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Abstract

A new model for representing PD-induced relations that are derived from DAG-
representable relations through marginalization over a subset of their variables is
introduced. The new model requires polynomial space and a polynomial algorithm
is given for testing whether a given triplet is represented in the model. In addi-
tion a polynomial algorithm is derived for testing whether a marginalized DAG-
representable relation is DAG-representable.

1 Introduction

This paper investigates Probabilistic Distribution (PD) induced independency relations
which are representable by Directed Acyclic Graphs (DAGS), and are marginalized
over a subset of their variables. PD-induced relations have been shown in the literature
to be representable as relations that can be defined on various graphical models. All
those graphical models have two basic properties: They are compact, i.e., the space
required for storing such a model is polynomial in the number of variables, and they are
decidable, i.e., a polynomial algorithm exists for testing whether a given independency
is represented in the model. In particular, two such models will be encountered in this
paper; the DAG model and the Annotated Graph (AG) model. The reader is supposed
to be farmiliar with the DAG-model which was studied extensively in the literature. An
ample introduction ito the DAG model is included in Pearl (1988, 2000) and Lauritzen
.

The AG-model in a general form was introduced by Paz, Geva, and Studeny in
(2000) and a restricted form of this model, which is all we need for this paper, was
introduced in (2000) and investigated further in (2003). For the sake of completeness,
we shall reproduce here some of the basic definitions and properties of those models
which are relevant for this paper.

Given a DAG-representable PD-induced relation it is often the case that we need
to marginalize the relation over a subset of variables. Unfortunately it is seldom the
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case that such a marginalized relation can be represented by a DAG, which is an easy
to manage and a well understood model. The main result of this paper is the intro-
duction of a new model of representation, the Generalized Annotated Graph (GAG)
model which is both compact and decidable and can represent any marginalized DAG-
representable relation induced by a PD. Moreover, based on the previous paper of
the author (2003), a decision procedure is provided for checking whether a marginal-
ized DAG-representable relation is eitself DAG-representable. A different approach to
marginalized relations as above can be found in Wermuth and Cox (2000).

2 Preliminaries

2.1 Definitions and notations

UGs will denote undirected graphs G � �V�E� where V is a set of vertices and E is
a set of undirected edges connecting between two vertices. Two vertices connected by
an edge are adjacent or neighbors. A path in G of length k is a sequence of vertices
v� � � � vk�� such that �vi� vi�� is an edge in E for i � �� k. A DAG is an acyclic
directed graph D � �V�E� where V is a set of vertices and E is a set of directed arcs
connecting between two vertices in V . The indegree (outdegree) of a vertex v in D is
the number of arcs in E directed into (out of) v. A trial of length k in D is a sequence
v� � � � vk�� of vertices in V such that �vi� vi�� is an arc in E for i � � � � �K. If all
the arcs on the trial are directed in the same direction then the trial is called a directed
path. If a directed path exists in D from vi to vj then vj is a descendant of vi and vi is
a predecesor or ancestor of vj . If the path is of length one then vi is a parent of vj who
is a child of vi.

The skelton of a DAG is the UG derived from the DAG when the orientations of
the arcs are reached. A pattern of the form vi � vj � vk is a collider pattern where
vj is the collider. If there is no arc between vi and vk then vj is an uncoubled collider.
A collider is maximal if no directed path exists from it to any other collider. The mor-
alizing procedure is theprocedure generating a UG from a DAG, by first joining both
parents of uncoupled colliders in the DAG by an arc, and then removing the orienta-
tion of all arcs. The edges resulting from the coupling of the uncoupled collider are
called moral edges. As mentioned in the introducation UG’s and DAG’s represent PD-
induced relations whose elements are triplets t � �X �Y jZ� over the set of vertices of
the graphs. For givent triplet t we denote by v�t� the set of vertices v�t� � X �Y �Z.
Two graph models are equivalent if they represent the same relation.

2.2 DAG-model

Let D � �V�E� be a DAG Whose vertices are V and whose arcs are E. D represents
the relation R�D� � ft � �X �Y jZ�jt � Dg where X�Y� Z are disjoint subsets of V ,
the vertices in V represent variables in PD, t is interpreted as “X is independent on Y
given Z” and t � D means: t is represented in D. To check whether a given triplet
Lauritzen et al. (1990).
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Algorithm 1 The Algorithm L1:
Input: D � �V�E� and t � �X �Y jZ�.

1. Let V � be the set of ancestor of v�t� � X � Y � Z and let D��t� �� be the
subgraphs of D over V �.

2. Moralize D��t� (i.e., join all uncoupled parents of uncoupled colliders in D ��t�).
Denote the resulting graph by D���t�.

3. Remove all orientations in D���t� and denote the resulting UG by G�D���t��.

4. t � G�D���t�� iff t � D.

Remark 1 t � G where G is a UG if and only if Z is a cutset in G (not necessarily
minimal) between X and Y .

The definition above and the L1 Algorithm show that the DAG model is both com-
pact and decidable.

2.3 Annotated Graph – model

Let D � �V�E� be a DAG. We derive from D an AG A � �G�K� where G is a UG
And K is a set of elements K � fe � �d� r�d��g as follows: G is derived from D by
moralizing D and removing all orientations from it.

For every moral edge d in G we put an element e � �d� r�d�� in k such that d�a� b�,
the domain of e, is the pair of endpoints of the moral edge and r�d�, the range of e, is
the set of vertices including all the uncoupled colliders in D whose parents are a and b,
and all the successors of those colliders. Notice that d denotes both a moral edge and
the pair of its endpoints. The relation R�A� defined by the AGA is the relation below:

R�A� � ft � �X �Y jZ�jt � Ag

where to check whether t � A we use the algorithm L2 due to Paz (2000) below.

Algorithm 2 The Algorithm L2
Input: A DAG D � �V�E�.

1. For every element e � �d� r�d�� in K such that r�d��v�t� � ��v�t� � X �Y �
Z�. Disconnec the edge �a� b� in G corresponding to d and remove from G all
the vertices in r�d� and incident edges. Denote the resulting UG by G�t�.

2. t � A if and only if t � �G�t�.

Remark 2 It is clear from the definitions and from the L@ Algorithm that the AG
model is both compact and decidable. In addition, it was shown in Paz (2000) that
the AG model has the following uniquesness property: R�A�� � R�A�� are AG’s.
This property does not hold for DAG models where it is possible for two different (and
equivalent) DAGs to define the same relation. In fact the AG �D� derived from a DAG
D represents the equivalence class of all DAGs which are equivalent to the given DAG
D.

3



Remark 3 The AG derived from DAG’s are a particular case of AGs as defined in Paz
et al. (2000) and there are additional ways to derive AGs that represent PD-induced
relations which are not DAG-representable. Consider e.g., the example below. It was
shown by Verma (1988, Ch. 3) that every DAG representable relation is a PD-induced do you mean

pearl:88?relation therefore the relation defined by the DAG in Fig. 1 represents a PD-induced
relation.

dcba

f

e

Figure 1: DAG representing relation

If we marginalize this relation over the vertices a� b� c and d we get another relation,
PD-induced, that can be represented by the AG A in Fig. 2, under the semantics of the
L2 Algorithm. with R�A� � f�a� bj��� �b� djc� � symmetric imagesg. But R�A�

dcba

f

e

Figure 2: AG A representing marginalized relation

above cannot be represented by a DAG. This follows from the following lemma that
was proven in Paz (2003).

Lemma 1 Let �G�D��K�D�� be the annotated graph representation of a DAG D.
K�D� has the following properties:

1. For every element ��a� b�� r� � K�D�, there is a vertex v � r which is a child of
both a and b and every vertex w � r is connected to some vertex v in r whose
parents are both a and b.

2. For any two elements �d�� r��� �d�� r�� in K�D�, if d� � d� then r� � r�.
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3. For every ��a� b�� r� � K�D�, �a� b� is an edge in G�D�.

4. The set of elements K�D� is a poset (=partially ordered set) with regards to the
relation “�” defined as follows: For any two elements �dp� rp� and dq � rq�. If
dp � rq �� � then �dp� rp� � �dq � rq�, in words “�dp� rp� is strictly greater than
�dq � rq�”. Moreover �dp� rp� � �dq � rq� implies that p 	 rq .

5. For any two elements �d�� r�� and �d�� r�� If r� � r� �� � and r�� r� are not
a subset of one another, then there is an element �d�� r�� in K�D� such that
r� 
 r� � r�.

As is easy to see the annotation, K in Fig. 2 does not satisfy the condition 4 of
the lemma since the first element in K is bigger than the second but it’s range is not a
subset of the range of the second element. Therefore A is not DAG-representable.

Remark 4 An algorithm is provided in Paz (2003) that tests whether a given AG, pos-
sibly derived from a marginalized – DAG relation, which satisfies the (necessary but not
sufficient) conditions in lemma 1 above, is DAG-representable. The main result of this
work is to provide a polynomial algorithm which generates a “generalized annotated
graph” representation (concept to be defined in the sequel) which is both compact
and decidable. In some cases the generalized annotated graph reduces to a regular
annotated graph which satisfies the condition of lemma 1. If this is the case than,
using the testing algorithm in [Paz, 1992] we can check whether the given AG is DAG-
representable. It is certainly not DAG-representable if the generalized annotated graph
is not a regular AG or is a regular AG but does not satisfy the conditions of lemma 1.

Remark 5 When a given AG A is derived from DAG then the annotation set K �
f�d� r�d��g can be interpreted as follows: The edge �a� b�, in G corresponding to d,
(a moral edge) represents a conditional dependency. That is: there is some set of
vertices, disjoint of r�d�, Sab such that �aibjSab� is represented inA but a and b become
dependent if any proper subset of r�d� is observed i.e., ��a� bjS� if � �� S 
 r�d�.

3 Deriving Annotated Graphs Which are Equivalent to
Marginalized DAGs

3.1 Preliminary simplification

Let A�D� � �G�D��K�D�� be an AG derived from a given DAG D and equivalent
to D, and R�D� is to be marginalized over a subset S of it’s variables. We want to
find a proper representative for the marginalized relation RA�D�. As a preliminary
observation we notice that we may assume that all the vertices in V nS, in D, are
ancestors of the vertices in S, given that we are interested in RS�D� only. Otherwise
we may reduce D and the corresponding A�D� into simpler and equivalent, over S,
DAG And AG, D� and A�D�� as follows:

1. Remove from D and from G�D� all vertices which are not ancestors of S in D.
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2. For any element e � �d� r� inK�D� such that r is in V nS, remove e fromK�D�
and disconnect the edge corresponding to e in K�D�. Denote the resulting DAG
and AG by D� and A�D��. To show that A�D�� represents the same relation
as A�D� when marginalized over S we observe that if e � �d� r� in K�D� has
the property mentioned in step (2) above then the vertices in r connect include
ancestors of vertices in S: Any vertex in S that has an ancestor in r must be
included in r contrary to the fact that r � V nS. Therefore the vertices in r are
removed from G�D� in step (1). It follows now, by the L1 Algorithm and it’s
equivalence to the L2 Algorithm that, over S, A�D� and A�D� represent the
same relation.

As a consequence from the above argument it is also clear that an annotated graph
A�D� such that all the vertices in D over V nS are ancestors of vertices in D over S,
has the property that every range of an element in K�D� intersects S (see step 2 of the
reduction procedure above). We shall assume hereforth that the given annotated graph
A�D�, to be marginalized over a subset of vertices S, has the following two properties:

(i) All vertices in D belonging to the set V nS are ancestors of the vertices in S.

(ii) Every range of an element in K�D� intersects S.

We proceed now with the task of constructiing a generalized annotated graph (the
term will be explained in the sequel) which is equivalent to the marginalization of D
over S. We denote this generalized annotated graph by AS�D� � �GS�D��KS�D��.

3.2 ProcedureM : For constructing AS�D�

3.2.1 constructing the UG GS�D� � �VS�D�� ES�D��

Necessarily we must have that VS�D� � S. The derivation of ES�D� requires a more
complex setup. The edges in ES�D� are separated into strong edges and weak edges
where the weak edges are intended to correspond to the domains of the elements in
KS�D�. The definition of those edges is given below:

(a) If a� b is an arc in D then a—b is a stront edge in ES�D�.

(b) Let �u� v� be a pair ov fertices in S that are nonadjacent in D. If there is a path
in G�D� over �V nS�� (ancestor of fu� vg), connecting u to v and suth that the
range of every moral edge on the path (if any) has nonempty intersection with
fu� vg, then set u���v to be a strong edge in ES�D�.

(c) Let �u� v� be a pair of vertices in S that are not adjacent in D, and do not satisfy
the condition b) above. If �u� v� is an edge in G�D� or if there is a path in G�D�
over �V nS� � fu� vg connecting u to v, then �u� v� is set as a weak edge in
ES�D�. Notice that the first part of the e=condition is a particular case of the
second part when the path consists of a simple (moral) edge. The definition of
GS�D� is now completed.

Lemma 2 If �u� v� is a strong edge in GS�D� then for any Z 
 S, �a� vjZ� is not
represented in D.
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Proof: The lemma trivially holds for �u� v� satisfying property (a). If �u� v� satisfies
(b) and the path connecting u to v, assumed to exist in G�D�, includes no moral edges
then the trail in D corresponding to the path in G�D� has the property that all the
vertices on it are ancestors of u or v or both. Therefore when the L1 Algorithms
checks whether �u� v�Z� is represented in D, no vertex on the trail is removed. So
the trail is transformed into a path in the UG generated by the L1 Algorithm for D
and �u� v�Z�. The path is not intercepted by any Z 
 S since all the vertices on the
path are in V nS. Thus the L1 algorithm will decide that �u� v�Z� is not represented
in D for any Z 
 S. If the path includes moral edges then, due to the fact that the
ranges of there moral edges intersect fu� vg, those moral edges will be added (due to
the moralization procedure) to the broken trail in D corresponding to the path in G�D�
when the L1 Algorithm generates the UG corresponding to D and �u� v�Z�. Using
the above argument we get ??? that the L1 Algorithm will decide that �x� y�Z� is not
represented in D for any Z 
 S.

The above lemma shows that if u and v are connected by a strong edge then they
cannot be separated. As mentioned before, weak edges are intended to correspond to
the domains of the elements in KS�D�. It turns out however that, for marginalized
DAG’s it is often impossible to represent them as an annotated graph with �d� r� ele-
ment in the form shown in the previous sections. We found it necessary therefore to
define more general elements �d�Gd� where Gd is an undirected graph itself whose set
of vertices is a subset of S.

The construction of those elements, as well as the semantics for deciding whether
a triplet is represented in the generalized annotated graph will be shown subsequently.
Let u � � � v be a weak edge in GS�D�. For every such edge we constructed an
element �d�Gd� where d � fu� vg and Gd is a graph whose construction is given in
the next section.

3.2.2 The construction of KS�D�

During the following construction source moral edges will be marked and some paris
of consecutive edges (i.e., two edges having a common vertex) will be designated as a
forbided transition.

Notation and Definition: The graph G�S� d� denotes the subgraph of G�D� over
the union of the vertices in d and the vertices in V nS, where d � �u� v� is a weak edge
in GS�D�. A legal path is a path in G�S� d� which does not include marked edges,
does not include forbiden transitions, and may include the vertices u and v only as and
vertices of the path (i.e., it does not pass through them).

3.2.2.1 The construction of �Gd

For every weak edge d � �u� v� in GS�D� we construct first an intermediary graph
�Gd � ��Vd� �Ed� as below:

1. If �a� b� is a moral edge in G�S� d� such that the range of the domain �a� b� in
K�D� has nonempty intersection with fu� vg then reset �a� b� as a regular (i.e.,
nonmoval ) edge in G�S� d�, in connection with the algorithms and procedures
described in the sequel, in this section.
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2. For every remaining moral edge �a� b� in G�S� d� and for every vertex 	 in
G�S� d� such that 	 is a collider in D whose parents are a and b set the pair of
edges �a� c� and �c� b� as a forbided transition pair in G�S� d�.

3. Allocate weights to the edges in G�S� d� such that moral edges get weight 1 and
all other edges get weight 0.

4. Construct �Gd � ��Vd� �Ed� as follows:

(a) The vertices U and V are �Vd.

(b) Set all other vertices in hatVd and all edges in �Ed according to the algo-
rithm below.

Algorithm 3 Begin

1. While a legal path connecting u to v through G�S� d� exists
do begin

1.1 Create a set W of vertices, W � �

1.2 Find a legal path of minimal weight connecting u to v through G�S� d�.
Remark: We will show that alt least one such paty must exist and that every
such path must have moral edges on it.

1.3 Let �p� q� be the moral edge on the above legal path closest to u with p

closer to u than q.


 Create a vertex vu�p in �Vd and an edge in �Ed connecting u to vup.


 If q � v then create an edge in �Ed connecting vu�p to v, else reset
W � W � q


 Mark the edge �p� q�.

end (while).

(a) Unmark all marked edges

(b) While W is not empty do begin

3.1 Remove a vertex w from W and reset W �� Wnw.

3.2 Find a minimal weight legal path in G�S� d� connecting w to v.

3.3 If no such path exists, then unmark all the marked edges and go to 3.

3.4 If the path has weigth(?) 0 then create edges in �Ed connecting all
vertices vpq in �Vd such that q � w to v, unmark all marked edges and
go to 3.

3.5 Let �r�� q�� be the moral edge on the part found in step 3.2 closest to
w with p� closer to w then q�.


 Create a vertex vw�p� in �Vd and edges in �Ed connecting all vertices
vp�q in �Vd such that q � w to vw�p�

– If q� � v then create an edge in �Ed connecting Vw�p� to v, else
reset W � W � q�.
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– Mark the edge �p�� q��.

3.6 Go to 3.2

(c) End of algorithm

3.2.2.2. An Example

The graph D shown below is borrowed from the paper of Verma and Pearl(1991) and

dcb

f

e

Figure 3: Graph D

we want to marginalize this graph over fa� b� c� e� fg � S.
The annotated graph representation of D is shown in Fig. 4.

dcba

Figure 4: The annotated graph A�D�

Notice that all ranges in K�D� have nonempty intersection with S.
The graph GS�D� is shown in Fig. 5 where strong edges are represented by solid

lines and weak edges by broken lines. Notice the following:


 The edges �a� e�� �f� c� and �e� b� are strong edges due to criterion �a� of strong
edges.


 The edges �e� f� is a strong edge due to the path e� p � q � f in G�D� where
the range of the moral edge p� q on the path includes the vertex e.


 The edges �b� f� is a strong edge due to the path b� q � f in G�D�.
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b

d

a

Figure 5: The graph GS�D�


 The edges �a� c� is a weak edge due to the path a� p� q � c in G�D� etc.

The graphs �Gd are shown in Fig. 6. Notice that the moral edge �p� q� in G�D� is

b

d

c

P

a

Figure 6: The graph �Gd

treated as a regular edge in the construction of�G�e�c�, due to the fact that the range of

�p� q� includes the vertex e (see step 1 of the construction algorithm for �Gd), and is not
included therefore as a vertex in �G�e�c�.

3.2.2.3. A property of the graphs �Gd

Definition 1 Let �u� v� be a weak edge in GS�D�. A moral edge �a� b� in G�S� d� will
be called proper with regard to �u� v� iff the range corresponding to the domain �a� b�
in K�D� has empty intersection with fu� vg.

Lemma 3 Let �u� v� be a weak edge in GS�D� for a given marginalized DAG D over
S. Then the following properties hold true:

(i) There exists at least one legal path connecting u to v in G�S� d�.

(ii) Every legal path as in (i) above includes at least one proper moral edge with
regard to �u� v�.
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(iii) For every legal path � satisfying (i) and (ii) above there is a unique correspond-
ing path �� in �G�u�v�, connecting u to v, such that every vertex ve on �� cor-
responds to a proper moral edge e on � and, if ve precedes ve� on �� then e

precedes e� on �.

Proof: By definition, since �u� v� is a weak edge, there is a path in G�S� d� connecting
u to v. If the path is not legal then it contains forbidden transitions. Any such forbidden
transition a� c� b corresponds to an uncoupled collider configuration a � c � b in
D. Therefore a � b is a moral edge on G�D� which shortcircuits the vertex c on the
path. Replacing the forbided transitions by the corresponding moral edges results in a
legal path thus proving properties (i). To prove (ii), let � be a legal path connecting u
to v in G�S� d�. If � includes no moral edges then, as it excludes formiden transitions,
it must correspond to a trail in D such that all the vetices on it (in D) are ancestors of
u of v or both implying that �u� v� is a strong edge, contrary to our assumption. On
the other hand, if � includes mora edges but all of them are not proper with regard to
�u� v� then we can show again that all the vertices on � are ancestors of either u or
v thus rendering �u� v� a strong edge contrary to assumption. To show this let �a� b�
and �a�� b�� be two consecutive nonproper moral edges on �. As the path is legal, the
subpath from b to a� must have all its vertices ancestors of b or a� or both. Therefore,
given that �a� b� and �a�� b�� are non proper we must have that b and a� are ancestors of
u of v or both. It follows that all the vertices on the subpath from b to a� are ancestors
of u or v or both. The same argument works when we consider the subpath from u to
a, where �a� b� is the closest to u nonproper moral edge on �, and the subpath from b �

to v where �a�� b�� is the closest to v nonproper moral edge on �. It follows that � must
include some proper moral edges. To prove (iii) let � be a path as in the proof of (ii)
above. Consider the first while loop in the algorithm describing the construction of the
graph �G�u�v� (step 1 part (4) section 3.2.2.1). Assume that this while loop generates
a total of K vertices, say, v�� v�� � � � � vK in �G�u�v� all adjacent to u in �G�u�v� and
corresponding to the proper moral edges e�� � � � � eK in G�S� d�. Then one of the edges
e�� � � � � eK must be included in �. Otherwise, the existence of the path � connecting u
to v and not including any of the proper moral edges e�� � � � � eK implies the existence
of a minimum weighth path from u to v not including e�� � � � � eK , but including proper
moral edges (by property (i)). This would have forced the whild loop to execute an
additional iteration which would have added to the set v�� � � � � vK an additional vertex,
representing a proper moral edge on that minimal weight path. To complete the proof of
property (iii) we can now use an inductive argument: Assume that we found a partial
path in �Gu�v � u�w�� w�� � � � � wj such that w�� � � � � wj correspond to proper moral
edges on �� e�� � � � � ej . If wj is connected to v in �G�u�v� then we are alone. Otherwise,
step 3.5 in the construction algorithms shown in sectioin 3.2.2.1 will generate a set of
vertices all connected to wj in �G�u�v�, corresponding to proper moral edges. Using a
similar argument as the one used above we can show that one of those newly generated
vertices corresponds to a proper moral edge on � subsequent to ej on �. Continuing
that way we can find the unique path �� in �Gu�v having the property claimed in (iii). �

Corollary 1 Let C be a vertex-cut set in �G�u�v� separating u from v. Then EC the set
of proper moral edges, corresponding to C in G�S� d� are an edge-cut separating u
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from v in G�S� d�, over the legal paths (i.e., all legal paths are cut by the edge cut).
Moreover, if E� is a subset of the set of proper moral edges which is a minimal edge
cut over the legal paths in G�S� d� then all the edges in E � are represented as vertices
in �Gd and those vertices from a vertex-cutset in �Gd between u and v.

Proof: The first part of the corollary follows directly from property (iii) in the above
lemma. To prove the second part we notice first that if e is a proper moral edge in
G�S� d� and e must generate a vertex in �G�u�v�. To prove this we use the following
argument. Since e belongs to a minimal edge cut over the legal paths there must be
a minimal weigth legal path including e. Following the construction algorithm in the
previous section we must have that either e or another proper moral edge on the path,
preceeding e, generates a corresponding vertex in �Gd. If it is e then we are done, oth-
erwise that preceeding edge, say �a� b� will dictate the insertion of b into W and, when
b is processed subsequently in step 3, we can use the same argument, for the legal sub-
path from b to v, that includes e as a proper moral edge on it, in order to show that
either e or another proper moral edge on the subpath, generates a corresponding vertex
on �Gd. Repeating this argument several times we conclude that eventually ewill gener-
ate a corresponding vertex in �Gd. Now let c�E�� be the set of vertices corresponding to
E� in �Gd. If c�E�� is not a cutset between u and v in �Gd then there is a path in �Gdfrom
u to v not passing through c�E ��. This path corresponds to a legal path in G�S� d� not
including any of the edges in E �, which constradicts the assumption that E � is an edge
cut over the legal paths in G�S� d� �

3.2.2.4. Deriving the graphs Gd out of the graphs �Gd

Let �Gd be the intermediary graph constructed, as shown in section 3.2.2.1 for a given
weak edge d � �u� v� in GS�D�. The vertices in �Gd, except u and v, correspond to
proper moral edges inG�S� d� and those moral edges are the domains of some elements
in K�D�. To derive the graph Gd out of �Gd we follow the steps below:

1. For every vertex ve, except u and v, in �Gd find the range of the element in K�D�
whose domain is e and denote it by r�e�.

2. Find r�e� � S and denote rS�e� � r�e� � S

3. For every vertex ve in �Gd substitute the set of vertices rS�e�.

4. If ve is adjacent to ve� in �Gd then connect all the vertices in rS�e� to all the
vertices in rS�e��. Also connect u to all the vertices in rS�e� if ve is adjacent to
u and do the same for v.

5. By construction, all the vertices in any set rS�e�, as above, are inGS�D�. If some
vertex w is included in Several sets rS�e� for different e�s then merge all those
occurences of w into a single vertex and connect this vertex to all the vertices
that were adjacent to some occurence of w before the merger.

6. Denote the resulting graph byGd and set this graph as the annotation of the weak
edge d � �u� v� in GS�D�.
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Remark 6 The following relation exists between �Gd and Gd where d � �u� v�. If C is
a cutset between u and v, in Gd then there is a cutset C� between u and v in �Gd such
that the following inclusion holds:

c�� � furS�e� � ve � c�g 
 c

This follows from the fact that, by step 4, if ve is adjacent to ve� in �Gd then all vertices
in rS�e� are connected to all vertices in rS�e�� and therefore if some vertex v� � rS�e��
is connected to some vertex v� � rS�e�� through some vertex v� � �S�e�� in Gd then
all the vertices in rS�e�� must belong to a cutset in Gd separating v� from v�.

3.2.2.5. Definitions of KS�D� and AS�D�

An element �d� r�d�� will be called degraded it’s domain d is empty. For every element
in K�D� construct a degraded element ��� rS�d�� where rS�d� � r�d� � S. As men-
tioned in sectioin 3 we assume that for all elements �d� r�d�� in K�D�� r�d� � S �� �.
The set of elements KS�D� is now defined as below:

KS�D� � f��� rS�d�� � �d� r�d�� � K�D�g
�

� f�d�Gd� � d is a weak edge in GS�D�g

Finally we define
AS�D� � �GS�D��KS�D���

AS�D� is the annotated graph r epresentation of a given DAG D marginalized over a
subset S of it’s vertices.

3.2.2.6. An example (continued)

Consider again the example in section ??. The annotated graph representation of the
DAG D in Fig. 3 is shown in Fig. 7. The graph GS�D� is shown in Fig. 8 where
S � fa� b� c� e� fg. Those graphs are reproduced here for the benefit of the reader:

a

P

c

d

b

Figure 7:

Fig. 7 and Fig. 8 (repeat) the derivation of the graphs Gd are shown below:
In the same way we get for the other weak edges inGS�D�.
The degraded elements are found to be:

��� fb� eg�� ��� feg�� ��� ffg�
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Figure 8:

The set KS�D� therefore includes all the above degraded elements and all the elements
of the form �d�Gd� where d � �a� b�� �a� f�� �a� c�� �b� c�� �e� c�.

3.2.2.7. A property of the annotated graph represenation of marginalized DAG’s

Lemma 4 Let A�D� � �G�D��K�D�� be the annotated graph representation of a
given DAG D. Let AS�D� � �GS�D��KS�D�� be the annotated graph representation
of the marginalized relation represented by D over a subset S at the vertices of G�D�.
Let t � �X �Y jZ� be a triplet such that v�t� � fX � Y � Zg is a subset of S. Let
G��D� be the graph derived from G�D� when the L2 algorithm is applied to A�D� for
the triplet t and let �d�Gd� be a nondegraded element in KS�D� where Gd � �Vd� Ed�
and d � �u� v�. Then all the paths in G��S� d� between u in v are disconnected if and
only if �Snv�t�� � �V �

dnfu� vg� is a cutset between u and v in Gd.

Proof
We show first that if and only if all legal paths in G��S� d� are disconnected then all
paths are disconnected. Trivially, we used to prove the “if” case only. to this end, let
� be a path in G�

S�d� connecting u to v and assume that � is not legal. Then it must
include forbidden transitions. Any such transition a�c�b corresponds to an ucoupled
collider a � c � b in D. Therefore a � b is a moral edge in G�D� corresponding
to an element in K�D� with range r�a� b�, and one can construct a legal path � � in
G�S� d� shortcircuiting all forbidden transitions by their corresponding moral edges.
As shown in the proof of part (ii) of lemma ??, at least one of the moral edges on � �,
shortcircuiting the forbidden transitions on � must be proper. Recall that the range
r�a� b� corresponding to such a proper moral edge does not interest fu� vg. Now if all
legal paths between u and v in G�S� d� are disconnected by the L2 algorithm then the
path �� is disconnected which means that a proper moral edge on � � is disconnected.
Let �a�� b�� be the proper moral edge on � � disconnected by the L2 algorithm. The
condition for this to happen is that r�a�� b�� � v�t� � �. But if this condition holds
then the L2 algorithm will also remove r�a�b�� � from G�D� thus disconnecting �. To
complete the proof of the lemma it suffices therefore to show, based on the above
argument, that if and only if the conditions of the lemma hold then all legal paths in
G��S� d� between u and v are disconnected. We proceed now to prove this claim.
Assume first that all legal paths between u and v in G�S� d�. By lemma ?? this set of
edges correspond to a cutset C between u and v in �Gd and by the construction of Gd

the set of vertices C generates a set of vertices C � defined as below.

C � � f
�

rS�a� b� � wab � �Gd� �a� b� � ECg
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and C � is a cutset between u and v in Gd, with C � 
 S. Now the condition for the
removal of the set of edges EC by the L2 algorithm holds if and only if r�a� b� 

V �D�nv�t� for all the edges �a� b� � EC . Also as v�t� is a subset of S the above
condition implies that rS�a� b� 
 Snv�t� for all �a� b� � EC so that C � 
 Snv�t�.
Futhermore, as C � is a cutset between u and v in Gd with C � 
 Vd we have that
�Snv�t�� � Vd is a cutset between u and v in Gd as required. Assume now that
�Snv�t�� � �Vdnfu� vg� � C �� is a cutset between u and v in Gd. Then, by remark
??, theremust be a cutset C in �Gd between u and v such that for every vertex ve in C,
rS�e� 
 C ��. By lemma ?? the cutset C in �Gd corresponds to an edge cut EC over the
legal paths in G�S� d�. Let e be an edge in EC . Then e corresponds to a vertex ve in C
and, as mentioned above rS�e� 
 Snv�t�. Now v�t� 
 S and terefore r�e� 
 V nv�t�
which implies that the condition for the removal of e fromG�S� d� exists for all e � EC

which is an edge cut over the legal paths between u and v in G�S� d� �.

3.3 A semantics for defining the relation represented by the anno-
tated graph derived from a marginalized DAG

3.3.1 Algorithm MDT

Let AS�D� � �GS�D��KS�D�� be the annotated graph representation of a DAG D

marginalized over a subset S of it’s vertices. Let t � �X �Y jZ� be a triplet over S and
let v�t� be the set of vertices v�t� � X � Y � Z. To ascertain whether t is represented
in AS�D� apply the procedure below:

1. For every degraded element ��� rS�d�� inKS�D� if rS�d��v�t� � � then remove
the vertices in rS�d� and incident edges from GS�D�.

2. For every nondegraded element �d�Gd� in KS�D� where d�u� v�. Iff �Snv�t���
�Vdnfu� vg� is a cutset between u and v in Gd then remove the edge �u� v� from
GS�D�.

3. t is represented in AS�D� if and only if it is represented in the UG generated
from GS�D� by steps 1 and 2 above.

3.3.2 An example (continued)

Consider again the example in section 3.2.2.2. For the given subset of variables S �
fa� b� c� e� fg the annotated graph AS�D� � �GS�D��KS�D�� is shown in section
3.2.2.6 and the graph GS�D� is reproduced below:

Let t be the triplet t � �b� c� ajf�, then v�t� � fb� c� a� fg. The degrated element
��� feg� satisfies the property in step 1 feg� v�t� � �, therefore the vertex e should be
removed fromGS�D�. The condition in step 2 is satisfied forG�a�b�� G�a�f� and G�a�c�

therefore the weak edges �a� b�� �a� f� and �a� c� should be removed from GS�D�. The
resulting UG is shown below

Verifying that t is represented in the test graph we conclude that t is represented in
AS�D�.
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Figure 9: The graph GS�D�
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Figure 10: Test Graph

3.3.3 Correctness – Main Theorem

The testing procedure described in section ?? will be referred to as the MDT (marginal-
ized DAG test) proceture.

Theorem 1 Let AS�D� � �GS�D��KS�D�� be the annotated graph representation
of a DAG D marginalized over a subset S of it’s vertices. Let t � �X �Y jZ� be a triplet
over S then t is represented in D if and only if it is represented in AS�D� through the
MDT procedure.

Proof: We know that t is represented in D if and only if it is represented in A�D� �
�G�D��K�D�� through the L2 algorithm. Denote by G� the undirected graph derived
from G�D� by the L2 algorithm for A�D� and t. Then t is represented in A�D� if
and only if it is represented in G�. Let G�

� be the subgraph of G� over the vertices
V� � S. For any pair of nonadjacent vertices �a� b� in G�

� such that there is a part in G,
connecting a to b through V�nV�, add the edge �a� b� to E �

�. Denote the resulting graph
byG�. It is easy to show and it is well known that t is represented inG� if and only if it
is represented in G� (recall that v�t� 
 S). To prove the theorem , it suffices therefore
to prove that G� is equal to the graph generated from GS�D� by the MDT procedure.
Denote by GS�D� t� � �VS�D� t�� ES�D� t�� the graph generated from GS�D� by the
MDT procedure for the triplet t. We will show that VS�D� t� � V� andES�D� t� � E�.
Clearly, the vertices in V� are the vertices in S except vertices must belong to the range
of an element �d� r�d�� in KS�D� and by step 1 of the MDS procedure the vertices in
rS�d� are removed from G�S�D� since r�d� � v�t� � � implies that rS�d� � v�t� � �.
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Therefore VS�D� t� � V�. Consider now ES�D� t�. Let d � �a� b� be a strong edge in
GS�D�. Then it is an edge also in GS�D� t�. It could be a strong edge in GS�D� for
one of 2 reasons: (i) �a� b� is an art in D. Then it is an edge in both E� and GS�D� t�.
(ii) It is not an arc in D but there is a path in G�S� d� such that all the vertices on the
path are ancestors of fa� bg and the range of every moral edge on the path (if any) has
nonempty intersection with fa� bg. Then this path is not removed when G� is rested
by the L2-algorithm, since the vertices on the path cannot belong to a range to be
removed by the L2-algorithm and the element corresponding to moral edges on the
path if any are not processed by the L2-algorithm presenting the removal of such moral
edges. Therefore �a� b� will be an edge in both E� and ES�D�. By step 2 at the MDT
procedure d is not an edge in ES�D� t� if and only if �Snv�t��� �Vdnfu� vg� is a cutset
between u and v in Gd. By lemma ?? this holds tru if and only if all paths in G�S� d�
between u and v are disconnected by the L2 algorithm. This �a� b� is not set as an edge
in E� when G� is created iff it is not an edge in ES�D� t�. We have thus shown that
ES�D� t� 
 E�. To show that E� 
 ES�D� t� we notice that the edges �a� b� in E� are
either corresponding to arcs in D, or are created due to the fact that a path in G�S� d�
exists connecting a to b which corresponds to the condition of a strong edge in GS�D�,
or are created due to the fact that a path exists in G�S� d� connecting a to b which
corresponds to a weak edge in GS�D�, which is not removed by the MDT procedure
�.

4 Extensions and Final Comments

4.1 PD-induced relations that cannot be represented by a marginal-
ized DAG

While DAG’s are widely used as a model that can represent PD-induced relation one
may ask whether it might be possible to represent every PD-induced relation either by
a DAG or, assuming the existence of latent variables, by a marginalized DAG. The
answer to this question is negative as shoudl be expected. A counterexample is given
below

Consider the following PD-induced relation, over 3 variable x� y� and z, consisting
of two triplets only:

R � f�x� yj��� �x� yjz� � symmetric tripletsg

Then R cannot be represented by a marginalized DAG. To prove this claim assume
that there is a DAG D with n variables, including x� y and z such that when D is
marginalized over fx� y� zg, the marginalized DAG represents R. This assumption
leads to a contradiction: Since �x� zj�� and �y� zj�� are not in R there must be trails
�xz and �yz in D with no colliders included in them. Let �xy be the concatenation
of the two trails �xz and �zy (which is the trail �yz i nreverse). Then �xy connects
between x and y and has no colliders on it except perhaps the vertex Z. If Z is a
collider then �xy has no colliders on it and therefore �x� yj�� is not represented in D.
Therefore R cannot be represented by marginalizingD over fx� y� zg, a contradiction.
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That R is a PD-induced relation was shown by milan Studeny (private communcation)
as follows:

Consider the PD over the binary variables x� y and then ternary (?) variableZ. The
probability of the three variables for the different values of x� y� z is given below

p�	� 	� 	� � p�	� 	� 
� � p��� 	� �� � p��� 	� 
� � �
�

p�	� �� 	� � p��� �� �� � �
�

p�x� y� z� � u � for all other configurations

The reader can convince himself that the relation induced by the above PD is the rela-
tion R � f�x� yj��� �x� yjZ�g. Notice however that the relation R above is represented
by the annotated graph below

G � xzyK � f��x� y�� fzg�g

see [Paz, 1992].

4.2 Space complexity considerations

The number of elements in the set K�D� of the annotated graph representation of a
given DAG D is bounded by the number of moral edges in G�D�. For every element
�d� r�d�� inK�D� the range r�d� is a unique subset of the vertices ofD, whose removal
from G�D� when a triplet t such that v�t� � v�d� � � is tested by the L2 algorithm,
iduces the removal of the edge d from G�D�. The situation is quite different when
we apply the MDT procedure to the annotated graph representation of a marginalized
DAG. The space required for storing AS�D� is still polynomial in the number of ver-
tices of D: the number of degraded elements is bounded by the number of moral edges
in D, the number of elements �d�Gd� is equal to the number of weak-edges in GS�D�
and the set of vertices in Gd, for every weak edge d, is a subset of the set of vertices
of GS�D�. The time complexity for testing a triplet t by the MDT procedure is also
polynomial as is easy to see. On the other hand the condition for the removal of a
weak edge d from GS�D� dictated by the MDT algofithm is a complex condition i.e.,
d should be removed if �Snv�t����Vdnfu� vg� is a cutset between u and v inGd, where
d � �u� v�. Now the number of such cutsets could be exponental so that there may be
exponentally many different conditions whose presence dectates the disconnecting of
u from v where the MDT procedure is applied to AS�D� for different triplet t.

This feature is illustrated in the example below – introduced in [Geiger et al., 1994].
Consider the DAG D � �V�E� with V � fxiji � Ng � fyiji � Ng � fuij ji� j �
N� i �� jg � fvij ji� j � N� i �� jg

E � fxi � uij � xj j i� j � N� i �� jg�
fyi � vij � yj j i� j � N� i �� jg�
fxi � wij � yi j i � Ng

An ij face of D is shown in Fig. 11:
Let A�D� � �G�D��K�D�� be the annotated graph representation of D. An i� j

face of G�D� is shown in Fig. 12.
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Figure 11: i� j face of D
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Figure 12: i� j face of G�D�

The set of elements K�D� is:

K�D� � f�uij � wii�fxig�ji� j � N� i �� jg �

f�vij � wii�fyig�ji� j � N� i �� jg

ssume now that we want to marginalizeD over S � fxiji � Ng� fyiji � Ng. An i� j
face of GS�D� is shown in Fig. 13.

It is easy to verify that the edges �xi� xj�� �yi� yj�� �xi� yi� and �xj � yj� are strong
edges while �xi� yj� and �xj � yi� are weak edges.

Let d � �i� j� for any i and j. In order to constructG�i�j� we obscure the following.
There are paths connecting xi to yi through the removed vertices which can be found
in Fig. 12:

xi ��� uij ��� wjj ��� xj and xi ��� wii ��� vij ��� xj

The condition for disconnecting those paths (consult the MSD procedure) is that both
xj and yi are not in v�t�. But there are exponentially many additional such paths even
if both yi and xi are not in v�t�, illustrated in Fig. 14 where k �� i� j,

Those paths are, fore every k �� i� j:

xi ��� uik ��� wkk ��� wkj ��� yj
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Figure 13: i� j face of GS�D�

Figure 14: Paths connecting xi to yj

The condition for disconnecting those paths is that, for every k, either xk or yk is not
in v�t�. ThereforeGij is as shown in Fig. 15. i.e., Vij � fxiji � Ng�fyiji � Ng and
Eij � fxi� xj�� �xi� yi�� �xj � yj�� �yi� yj�g � f�xi� Xk�� �Xk� yk�� �yk� yj�jK �� i� jg.

Notice that the number of possible cutsets in this graph is exponential since any
subset of vertices including Xj � yi and at least one of fXk� ykg for each k �� i� j is a
cutset.

4.3 Marginalized DAG’s that can be represented by DAG’s

Based on the prvious sections it is clear that marginalized DAG’s are not always rep-
resentable by DAG’s. It was shown in [Paz, 1992] that the annotated graph representa-
tion of DAG’s is unique. Moreover, the set of elements K�D� in the representation of
a DAG D does not contain degraded elements and all the elements in K�D� how the
form �d� r�d��, where r�d� is a set of vertices whose removal from G�D� (given that
r�d��v�t� � � for a tested triplet) enables the disconnection of the edge corresponding
to d in G�D�, when the L2 algorithm is applied to A�D�, for a triplet t. This feature
induces a necessary condition forAS�D� to be represented by a DAG, namely,KS�D�
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Figure 15: Graph Gij

must not include degraded elements and all the nondegraded elements �d�Gd� must
have the property that there is a unique and simple set of vertices in Vdnfu� vg which
separates u from v in Gd where d � �u� v�. If this necessary condition is satisfied then,
based on the MDT procedure, we can reset KS�D� so that all the elements in this set
have the form �d� r�d�� where r�d� is equal to the unique cutset seperating u from v in
Gd, and then apply a polynomial procedure to AS�D�, described in [Paz, 1992] which
will find a DAG D representing AS�D�, if such exists, or will declare that AS�D� is
not representable by a DAG (even though it satisfies the above necessary condition). In
fact, the above necessary condition can be simplified. We will show now that if all the
nondegraded elements r�KS�D�� �d�Gd�, then all the degraded elements are superflu-
ous and can be discarded. An element that has this property (of unique cutset) will be
called simple element.

Claim 1 If all the nondegraded elements in KS�D� are simple, then the annoted
graphs AS�D� � �GS�D��KS�D�� and A�

S�D� � �GS�D��K �

S�D�� are equivalent,
where K�

S�D� includes the nondegraded elements of KS�D� only.

Proof:
let t be any triplet over S. If t is represented in A�

S�D�, through the MDT procedure
then t is represented inAS�D� since the degraded elements many induce the removal of
additional vertices, disjoint of v�t� and this cannot change the fact that t is represented
in the UG generated by the MDT procedure.

To complete the proof assume that t is represented in AS�D� but it is not rep-
resented in A�

S�D�. Let t � �X �Y jZ� and let Gt and G�

t be the UG’s derived from
GS�D� by the MDT procedure, for testing t, fromAS�D� andA�

S�D� correspondingly
is V �

t includes some vertices belonging to degraded elements disjoint of v�t� which are
not included in Vt. As t is not represented in A�

S�D� it is not represented in G�

t and
therefore there must be a path � from some vertex x � X to some vertex y � Y such
that all the vertices of a subpath of � are in V �

t nVt. Let � � x� v� � � � � vky e such a
path. Let �� be the trail corresponding to � in D And let vi� � � � � vj be the subpath
of �� in VtnV �

t . Now V �

t nVt includes only vertices from degraded elements which, as
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such belong to ranges of elements in K�D�. Therefore we must have that, in D, vi��

is oriented into vi and vj�� is oriented into vj where vi�� and vj�� are in Vt, since
otherwise vi�� or vi�� or both would also belong to V �

t backslashVt, contrary to the
choice of i and j, this following from the fact that vi � vi�� implies that vi�� is in
the same range as vi and simularly for vj � vj�� (recall that vi� � � � � vj belong to the
intersection of some ranges in K�D� with S). This implies that in D, a collider must
exist on the subpath vi� � � � � vj . If the collider is coupled then we can shortcircuit the
subpath by the arc joining the parents of that collider. Continuing the shortcircuiting
process several times we will get, eventually, a trial connecting vi�� to vi��, including
an uncoupled collider, which is a vertex on the subpath vi� � � � � vj .

This implies that a nondegraded element would have been included in both AS�D�
andA�

S�D� which would have been processed by the MDT algorithm, disconnecting �
(notice that all the successors of the collder must belong to V �

t nVt since successors of
a vertices in some range must belong to the same range). This argument holds for any
path connecting x to y through V �

t nVt and therefore, if t is represented in A�

S�D� then
it is represented in A�

S�D� thus completing the proof. �

It follows from the above claim that if all the elements in KS�D� are simple, where
AS�D� is the annotated graph representation of a marginalized DAG, then we can dis-
card all the degraded element from KS�D�. Moreover every simple element �d�Gd�
can be replaced by a regular element �d� r�d�� where r�d� is the unique cutset discon-
necting u from v in Gd, since the condition for disconnecting u from v is that r�d�, the
unique cutset in Gd, is disjoint of t.

Summing up: If AS�D� � �GS�D��KS�D�� is such that all the nondegraded
elements inKS�D� are simple thenKS�D� can be replaced by a regular annotation and
then the procedure described in [Paz, 1992] can be applied to check whether AS�D�
can be represented by a DAG. This is illustrated in the example below.

4.4 An Example

Let D be the graph shown in Fig. ?? fig16
The annotated graph representation of D is shown in Fig. ??. fig17
Marginalizing over S � fa� b� c� dg we get the annotated graph shown in Fig. ??.

fig18
The degraded element can be discarded. An equivalent DAG can be found and is

shown in Fig. ??. fig19

4.5 Checking whether two DAG’s are quivalent when both are marginal-
ized over the same subset of their common vertices

This problem was considered in [Spirtes and Verma, 1992] where a polynomial algo-
rithm is suggested for solving it. It is reasonable to assume that the annotated graph
representation may also provide a way for solving the above problem. The tools devel-
oped so far may however not be enough for this use. It may be necessary to provide
first a means of simplifying the annotated graph representation of marginalized DAG’s
so as to get some kind of cannomical(?) annotated graph which is unique. So far it is
not clear and it is probably not tru that the annotated graph representing a marginalized

22



DAG as developed in the previous sections is unique and it is reasonable to assume that
some simplifications of the representation is possible, by eliminating simplifying the
Gd graph. This subject is not pursued further in the work.

Conditioning

Given a GAG A, the procedure below will derive from A another GAG A� which
represents the relation R�A� when conditioned for a subset T of its variables.

Procedure C
Input: a GAG A � �G�K� with

K � f��� ri� � i � i� � � � � jg � (1)

f�d�Gd� � d � E�	 Eg (2)

and a subset T 	 V where G � �V�E�.

1. For every element in K��� ri� such that ri � T �� �, remove ��� ri� from K

2. For every element in K �d�Gd� such that d � T �� �, remove �d�Gd� from K.

3. Remove T and incident edges from G.

4. For any element �d�Gd� not removed in step 2, such that Vd�T �� � do: For eny
vertex v � Vd �T , remove v from Vd and connect by an edge any two vertices u
and w such that both u and w are adjacent to v in Gd.

Set A� � �G��K �� where G� is the graph derived in step 3 and K � is the annota-
tion derived from K after completion of steps 1,2, and 4.


 End of procedure
The fact that the procedure is correct follows directly from the MDT algorithm
and is left to the reader.
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