms in two or more equations. For example, the absence of
dashed arcs between a node Y and a set of nodes {Z1, . . . , Zk} implies that the
corresponding background variables, UY and {UZ1

, . . . , UZk
}, are independent

in P (u).
These assumptions can be translated into the potential-outcome notation

using two simple rules (Pearl, 2000a, p. 232); the first interprets the missing
arrows in the graph, the second, the missing dashed arcs.

1. Exclusion restrictions: For every variable Y having parents PA
Y

and for
every set of endogenous variables S disjoint of PA

Y
, we have

Ypa
Y

= Ypa
Y

,s. (41)

2. Independence restrictions: If Z1, . . . , Zk is any set of nodes not connected
to Y via dashed arcs, and PA1, . . . , PAk their respective sets of parents,
we have

Ypa
Y
⊥⊥{Z1 pa1

, . . . , Zk pak
}. (42)

The exclusion restrictions expresses the fact that each parent set includes all
direct causes of the child variable, hence, fixing the parents of Y , determines
the value of Y uniquely, and intervention on any other set S of (endogenous)
variables can no longer affect Y . The independence restriction translates the

21Such symbiosis is now standard in epidemiology research (Robins, 2001; Petersen et al.,
2006; VanderWeele and Robins, 2007; Hafeman and Schwartz, 2009; VanderWeele, 2009) yet
still lacking in econometrics (Heckman, 2008; Imbens and Wooldridge, 2009).
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independence between UY and {UZ1
, . . . , UZk

} into independence between the
corresponding potential-outcome variables. This follows from the observation
that, once we set their parents, the variables in {Y, Z1, . . . , Zk} stand in func-
tional relationships to the U terms in their corresponding equations.

As an example, the model shown in Fig. 5(a) displays the following parent
sets:

PA
Z

= {∅}, PA
X

= {Z}, PA
Y

= {X}. (43)

Consequently, the exclusion restrictions translate into:

Xz = Xyz

Zy = Zxy = Zx = Z (44)

Yx = Yxz

the absence of any dashed arc between Z and {Y, X} translates into the inde-
pendence restriction

Z⊥⊥{Yx, Xz}. (45)

This is precisely the condition of randomization; Z is independent of all its
non-descendants, namely independent of UX and UY which are the exogenous
parents of Y and X, respectively. (Recall that the exogenous parents of any
variable, say Y , may be replaced by the counterfactual variable Ypa

Y
, because

holding PAY constant renders Y a deterministic function of its exogenous par-
ent UY .)

The role of graphs is not ended with the formulation of causal assumptions.
Throughout an algebraic derivation, like the one shown in Eq. (40), the analyst
may need to employ additional assumptions that are entailed by the original
exclusion and independence assumptions, yet are not shown explicitly in their
respective algebraic expressions. For example, it is hardly straightforward to
show that the assumptions of Eqs. (44)–(45) imply the conditional independence
(Yx⊥⊥Z|{Xz, X}) but do not imply the conditional independence (Yx⊥⊥Z|X).
These are not easily derived by algebraic means alone. Such implications can,
however, easily be tested in the graph of Fig. 5(a) using the graphical read-
ing for conditional independence (Definition 1). (See (Pearl, 2000a, pp. 16–17,
213–215).) Thus, when the need arises to employ independencies in the course
of a derivation, the graph may assist the procedure by vividly displaying the
independencies that logically follow from our assumptions.

5. Counterfactuals at work

5.1. Mediation: Direct and indirect effects

5.1.1. Direct versus total effects:

The causal effect we have analyzed so far, P (y|do(x)), measures the total effect of
a variable (or a set of variables) X on a response variable Y . In many cases, this
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quantity does not adequately represent the target of investigation and attention
is focused instead on the direct effect of X on Y . The term “direct effect” is
meant to quantify an effect that is not mediated by other variables in the model
or, more accurately, the sensitivity of Y to changes in X while all other factors
in the analysis are held fixed. Naturally, holding those factors fixed would sever
all causal paths from X to Y with the exception of the direct link X → Y ,
which is not intercepted by any intermediaries.

A classical example of the ubiquity of direct effects involves legal disputes
over race or sex discrimination in hiring. Here, neither the effect of sex or race
on applicants’ qualification nor the effect of qualification on hiring are targets
of litigation. Rather, defendants must prove that sex and race do not directly
influence hiring decisions, whatever indirect effects they might have on hiring
by way of applicant qualification.

Another example concerns the identification of neural pathways in the brain
or the structural features of protein-signaling networks in molecular biology
(Brent and Lok, 2005). Here, the decomposition of effects into their direct and
indirect components carries theoretical scientific importance, for it predicts be-
havior under a rich variety of hypothetical interventions.

In all such examples, the requirement of holding the mediating variables
fixed must be interpreted as (hypothetically) setting the intermediate variables
to constants by physical intervention, not by analytical means such as selection,
conditioning, or adjustment. For example, it will not be sufficient to measure
the association between gender (X) and hiring (Y ) for a given level of qualifi-
cation Z, because, by conditioning on the mediator Z, we may create spurious
associations between X and Y even when there is no direct effect of X on Y
(Pearl, 1998; Cole and Hernán, 2002). This can easily be illustrated in the model
X → Z ← U → Y , where X has no direct effect on Y . Physically holding Z
constant would sustain the independence between X and Y , as can be seen by
deleting all arrows entering Z. But if we were to condition on Z, a spurious
association would be created through U (unobserved) that might be construed
as a direct effect of X on Y .22

Using the do(x) notation, and focusing on differences of expectations, this
leads to a simple definition of controlled direct effect:

CDE
∆
= E(Y |do(x′), do(z))− E(Y |do(x), do(z))

or, equivalently, using counterfactual notation:

CDE
∆
= E(Yx′z)− E(Yxz) (46)

where Z is any set of mediating variables that intercept all indirect paths be-
tween X and Y . Graphical identification conditions for expressions of the type
E(Y |do(x), do(z1), do(z2), . . . , do(zk)) were derived by Pearl and Robins (1995)
(see (Pearl, 2000a, Chapter 4)) using sequential application of the back-door
condition (Definition 3).

22According to Rubin (2004, 2005), R.A. Fisher made this mistake in the context of agri-
culture experiments. Fisher, in fairness, did not have graphs for guidance.
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5.1.2. Natural direct effects

In linear systems, Eq. (46) yields the path coefficient of the link from X to Y ;
independent of the values at which we hold Z, independent of the distribution
of the error terms, and regardless of whether those coefficients are identifiable
or not. In nonlinear systems, the values at which we hold Z would, in general,
modify the effect of X on Y and thus should be chosen carefully to represent the
target policy under analysis. For example, it is not uncommon to find employers
who prefer males for the high-paying jobs (i.e., high z) and females for low-
paying jobs (low z).

When the direct effect is sensitive to the levels at which we hold Z, it is
often meaningful to define the direct effect relative to a “natural representative”
of those levels or, more specifically, as the expected change in Y induced by
changing X from x to x′ while keeping all mediating factors constant at whatever
value they would have obtained under do(x). This hypothetical change, which
Robins and Greenland (1992) called “pure” and Pearl (2001) called “natural,”
mirrors what lawmakers instruct us to consider in race or sex discrimination
cases: “The central question in any employment-discrimination case is whether
the employer would have taken the same action had the employee been of a
different race (age, sex, religion, national origin etc.) and everything else had
been the same.” (In Carson versus Bethlehem Steel Corp., 70 FEP Cases 921,
7th Cir. (1996)).

Extending the subscript notation to express nested counterfactuals, Pearl
(2001) gave the following definition for the “natural direct effect”:

DEx,x′(Y )
∆
= E(Yx′,Zx

) −E(Yx). (47)

Here, Yx′,Zx
represents the value that Y would attain under the operation of

setting X to x′ and, simultaneously, setting Z to whatever value it would have
obtained under the original setting X = x. We see that DEx,x′(Y ), the natural
direct effect of the transition from x to x′, involves probabilities of nested coun-
terfactuals and cannot be written in terms of the do(x) operator. Therefore, the
natural direct effect cannot in general be identified, even with the help of ideal,
controlled experiments (see footnote 11 for intuitive explanation). Pearl (2001)
has nevertheless shown that, if certain assumptions of “unconfoundedness” are
deemed valid, the natural direct effect can be reduced to

DEx,x′(Y ) =
∑

z

[E(Y |do(x′, z))−E(Y |do(x, z))]P (z|do(x)). (48)

The intuition is simple; the natural direct effect is the weighted average of the
controlled direct effect (46), using the causal effect P (z|do(x)) as a weighing
function.

One sufficient condition for the identification of (47) is that Zx⊥⊥Yx′,z|W
holds for some set W of measured covariates. However, this condition in itself,
like the ignorability condition of (42), is close to meaningless for most investiga-
tors, as it is not phrased in terms of realized variables. The symbiotic analysis
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of Section 4.3 can be invoked at this point to unveil the graphical interpretation
of this condition (through Eq. (45).) It states that W should be admissible (i.e.,
satisfy the back-door condition) relative the path(s) from Z to Y . This condition
is readily comprehended by empirical researchers, and the task of selecting such
measurements, W , can then be guided by the available scientific knowledge. See
details and graphical criteria in Pearl (2001, 2005) and in Petersen et al. (2006).

In particular, expression (48) is both valid and identifiable in Markovian
models, where each term on the right can be reduced to a “do-free” expression
using Eq. (24).

5.1.3. Indirect effects and the Mediation Formula

Remarkably, the definition of the natural direct effect (47) can easily be turned
around and provide an operational definition for the indirect effect – a concept
shrouded in mystery and controversy, because it is impossible, using the do(x)
operator, to disable the direct link from X to Y so as to let X influence Y solely
via indirect paths.

The natural indirect effect, IE, of the transition from x to x′ is defined as the
expected change in Y affected by holding X constant, at X = x, and changing
Z to whatever value it would have attained had X been set to X = x′. Formally,
this reads (Pearl, 2001):

IEx,x′(Y )
∆
= E((Yx,Z

x′
) −E(Yx)), (49)

which is almost identical to the direct effect (Eq. (47)) save for exchanging x
and x′.

Indeed, it can be shown that, in general, the total effect TE of a transition
is equal to the difference between the direct effect of that transition and the
indirect effect of the reverse transition. Formally,

TEx,x′(Y )
∆
= E(Yx′ − Yx) = DEx,x′(Y )− IEx′,x(Y ). (50)

In linear systems, where reversal of transitions amounts to negating the signs
of their effects, we have the standard additive formula

TEx,x′(Y ) = DEx,x′(Y ) + IEx,x′(Y ). (51)

Since each term above is based on an independent operational definition, this
equality constitutes a formal justification for the additive formula used routinely
in linear systems.

For completeness, we explicate (from (48) and (51)) the expression for indirect
effects under conditions of nonconfoundedness:

IEx,x′(Y ) =
∑

z

E(Y |x, z)[P (z|x′)− P (z|x)] (52)

This expression deserves the label Mediation Formula, due to its pivotal role
in mediation analysis (Imai et al., 2008), which has been a thorny issue in several
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sciences (Shrout and Bolger, 2002; MacKinnon et al., 2007; Mortensen et al.,
2009). When the outcome Y is binary (e.g., recovery, or hiring) the ratio (1 −
IE)/TE represents the fraction of responding individuals who owe their re-
sponse to direct paths, while (1 − DE)/TE represents the fraction who owe
their response to Z-mediated paths. In addition to providing researchers with a
principled, parametric-free target quantity that is valid in both linear and non-
linear models, the formula can also serve as an analytical laboratory for testing
the effectiveness of various estimation techniques under various types of model
mispecification (VanderWeele, 2009).

Note that, although it cannot be expressed in do-notation, the indirect effect
has clear policy-making implications. For example: in the hiring discrimination
context, a policy maker may be interested in predicting the gender mix in the
work force if gender bias is eliminated and all applicants are treated equally—
say, the same way that males are currently treated. This quantity will be given
by the indirect effect of gender on hiring, mediated by factors such as education
and aptitude, which may be gender-dependent.

More generally, a policy maker may be interested in the effect of issuing a
directive to a select set of subordinate employees, or in carefully controlling
the routing of messages in a network of interacting agents. Such applications
motivate the analysis of path-specific effects, that is, the effect of X on Y through
a selected set of paths (Avin et al., 2005).

Note that in all these cases, the policy intervention invokes the selection of
signals to be sensed, rather than variables to be fixed. Pearl (2001) has suggested
therefore that signal sensing is more fundamental to the notion of causation
than manipulation; the latter being but a crude way of testing the former in
experimental setup. The mantra “No causation without manipulation” must be
rejected. (See (Pearl, 2000a, Section 11.4.5.).)

It is remarkable that counterfactual quantities like DE and ID that could not
be expressed in terms of do(x) operators, and appear therefore void of empiri-
cal content, can, under certain conditions be estimated from empirical studies.
A general characterization of those conditions is given in (Shpitser and Pearl,
2007).

Additional examples of this “marvel of formal analysis” are given in the next
section and in (Pearl, 2000a, Chapters 7, 9, 11). It constitutes an unassailable
argument in defense of counterfactual analysis, as expressed in Pearl (2000b)
against the stance of Dawid (2000).

5.2. Causes of effects and probabilities of causation

The likelihood that one event was the cause of another guides much of what
we understand about the world (and how we act in it). For example, knowing
whether it was the aspirin that cured my headache or the TV program I was
watching would surely affect my future use of aspirin. Likewise, to take an
example from common judicial standard, judgment in favor of a plaintiff should
be made if and only if it is “more probable than not” that the damage would
not have occurred but for the defendant’s action (Robertson, 1997).
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These two examples fall under the category of “causes of effects” because
they concern situations in which we observe both the effect, Y = y, and the
putative cause X = x and we are asked to assess, counterfactually, whether the
former would have occurred absent the latter.

We have remarked earlier (footnote 11) that counterfactual probabilities con-
ditioned on the outcome cannot in general be identified from observational or
even experimental studies. This does not mean however that such probabilities
are useless or void of empirical content; the structural perspective may guide
us in fact toward discovering the conditions under which they can be assessed
from data, thus defining the empirical content of these counterfactuals.

Following the 4-step process of structural methodology – define, assume, iden-
tify, and estimate – our first step is to express the target quantity in counterfac-
tual notation and verify that it is well defined, namely, that it can be computed
unambiguously from any fully-specified causal model.

In our case, this step is simple. Assuming binary events, with X = x and
Y = y representing treatment and outcome, respectively, and X = x′, Y = y′

their negations, our target quantity can be formulated directly from the English
sentence:

“Find the probability that Y would be y′ had X been x′, given that, in reality,
Y is actually y and X is x,”

to give:
PN(x, y) = P (Yx′ = y′|X = x, Y = y) (53)

This counterfactual quantity, which Robins and Greenland (1989) named
“probability of causation” and Pearl (2000a, p. 296) named “probability of ne-
cessity” (PN), to be distinguished from other nuances of “causation,” is certainly
computable from any fully specified structural model, i.e., one in which P (u)
and all functional relationships are given. This follows from the fact that every
structural model defines a joint distribution of counterfactuals, through Eq. (27).

Having written a formal expression for PN, Eq. (53), we can move on to the
formulation and identification phases and ask what assumptions would permit
us to identify PN from empirical studies, be they observational, experimental
or a combination thereof.

This problem was analyzed by Pearl (2000a, Chapter 9) and yielded the
following results:

Theorem 3. If Y is monotonic relative to X, i.e., Y1(u) ≥ Y0(u), then PN is
identifiable whenever the causal effect P (y|do(x)) is identifiable and, moreover,

PN =
P (y|x)− P (y|x′)

P (y|x)
+

P (y|x′)− P (y|do(x′))

P (x, y)
. (54)

The first term on the r.h.s. of (54) is the familiar excess risk ratio (ERR)
that epidemiologists have been using as a surrogate for PN in court cases (Cole,
1997; Robins and Greenland, 1989). The second term represents the correction
needed to account for confounding bias, that is, P (y|do(x′)) 6= P (y|x′).
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This suggests that monotonicity and unconfoundedness were tacitly assumed
by the many authors who proposed or derived ERR as a measure for the “frac-
tion of exposed cases that are attributable to the exposure” (Greenland, 1999).

Equation (54) thus provides a more refined measure of causation, which can
be used in situations where the causal effect P (y|do(x)) can be estimated from
either randomized trials or graph-assisted observational studies (e.g., through
Theorem 2 or Eq. (25)). It can also be shown (Tian and Pearl, 2000) that the
expression in (54) provides a lower bound for PN in the general, nonmonotonic
case. In particular, the tight upper and lower bounds on PN are given by:

max
{

0, P(y)−P(y|do(x′))
P(x,y)

}

≤ PN ≤ min
{

1, P(y′|do(x′))−P(x′,y′)
P(x,y)

}

(55)

It is worth noting that, in drug related litigation, it is not uncommon to
obtain data from both experimental and observational studies. The former is
usually available at the manufacturer or the agency that approved the drug for
distribution (e.g., FDA), while the latter is easy to obtain by random surveys of
the population. In such cases, the standard lower bound used by epidemiologists
to establish legal responsibility, the Excess Risk Ratio, can be substantially im-
proved using the lower bound of Eq. (55). Likewise, the upper bound of Eq. (55)
can be used to exonerate drug-makers from legal responsibility. Cai and Kuroki
(2006) analyzed the statistical properties of PN.

Pearl (2000a, p. 302) shows that combining data from experimental and ob-
servational studies which, taken separately, may indicate no causal relations
between X and Y , can nevertheless bring the lower bound of Eq. (55) to unity,
thus implying causation with probability one.

Such extreme results dispel all fears and trepidations concerning the empir-
ical content of counterfactuals (Dawid, 2000; Pearl, 2000b). They demonstrate
that a quantity PN which at first glance appears to be hypothetical, ill-defined,
untestable and, hence, unworthy of scientific analysis is nevertheless definable,
testable and, in certain cases, even identifiable. Moreover, the fact that, under
certain combination of data, and making no assumptions whatsoever, an im-
portant legal claim such as “the plaintiff would be alive had he not taken the
drug” can be ascertained with probability one, is a remarkable tribute to formal
analysis.

Another counterfactual quantity that has been fully characterized recently is
the Effect of Treatment on the Treated (ETT):

ETT = P (Yx = y|X = x′)

ETT has been used in econometrics to evaluate the effectiveness of social pro-
grams on their participants (Heckman, 1992) and has long been the target of
research in epidemiology, where it came to be known as “the effect of exposure
on the exposed,” or “standardized morbidity” (Miettinen, 1974; Greenland and
Robins, 1986).

Shpitser and Pearl (2009) have derived a complete characterization of those
models in which ETT can be identified from either experimental or observa-
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tional studies. They have shown that, despite its blatant counterfactual char-
acter, (e.g., “I just took an aspirin, perhaps I shouldn’t have?”) ETT can be
evaluated from experimental studies in many, though not all cases. It can also
be evaluated from observational studies whenever a sufficient set of covariates
can be measured that satisfies the back-door criterion and, more generally, in a
wide class of graphs that permit the identification of conditional interventions.

These results further illuminate the empirical content of counterfactuals and
their essential role in causal analysis. They prove once again the triumph of logic
and analysis over traditions that a-priori exclude from the analysis quantities
that are not testable in isolation. Most of all, they demonstrate the effective-
ness and viability of the scientific approach to causation whereby the dominant
paradigm is to model the activities of Nature, rather than those of the experi-
menter. In contrast to the ruling paradigm of conservative statistics, we begin
with relationships that we know in advance will never be estimated, tested or
falsified. Only after assembling a host of such relationships and judging them to
faithfully represent our theory about how Nature operates, we ask whether the
parameter of interest, crisply defined in terms of those theoretical relationships,
can be estimated consistently from empirical data and how. It often does, to
the credit of progressive statistics.

6. Conclusions

Traditional statistics is strong in devising ways of describing data and infer-
ring distributional parameters from sample. Causal inference requires two ad-
ditional ingredients: a science-friendly language for articulating causal knowl-
edge, and a mathematical machinery for processing that knowledge, combining
it with data and drawing new causal conclusions about a phenomenon. This
paper surveys recent advances in causal analysis from the unifying perspective
of the structural theory of causation and shows how statistical methods can be
supplemented with the needed ingredients. The theory invokes non-parametric
structural equations models as a formal and meaningful language for defining
causal quantities, formulating causal assumptions, testing identifiability, and ex-
plicating many concepts used in causal discourse. These include: randomization,
intervention, direct and indirect effects, confounding, counterfactuals, and attri-
bution. The algebraic component of the structural language coincides with the
potential-outcome framework, and its graphical component embraces Wright’s
method of path diagrams. When unified and synthesized, the two components
offer statistical investigators a powerful and comprehensive methodology for
empirical research.
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