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Abstract

A new model for representing PD-induced relationsthat are derived from DAG-
representable relations through marginalization over a subset of their variables is
introduced. The new model requires polynomial space and apolynomia algorithm
is given for testing whether a given triplet is represented in the model. In addi-
tion a polynomial algorithm is derived for testing whether a marginalized DAG-
representable relation is DAG-representable.

1 Introduction

This paper investigates Probabilistic Distribution (PD) induced independency relations
which are representable by Directed Acyclic Graphs (DAGS), and are marginalized
over asubset of their variables. PD-induced relations have been shown in the literature
to be representable as relations that can be defined on various graphical models. All
those graphical models have two basic properties. They are compact, i.e., the space
required for storing such amodel is polynomial in the number of variables, and they are
decidable, i.e., apolynomial agorithm exists for testing whether a given independency
is represented in the model. In particular, two such models will be encountered in this
paper; the DAG model and the Annotated Graph (AG) model. The reader is supposed
to befarmiliar with the DAG-model which was studied extensively in the literature. An
ampleintroduction ito the DAG model isincluded in Pearl (1988, 2000) and Lauritzen

The AG-model in a genera form was introduced by Paz, Geva, and Studeny in
(2000) and a restricted form of this model, which is al we need for this paper, was
introduced in (2000) and investigated further in (2003). For the sake of completeness,
we shall reproduce here some of the basic definitions and properties of those models
which are relevant for this paper.

Given a DAG-representable PD-induced relation it is often the case that we need
to marginalize the relation over a subset of variables. Unfortunately it is seldom the
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case that such a marginalized relation can be represented by a DAG, which is an easy
to manage and a well understood model. The main result of this paper is the intro-
duction of a new model of representation, the Generalized Annotated Graph (GAG)
model which is both compact and decidable and can represent any marginalized DAG-
representable relation induced by a PD. Moreover, based on the previous paper of
the author (2003), a decision procedure is provided for checking whether a marginal-
ized DAG-representablerelation is eitself DAG-representable. A different approach to
marginalized relations as above can be found in Wermuth and Cox (2000).

2 Preiminaries

2.1 Definitions and notations

UGs will denote undirected graphs G = (V, E) where V is a set of verticesand E is
a set of undirected edges connecting between two vertices. Two vertices connected by
an edge are adjacent or neighbors. A path in G of length & is a sequence of vertices
v1 ... Vk4+1 SUch that (v;,v;41 isan edgein E fori = 1,k. A DAG is an acyclic
directed graph D = (V, E) where V isaset of verticesand E is a set of directed arcs
connecting between two verticesin V. The indegree (outdegree) of avertex v in D is
the number of arcsin E directed into (out of) v. A tria of length k in D is a sequence
v1 ... Ug41 Of verticesin V such that (v;,v;,) isanarcin E fori = 1... K. If al
thearcs on thetria are directed in the same direction then the tria is called a directed
path. If adirected path existsin D from v; to v; then v; isadescendant of v; and v; is
apredecesor or ancestor of v;. If the path is of length one then v; is aparent of v; who
isachild of v;.

The skelton of a DAG is the UG derived from the DAG when the orientations of
the arcs are reached. A pattern of the formv; — v; < vy, is acollider pattern where
v; isthe collider. If thereis no arc between v; and vy, then v; is an uncoubled collider.
A collider is maximal if no directed path exists from it to any other collider. The mor-
alizing procedure is theprocedure generating a UG from a DAG, by first joining both
parents of uncoupled colliders in the DAG by an arc, and then removing the orienta-
tion of all arcs. The edges resulting from the coupling of the uncoupled collider are
called moral edges. As mentioned in the introducation UG's and DAG's represent PD-
induced relations whose elements are triplets ¢t = (X; Y| Z) over the set of vertices of
the graphs. For givent triplet ¢ we denote by v(t) the set of verticesv(t) = X UY U Z.
Two graph models are equivalent if they represent the same relation.

2.2 DAG-modd

Let D = (V, E) be aDAG Whose verticesare V and whose arcs are E. D represents
therelation R(D) = {t = (X;Y|Z)|t € D} where X, Y, Z are digoint subsets of V/,
the verticesin V represent variablesin PD, ¢ isinterpreted as“ X isindependenton Y
given Z” andt € D means:. ¢ is represented in D. To check whether a given triplet
Lauritzen et a. (1990).



Algorithm 1 The Algorithm L1:
Input: D = (V,E)andt = (X;Y]2).

1. Let V' be the set of ancestor of v(t) = X UY U Z and let D'(¢) := be the
subgraphsof D over V.

2. Moralize D'(¢) (i.e., join all uncoupled parents of uncoupled collidersin D'(t)).
Denote the resulting graph by D" (t).

3. Remove all orientationsin D" (¢t) and denote the resulting UG by G(D" (t)).
4. t € G(D"(¢))ifft € D.

Remark 1 ¢t € G where G isa UG if and only if Z isa cutset in G (not necessarily
minimal) between X andY'.

The definition above and the L 1 Algorithm show that the DAG model is both com-
pact and decidable.

2.3 Annotated Graph —model

Let D = (V, E) be aDAG. We derive from D an AG A = (G, K) where G isaUG
And K isaset of dlements K = {e = (d,r(d))} asfollows: G is derived from D by
moralizing D and removing all orientations fromiit.

For every moral edged in G weput an element e = (d,r(d)) in k such that d(a, b),
the domain of e, is the pair of endpoints of the moral edge and r(d), the range of e, is
the set of verticesincluding all the uncoupled collidersin D whose parentsare a and b,
and all the successors of those colliders. Notice that d denotes both a moral edge and
the pair of its endpoints. Therelation R(A) defined by the AGA is the relation below:

R(4) = {t = (X;Y|2)|t € A}
whereto check whether t € A we use the algorithm L2 due to Paz (2000) bel ow.

Algorithm 2 The Algorithm L2
Input: ADAG D = (V, E).

1. For every element e = (d, r(d)) in K suchthat r(d) Nw(t) = B(v(t) = XUY U
Z). Disconnec the edge (a, b) in G corresponding to d and remove from G all
the verticesin r(d) and incident edges. Denote the resulting UG by G ().

2. te Aifandonlyift € (G(t).

Remark 2 It is clear from the definitions and from the L@ Algorithm that the AG
model is both compact and decidable. In addition, it was shown in Paz (2000) that
the AG model has the following uniquesness property: R(A;) = R(A,) are AG's.
This property does not hold for DAG models where it is possible for two different (and
equivalent) DAGs to define the same relation. In fact the AG (D) derived from a DAG
D represents the equivalence class of all DAGs which are equivalent to the given DAG
D.



Remark 3 The AG derived from DAG’s are a particular case of AGs as defined in Paz

et al. (2000) and there are additional ways to derive AGs that represent PD-induced

relations which are not DAG-representable. Consider e.g., the example below. It was

shown by Verma (1988, Ch. 3) that every DAG representablerelationisa PD-induced do you mean
relation therefore the relation defined by the DAG in Fig. 1 represents a PD-induced  pearl:887?
relation.

f

Figure 1: DAG representing relation

If we marginalizethisrelation over the vertices a, b, c and d we get another relation,
PD-induced, that can be represented by the AG A in Fig. 2, under the semantics of the
L2 Algorithm. with R(A) = {(a,b|0), (b,d|c) + symmetricimages}. But R(A)

a b c d

f

Figure 2: AG A representing marginalized relation

above cannot be represented by a DAG. This follows from the following lemma that
was proven in Paz (2003).

Lemmal Let (G(D), K(D)) be the annotated graph representation of a DAG D.
K (D) hasthefollowing properties:

1. For every element ((a,b),r) € K(D), thereisavertex v € r whichisa child of
both a and b and every vertex w € r is connected to some vertex v in r whose
parents are both ¢ and b.

2. For any two elements (dy,71), (d2,72) in K(D), if dy = ds thenry = rs.



3. For every ((a,b),r) € K(D), (a,b) isanedgein G(D).

4. The set of elements K (D) is a poset (=partially ordered set) with regardsto the
relation “ =" defined as follows: For any two elements (d,,,r,) and d,,r,). If
dpNry # B then (dp,rp) = (dg,7q), inwords*“ (d,,r,) isstrictly greater than
(dg,rq)" . Moreover (d,,r,) > (dg,rq) impliesthat , C r,.

5. For any two elements (d;,r1) and (da,r2) If r1 N7y # 0 and vy, 72 are not
a subset of one another, then there is an element (ds,r3) in K (D) such that
r3 g r1 n ra.

As is easy to see the annotation, K in Fig. 2 does not satisfy the condition 4 of
the lemma since the first element in K is bigger than the second but it's rangeis not a
subset of the range of the second element. Therefore A is not DAG-representable.

Remark 4 Analgorithmis provided in Paz (2003) that tests whether a given AG, pos-
sibly derived froma marginalized — DAG relation, which satisfies the (necessary but not
sufficient) conditionsin lemma 1 above, is DAG-representable. The main result of this
work is to provide a polynomial algorithm which generates a “ generalized annotated
graph” representation (concept to be defined in the sequel) which is both compact
and decidable. In some cases the generalized annotated graph reduces to a regular
annotated graph which satisfies the condition of lemma 1. If this is the case than,
using the testing algorithmin [ Paz, 1992] we can check whether the given AG is DAG-
representable. It iscertainly not DAG-representableif the generalized annotated graph
isnot aregular AG or isaregular AG but does not satisfy the conditions of lemma 1.

Remark 5 When a given AG A is derived from DAG then the annotation set K =
{(d,r(d))} can be interpreted as follows: The edge (a,b), in G corresponding to d,
(a moral edge) represents a conditional dependency. That is. there is some set of
vertices, digoint of r(d), S, suchthat (a;b| S, ) isrepresentedin A but a and b become
dependent if any proper subset of r(d) isobservedi.e., —(a;b|S) if @ # S C r(d).

3 Deriving Annotated GraphsWhich are Equivalent to
Marginalized DAGs

3.1 Preliminary simplification

Let A(D) = (G(D), K(D)) be an AG derived from a given DAG D and equivalent
to D, and R(D) is to be marginalized over a subset S of it's variables. We want to
find a proper representative for the marginalized relation R 4(D). As a preliminary
observation we notice that we may assume that al the verticesin V\ S, in D, are
ancestors of the verticesin S, given that we are interested in Rg(D) only. Otherwise
we may reduce D and the corresponding A(D) into simpler and equivalent, over S,
DAG And AG, D" and A(D') asfollows:

1. Removefrom D and from G(D) all vertices which are not ancestorsof .S in D.



2. Forany elemente = (d,r) in K (D) suchthat r isin V'\ .S, removee from K (D)
and disconnect the edge corresponding to e in K (D). Denote the resulting DAG
and AG by D’ and A(D'). To show that A(D') represents the same relation
as A(D) when marginalized over S we observethat if e = (d,r) in K(D) has
the property mentioned in step (2) above then the verticesin  connect include
ancestors of verticesin S: Any vertex in S that has an ancestor in » must be
included in r contrary to the fact that » € V'\S. Therefore the verticesin r are
removed from G (D) in step (1). It follows now, by the L1 Algorithm and it's
equivalence to the L2 Algorithm that, over S, A(D) and A(D) represent the
same relation.

As a consequence from the above argument it is also clear that an annotated graph
A(D) such that all the verticesin D over V'\ S are ancestors of verticesin D over S,
has the property that every range of an element in K (D) intersects S (see step 2 of the
reduction procedure above). We shall assume hereforth that the given annotated graph
A(D), to be marginalized over a subset of vertices S, has the following two properties:

(i) All verticesin D belonging to the set 1\ S are ancestors of the verticesin S.
(ii) Every rangeof anelementin K (D) intersects S.

We proceed now with the task of constructiing a generalized annotated graph (the
term will be explained in the sequel) which is equivalent to the marginalization of D
over S. We denote this generalized annotated graph by A5(D) = (Gs(D), Ks(D)).

3.2 Procedure M: For constructing As(D)

3.21 constructingthe UG Gs(D) = (Vs(D), Es(D))

Necessarily we must have that Vs(D) = S. The derivation of Es(D) requiresamore
complex setup. The edges in Eg(D) are separated into strong edges and weak edges
where the weak edges are intended to correspond to the domains of the elements in
Kg(D). The definition of those edges s given below:

(@ If a » bisanarcin D then a—b isastront edgein Es(D).

(b) Let (u,v) beapair ov ferticesin S that are nonadjacent in D. If there is a path
in G(D) over (V\S)N (ancestor of {u, v}), connecting u to v and suth that the
range of every moral edge on the path (if any) has nonempty intersection with
{u, v}, then set u— — —v to beastrong edgein Es(D).

(c) Let (u,v) beapair of verticesin S that are not adjacent in D, and do not satisfy
the condition b) above. If (u,v) isan edgein G(D) or if thereisapathin G(D)
over (V\S) N {u,v} connecting u to v, then (u,v) is set as a weak edge in
Es(D). Notice that the first part of the e=condition is a particular case of the
second part when the path consists of a simple (moral) edge. The definition of
Gs(D) isnow completed.

Lemma2 If (u,v) is astrong edge in Gs(D) then for any Z C S, (a;v|Z) is not
representedin D.



Proof: The lemma trivially holds for (u,v) satisfying property (). If (u,v) satisfies
(b) and the path connecting u to v, assumed to exist in G(D), includes no moral edges
then the trail in D corresponding to the path in G(D) has the property that al the
vertices on it are ancestors of «w or v or both. Therefore when the L1 Algorithms
checks whether (u,v; Z) is represented in D, no vertex on the trail is removed. So
the trail is transformed into a path in the UG generated by the L1 Algorithm for D
and (u,v; Z). The path is not intercepted by any Z C S since dl the vertices on the
path are in '\ S. Thusthe L1 agorithm will decide that (u,v; Z) is not represented
in D forany Z C S. If the path includes moral edges then, due to the fact that the
ranges of there moral edges intersect {u, v}, those moral edges will be added (due to
the moralization procedure) to the brokentrail in D corresponding to the path in G(D)
when the L1 Algorithm generates the UG corresponding to D and (u,v; Z). Using
the above argument we get ??? that the L1 Algorithm will decide that (x, y; Z) is not
representedin D forany Z C S.

The above lemma shows that if « and v are connected by a strong edge then they
cannot be separated. As mentioned before, weak edges are intended to correspond to
the domains of the elements in K¢(D). It turns out however that, for marginalized
DAG's it is often impossible to represent them as an annotated graph with (d, r) ele-
ment in the form shown in the previous sections. We found it necessary therefore to
define more general elements (d, G4) where G4 is an undirected graph itself whose set
of verticesisasubset of S.

The construction of those elements, as well as the semantics for deciding whether
atriplet is represented in the generalized annotated graph will be shown subsequently.
Letuw — — — v be aweak edge in Gs(D). For every such edge we constructed an
element (d,G4) whered = {u,v} and G is a graph whose construction is given in
the next section.

3.2.2 Theconstruction of Kg(D)

During the following construction source moral edges will be marked and some paris
of consecutive edges (i.e., two edges having a common vertex) will be designated as a
forbided transition.

Notation and Definition: The graph G(S, d) denotes the subgraph of G (D) over
the union of the verticesin d and the verticesin V'\ S, whered = (u,v) isaweak edge
in Gs(D). A legal path is a path in G(S,d) which does not include marked edges,
does not include forbiden transitions, and may include the vertices u and v only as and
vertices of the path (i.e., it does not pass through them).

3.2.2.1 The construction of G4

For every weak edge d = (u,v) in Gs(D) we construct first an intermediary graph
Gq = (Vd, Ed) as below:

1. If (a,b) isamora edgein G(S,d) such that the range of the domain (a, b) in
K (D) has nonempty intersection with {u, v} then reset (a,b) asareguler (i.e.,
nonmoval ) edgein G(S, d), in connection with the algorithms and procedures
described in the sequel, in this section.



2. For every remaining moral edge (a,b) in G(S,d) and for every vertex C in
G(S,d) suchthat C isacollider in D whose parents are a and b set the pair of
edges (a, ¢) and (¢, b) asaforbided transition pair in G(S, d).

3. Allocate weightsto the edgesin G/(S, d) such that moral edges get weight 1 and
all other edges get weight 0.

4. Construct Gy = (Vy, E4) asfollows:

(@) TheverticesU and V are V.

(b) Set all other verticesin hatV,; and al edgesin E, according to the algo-
rithm below.

Algorithm 3 Begin

1. While alegal path connecting u to v through G (S, d) exists
do begin

1.1 Createa set W of vertices, W = ()

1.2 Find alegal path of minimal weight connecting « to v through G(S, d).
Remark: We will show that alt least one such paty must exist and that every
such path must have moral edgesonit.

1.3 Let (p, q) be the moral edge on the above legal path closest to » with p
closer to u than q.
o Createa vertex v, , in V; and an edgein £, connecting u t0 v,,,.
e If ¢ = v then create an edge in £, connecting vy,p 10 v, else reset
W =WuUgq
e Markthe edge (p, q).
end (while).
(@) Unmark all marked edges
(b) While W is not empty do begin
3.1 Removea vertex w fromW andreset W := W\w.
3.2 Find a minimal weight legal path in G(S, d) connecting w to v.
3.3 If no such path exists, then unmark all the marked edges and go to 3.

3.4 If the path has weigth(?) O then create edges in E, connecting all
vertices v, in Vy such that ¢ = w to v, unmark all marked edges and
goto 3.

3.5 Let (r',q") be the moral edge on the part found in step 3.2 closest to
w with p' closer tow theng¢’.
o Createavertexv,, , inV; and edgesin £, connecting all vertices
v, IN Vi such that ¢ = w to vy,

- If ¢’ = v then create an edge in E, connecting Vi, tOv, else
resst W =WuUg'.



— Mark theedge (p', ¢').
3.6 Goto 3.2
(c) End of algorithm

3.2.2.2. An Example
The graph D shown below is borrowed from the paper of Verma and Pearl(1991) and

b c d

Figure 3: Graph D

we want to marginalize this graph over {a, b, c, e, f} = S.
The annotated graph representation of D isshownin Fig. 4.

Figure 4: The annotated graph A(D)

Noticethat al rangesin K (D) have nonempty intersection with S.
The graph Gs(D) is shown in Fig. 5 where strong edges are represented by solid
lines and weak edges by broken lines. Notice the following:

e Theedges (a,e), (f,c) and (e, b) are strong edges due to criterion (a) of strong
edges.

e Theedges (e, f) isastrong edge due to the pathe — p — ¢ — f in G(D) where
the range of the moral edge p — ¢ on the path includes the vertex e.

e Theedges (b, f) isastrong edge duetothepathb — ¢ — f in G(D).



d C
Figure5: Thegraph Gs(D)

e Theedges (a, c) isaweak edgeduetothepatha — p — ¢ — ¢ in G(D) etc.
The graphs (G4 are shown in Fig. 6. Notice that the moral edge (p, q) in G(D) is

a d

Figure 6: The graph G

o —

treated as aregular edge in the construction of G /..., dueto the fact that the range of

(p, q) includesthe vertex e (see step 1 of the construction algorithm for G4), andis not
included therefore as avertex in G/ ) -

3.2.2.3. A property of thegraphs Gy

Definition 1 Let (u,v) beaweak edgein Gs(D). Amoral edge (a,b) in G(S, d) will
be called proper with regard to (u, v) iff the range corresponding to the domain (a, b)
in K (D) has empty intersection with {u, v}.

Lemma3 Let (u,v) beaweak edgein Gs(D) for a given marginalized DAG D over
S. Then the following properties hold true:

(i) Thereexistsat least onelegal path connectingu to v in G(S, d).

(ii) Every legal path asin (i) above includes at least one proper moral edge with
regardto (u, v).

10



(il1) For every legal path 7 satisfying (i) and (ii) above there is a unique correspond-
ing path =’ in C?(M), connecting « to v, such that every vertex v, on 7' cor-
responds to a proper moral edge e on 7 and, if v, precedes v, on 7' then e
precedese’ on .

Proof: By definition, since (u, v) isaweak edge, thereis apathin G(S, d) connecting
utow. If the pathisnot legal then it containsforbidden transitions. Any such forbidden
transition a — ¢ — b corresponds to an uncoupled collider configurationa — ¢ < b in
D. Thereforea — b isamoral edge on G(D) which shortcircuits the vertex ¢ on the
path. Replacing the forbided transitions by the corresponding moral edgesresultsin a
legal path thus proving properties (i). To prove (ii), let = be alegal path connecting u
tov in G(S,d). If 7 includes no moral edges then, as it excludes formiden transitions,
it must correspond to atrail in D such that all the veticeson it (in D) are ancestors of
u of v or both implying that (u,v) is a strong edge, contrary to our assumption. On
the other hand, if 7 includes mora edges but all of them are not proper with regard to
(u,v) then we can show again that all the vertices on 7 are ancestors of either  or
v thus rendering (u, v) a strong edge contrary to assumption. To show this let (a, b)
and (a', b") be two consecutive nonproper mora edges on 7. As the path is legal, the
subpath from b to ' must have al its vertices ancestors of b or a’ or both. Therefore,
giventhat (a,b) and (a’,b") are non proper we must have that b and o’ are ancestors of
u of v or both. It follows that all the vertices on the subpath from b to a’ are ancestors
of u or v or both. The same argument works when we consider the subpath from u to
a, where (a, b) is the closest to u nonproper moral edge on , and the subpath from b’
tov where (o', b") isthe closest to v nonproper moral edgeon . It follows that = must
include some proper moral edges. To prove (iii) let = be a path as in the proof of (ii)
above. Consider thefirst whileloop in the algorithm describing the construction of the
graph C?(M) (step 1 part (4) section 3.2.2.1). Assume that this while loop generates
atotal of K vertices, sy, v1,s,...,vx in Gy, al adjacent to u in G, and
corresponding to the proper moral edgese, .. ., ex in G(S, d). Then one of the edges
e1,...,ex must beincludedin 7. Otherwise, the existence of the path = connecting
to v and not including any of the proper moral edgeseq, . .., ex implies the existence
of aminimum weighth path from« tov notincludingey, . . ., ek, but including proper
moral edges (by property (i)). This would have forced the whild loop to execute an
additional iteration which would have added to the set v, . . ., vx an additional vertex,
representing a proper moral edge on that minimal weight path. To complete the proof of
property (iii) we can now use an inductive argument: Assume that we found a partial
path in G*u,v D, wr,ws, ..., w; such that wy,...,w; correspond to proper moral
edgeson, ey, ...,e;. If w; isconnectedto v in G*(W) then we are alone. Otherwise,
step 3.5 in the construction algorithms shown in sectioin 3.2.2.1 will generate a set of
vertices all connected to w; in G (u,v)» COrresponding to proper moral edges. Using a
similar argument as the one used above we can show that one of those newly generated
vertices corresponds to a proper moral edge on = subseguent to e; on . Continuing
that way we can find the unique path =’ in G*u,v having the property claimed in (iii). O

Corollary 1 Let C bea vertex-cut set in C?(,M,) separating v fromwv. Then E¢ the set
of proper moral edges, corresponding to C' in G(S,d) are an edge-cut separating u
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fromv in G(S,d), over the legal paths (i.e., all legal paths are cut by the edge cut).
Moreover, if E' is a subset of the set of proper moral edges which is a minimal edge
cut over the legal pathsin G(S, d) then all the edgesin E’ are represented as vertices
in G, and those vertices from a vertex-cutset in G4 between u and v.

Proof: The first part of the corollary follows directly from property (iii) in the above
lemma. To prove the second part we notice first that if e is a proper moral edge in
G(S,d) and e must generate a vertex in G(u v)- To prove this we use the following
argument. Since e belongs to a minimal edge cut over the legal paths there must be
aminimal weigth legal path including e. Following the construction algorithm in the
previous section we must have that either e or another proper moral edge on the path,
preceeding e, generates a corresponding vertex in G4. If it is e then we are done, oth-
erwise that preceeding edge, say (a, b) will dictate theinsertion of b into W and, when
b is processed subsequently in step 3, we can use the same argument, for the legal sub-
path from b to v, that includes e as a proper moral edge on it, in order to show that
either e or another proper moral edge on the subpath, generates a corresponding vertex
on G4. Repeating this argument several timeswe concludethat eventually e will gener-
ate acorresponding vertex in G4. Now let ¢(E") bethe set of vertices corresponding to
E'inGy. If ¢(E') isnot acutset between v and v in G then thereis apath in G/4from
u to v not passing through ¢(E’). This path correspondsto alegal pathin G(S, d) not
including any of the edgesin E’, which constradicts the assumption that £’ is an edge
cut over thelegal pathsin G (S, d) O

3.2.2.4. Deriving the graphs G out of the graphs G

Let (4 be the intermediary graph constructed, as shown in section 3.2.2.1 for a given
weak edge d = (u,v) in Gs(D). The verticesin G, except u and v, correspond to
proper moral edgesin G (S, d) and those moral edges are the domains of some elements
in K (D). To derivethe graph G4 out of (¢4 we follow the steps below:

1. For every vertex v, except u and v, in G find the range of the element in K'(D)
whose domainis e and denoteit by r(e).

2. Findr(e) N S anddenoterg(e) =r(e) NS
3. For every vertex v, in (74 substitute the set of vertices s (e).

4. If v, is adjacent to v, in G4 then connect all the vertices in 7 (e) to al the
verticesinrg(e'). Also connect u to al the verticesin rg(e) if v, isadjacent to
u and do the same for v.

5. By construction, all theverticesinany setrs(e), asabove, arein G (D). If some
vertex w isincluded in Severd setsrs(e) for different e’s then merge al those
occurences of w into a single vertex and connect this vertex to al the vertices
that were adjacent to some occurence of w before the merger.

6. Denotetheresulting graph by G ; and set this graph as the annotation of the weak
edged = (u,v) iInGgs(D).
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Remark 6 The following relation exists between G, and G4 whered = (u,v); IfCis
a cutset between v and v, in G4 then thereis a cutset C’ between v and v in G4 such
that the following inclusion holds:

" ={urs(e):ve €'} Cec

This follows from the fact that, by step 4, if v, isadjacent to v, in G, then all vertices
inrg(e) areconnectedtoall verticesinrg(e') and thereforeif somevertexv; € rg(er)
is connected to some vertex ve € rg(e2) through some vertex vs € 4g(e3) in G4 then
all the verticesin rg(es) must belong to a cutset in G4 separating vy fromw,.

3.2.2.5. Definitionsof K¢(D) and Ags(D)

Anelement (d, r(d)) will be called degraded it’s domain d is empty. For every element
in K (D) construct a degraded element (0, 7s(d)) wherers(d) = r(d) N S. As men-
tioned in sectioin 3 we assume that for al elements (d, r(d)) in K(D),r(d) NS # 0.
The set of elements K g(D) is now defined as below:
Ks(D) = {(0,rs(d)) : (d,r(d) € K(D)}|J
= {(d,Gq) : disaweak edgein Gs(D)}

Finally we define
As(D) = (Gs(D),Ks(D)).

Ag(D) isthe annotated graph r epresentation of a given DAG D marginalized over a
subset S of it's vertices.
3.2.2.6. An example (continued)

Consider again the example in section ??. The annotated graph representation of the
DAG D in Fig. 3is shown in Fig. 7. The graph Gs(D) is shown in Fig. 8 where
S = {a,b,c,e, f}. Those graphs are reproduced here for the benefit of the reader:

a d

Figure7:

Fig. 7 and Fig. 8 (repeat) the derivation of the graphs G ; are shown below:
In the same way we get for the other weak edgesinG s(D).
The degraded elements are found to be:

(0,{b,€}), (0, {e}), (0, {f})

13
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. @5 K{(24), {3)

3

Figure 8:

Theset Ks(D) thereforeincludesall the above degraded elements and all the elements
of theform (d, G4) whered = (a,b), (a, f), (a, ¢), (b, ¢), (e, c).

3.2.2.7. A property of the annotated graph represenation of marginalized DAG’s

Lemma4 Let A(D) = (G(D), K(D)) be the annotated graph representation of a
givenDAG D. Let As(D) = (Gs(D), Ks(D)) bethe annotated graph representation
of the marginalized relation represented by D over a subset S at the vertices of G(D).
Lett = (X;Y|Z) beatriplet such that v(t) = {X UY U Z} isa subset of S. Let
G'(D) bethe graph derived from G(D) when the L2 algorithmis applied to A(D) for
thetriplet ¢t andlet (d, G;) beanondegraded element in K s(D) where Gy = (Vy, Ey)
and d = (u,v). Then all the pathsin G'(S, d) between u in v are disconnected if and
only if (S\v(t)) N (V;\{u,v}) isacutset between v and v in G .

Proof

We show first that if and only if al legal pathsin G'(S, d) are disconnected then all
paths are disconnected. Trivially, we used to prove the “if” case only. to this end, let
m be apath in % connecting u to v and assume that = is not legal. Then it must
include forbidden transitions. Any such transition a — ¢ — b correspondsto an ucoupled
collider a — ¢ « bin D. Thereforea — b isamora edge in G(D) corresponding
to an element in K (D) with range r(a, b), and one can construct a legal path 7’ in
G(S,d) shortcircuiting all forbidden transitions by their corresponding moral edges.
As shown in the proof of part (ii) of lemma ??, at least one of the moral edgeson =/,
shortcircuiting the forbidden transitions on = must be proper. Recall that the range
r(a, b) corresponding to such a proper moral edge does not interest {u, v}. Now if all
legal paths between u and v in G (S, d) are disconnected by the L2 algorithm then the
path 7' is disconnected which means that a proper moral edge on =’ is disconnected.
Let (o', ") be the proper moral edge on «' disconnected by the L2 algorithm. The
condition for this to happen is that »(a’, ) N v(t) = 0. But if this condition holds
then the L2 algorithm will also remover(a'b,’ ) from G(D) thus disconnecting 7. To
complete the proof of the lemma it suffices therefore to show, based on the above
argument, that if and only if the conditions of the lemma hold then all legal pathsin
G'(S,d) between u and v are disconnected. We proceed now to prove this claim.
Assume first that all legal paths between v and v in G(S, d). By lemma ?? this set of
edges correspond to a cutset C' between u and v in G4 and by the construction of G4
the set of vertices C' generates a set of vertices C’ defined as bel ow.

C'= {Urg(a,b) wap € Gy, (a,b) € Ec}
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and C' is a cutset between v and v in G4, with C' C S. Now the condition for the
removal of the set of edges E« by the L2 agorithm holds if and only if 7(a,b) C
V(D)\v(t) for @l the edges (a,b) € Ec. Also asv(t) is asubset of S the above
condition implies that rs(a,b) C S\v(t) for al (a,b) € Ec sothat C' C S\v(¢).
Futhermore, as C’ is a cutset between v and v in G4 with C' C V; we have that
(S\v(t)) N Vg is a cutset between » and v in G4 as required. Assume now that
(S\v(t)) N (Vag\{u,v}) = C" is acutset between u and v in G4. Then, by remark
2?2, theremust be a cutset C' in G, between u and v such that for every vertex v, in C,
rs(e) C C". By lemma?? the cutset C in G4 corresponds to an edge cut Ez over the
legal pathsin G(S, d). Let e be an edgein Ex. Then e correspondsto avertex v, in C
and, as mentioned abovers(e) C S\v(t). Now v(t) C S andtereforer(e) C V\v(t)
whichimpliesthat the condition for theremoval of e fromG(S, d) existsforal e € E~
which is an edge cut over the legal paths between v and v in G(S, d) O.

3.3 A semanticsfor defining the relation represented by the anno-
tated graph derived from a marginalized DAG

3.3.1 Algorithm MDT

Let As(D) = (Gs(D),Ks(D)) be the annotated graph representation of a DAG D
marginalized over asubset S of it'svertices. Lett = (X;Y|Z) beatriplet over S and
let v(t) bethe set of verticesv(t) = X UY U Z. To ascertain whether ¢ is represented
in As(D) apply the procedure below:

1. For every degradedelement (0, 7s(d)) in Ks(D) if rg(d)Nu(t) = B thenremove
the verticesin rs(d) and incident edges from G (D).

2. For every nondegraded element (d, G4) in Ks(D) whered(u,v). Iff (S\v(t))N
(Va\{u,v}) isacutset between u and v in G4 then remove the edge (u, v) from
Gs(D).

3. tisrepresented in Ag(D) if and only if it is represented in the UG generated
from G s(D) by steps 1 and 2 above.

3.3.2 An example (continued)

Consider again the example in section 3.2.2.2. For the given subset of variables S =
{a,b,c,e, f} the annotated graph As(D) = (Gs(D), Ks(D)) is shown in section
3.2.2.6 and the graph G s (D) is reproduced below:

Let ¢t bethetriplet ¢t = (b, c;alf), thenv(t) = {b,c,a, f}. The degrated element
(0, {e}) satisfiesthe property instep 1 {e} Nuv(t) = 0, therefore the vertex e should be
removed from G s (D). The conditionin step 2 is satisfied for G, ), G 4,5y A G 4
therefore the weak edges (a, b), (a, f) and (a, ¢) should be removed from G s(D). The
resulting UG is shown below

Verifying that ¢ is represented in the test graph we concludethat ¢ is represented in

As(D).
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Figure9: Thegraph Gs(D)

Figure 10: Test Graph

3.3.3 Correctness—Main Theorem

Thetesting proceduredescribed in section ?? will bereferredto astheMDT (marginal-
ized DAG test) proceture.

Theorem 1 Let As(D) = (Gs(D), Ks(D)) be the annotated graph representation
of aDAG D marginalized over asubset S of it'svertices. Lett = (X;Y|Z) beatriplet
over S thent isrepresented in D if and only if it is represented in As (D) through the
MDT procedure.

Proof: We know that ¢ is represented in D if and only if it is represented in A(D) =
(G(D); K (D)) through the L2 algorithm. Denote by G the undirected graph derived
from G(D) by the L2 algorithm for A(D) and ¢t. Then ¢ is represented in A(D) if
and only if it is represented in G,. Let G, be the subgraph of G; over the vertices
V1 N S. For any pair of nonadjacent vertices (a, b) in G, such that thereisapartin G,
connecting a to b through V1 \ Vs, add the edge (a, b) to EY. Denote the resulting graph
by G-. Itiseasy to show and it iswell known that ¢ isrepresentedin G, if and only if it
isrepresented in G (recall that v(t) C S). To provethe theorem , it suffices therefore
to provethat G is egua to the graph generated from G s (D) by the MDT procedure.
Denoteby Gs(D,t) = (Vs(D,t), Es(D,t)) the graph generated from G s(D) by the
MDT procedurefor thetriplet ¢. Wewill show that Vs(D,t) = Vo and Es (D, t) = Es.
Clearly, the verticesin V5 arethe verticesin S except vertices must belong to the range
of an element (d, r(d)) in Ks(D) and by step 1 of the MDS procedure the verticesin
rs(d) areremoved from ) S( D) sincer(d) Nv(t) = 0 impliesthat s (d) Nw(t) = 0.
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Therefore Vg (D, t) = V5. Consider now Eg(D,t). Letd = (a,b) beastrong edgein
Gs(D). Thenitisanedgeasoin Gg(D,t). It could be a strong edgein G s(D) for
oneof 2 reasons: (i) (a,b) isanartin D. Thenitisanedgein both E; and Gs(D, t).
(i) Itisnot an arc in D but thereis apath in G (S, d) such that all the vertices on the
path are ancestors of {a, b} and the range of every moral edge on the path (if any) has
nonempty intersection with {a, b}. Then this path is not removed when G, is rested
by the L2-algorithm, since the vertices on the path cannot belong to a range to be
removed by the L2-algorithm and the element corresponding to moral edges on the
pathif any are not processed by the L 2-algorithm presenting the removal of such moral
edges. Therefore (a, b) will be an edgein both E» and Es(D). By step 2 at the MDT
procedured isnot an edgein Eg(D,t) if and only if (S\v(t)) N (V4\{u,v}) isacutset
between v and v in G4. By lemma ?? this holdstru if and only if al pathsin G(S, d)
between u and v are disconnected by the L2 algorithm. This (a, b) is not set as an edge
in E; when G5, is created iff it is not an edge in Es(D, t). We have thus shown that
Es(D,t) C E,. Toshow that E» C Es(D,t) we ncticethat the edges (a, b) in E, are
either corresponding to arcsin D, or are created due to the fact that apath in G(S, d)
exists connecting a to b which correspondsto the condition of astrong edgein G s (D),
or are created due to the fact that a path exists in G(S,d) connecting a to b which
corresponds to aweak edge in Gs(D), which is not removed by the MDT procedure
O.

4 Extensionsand Final Comments

4.1 PD-induced relationsthat cannot berepresented by amarginal-
ized DAG

While DAG’s are widely used as a model that can represent PD-induced relation one
may ask whether it might be possible to represent every PD-induced relation either by
a DAG or, assuming the existence of latent variables, by a marginalized DAG. The
answer to this question is negative as shoud! be expected. A counterexampleis given
below

Consider the following PD-induced relation, over 3 variable z, y, and z, consisting
of two tripletsonly:

R = {(z;y]0), (x;y|2) + symmetric triplets}

Then R cannot be represented by amarginalized DAG. To prove this claim assume
that there is a DAG D with n variables, including z,y and z such that when D is
marginalized over {z,y, z}, the marginalized DAG represents R. This assumption
leads to a contradiction: Since (z; z|(})) and (y; z|()) are not in R there must be trails
7> and . in D with no colliders included in them. Let 7., be the concatenation
of the two trails 7. and r, (which is the trail =, i nreverse). Then =, connects
between 2 and y and has no colliders on it except perhaps the vertex Z. If Z isa
collider then 7, has no colliders on it and therefore (z; y|() is not represented in D.
Therefore R cannot be represented by marginalizing D over {z, y, z}, acontradiction.
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That R is aPD-induced relation was shown by milan Studeny (private communcation)
asfollows:

Consider the PD over the binary variables z, y and then ternary (?) variable Z. The
probability of the three variablesfor the different values of x, y, z is given below
p(0,0,0) = p(0,0,2)
p(0,1,0) =p(1,1,1
p(z,y,2) =u

p(1,0,1) = p(1,0,2) = §
1
I
= for all other configurations

)

The reader can convince himself that the relation induced by the above PD istherela
tion R = {(z;y|0), (z; y| Z)}. Notice however that the relation R aboveis represented
by the annotated graph below

G :ozyK = {((z,9),{z})}
see [Paz, 1992].

4.2 Space complexity considerations

The number of elements in the set K (D) of the annotated graph representation of a
given DAG D is bounded by the number of moral edgesin G(D). For every element
(d,r(d)) in K (D) theranger(d) isaunique subset of the verticesof D, whoseremoval
from G(D) when atriplet ¢ such that v(t) Nv(d) = () is tested by the L2 algorithm,
iduces the removal of the edge d from G(D). The situation is quite different when
we apply the MDT procedure to the annotated graph representation of a marginalized
DAG. The space required for storing As(D) is still polynomial in the number of ver-
tices of D: the number of degraded elementsis bounded by the number of moral edges
in D, the number of elements (d, G4) is egua to the number of weak-edgesin G (D)
and the set of verticesin G4, for every weak edge d, is a subset of the set of vertices
of Gs(D). Thetime complexity for testing a triplet ¢ by the MDT procedure is also
polynomial as is easy to see. On the other hand the condition for the removal of a
weak edge d from G (D) dictated by the MDT algofithm is a complex conditionii.e.,
d should beremovedif (S\v(t))N(V4\{u,v}) isacutset betweenu and v in G4, where
d = (u,v). Now the number of such cutsets could be exponental so that there may be
exponentally many different conditions whose presence dectates the disconnecting of
u from v where the MDT procedureis applied to A (D) for different triplet ¢.

Thisfeatureisillustrated in the example below —introducedin [Geiger et al., 1994].
Consider the DAG D = (V, E) with V' = {Z’l|l € N} U {yz|’b € N} @] {U”|Z,] €
N,i 75.7} U {Uij|7:7j €N,i 75.]}

E = {xi<—uij—>xj | i,jEN,i#]‘}U
{yi vy —y; | ,J€EN,i#jIU
{xi<—wij—>yi | ZEN}

Anij faceof D isshownin Fig. 11:
Let A(D) = (G(D), K(D)) be the annotated graph representation of D. An i, j
face of G(D) isshowninFig. 12.
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Figure11: 4, j face of D
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Figure 12: i, j face of G(D)

The set of elements K (D) is.

K(D) = {(uij,wis){z:i})li,j € Nyi #j}U
{(ij, wi){yi}li, j € N,i # j}
ssume now that we want to marginaize D over S = {z;|i € N}U{y;|i € N}. Ani,j
face of Gg(D) isshownin Fig. 13.
It is easy to verify that the edges (z;, x;), (vi, y;), (x:,y:) and (z;,y;) are strong
edgeswhile (z;,y;) and (z;, y;) are wesk edges.
Letd = (4, ) forany i and j. Inorder to construct G ; ;) we obscurethe following.

There are paths connecting z; to y; through the removed vertices which can be found
inFig. 12:

;ri———uij———wjj———xjandxi———wii———vij———a:j

The condition for disconnecting those paths (consult the MSD procedure) is that both
x; and y; arenot in v(t). But there are exponentially many additional such paths even
if both y; and z; arenot in v(t), illustrated in Fig. 14 where k # i, 7,

Those paths are, foreevery k # 1, j:

Ti— = — Uk — = — Wk —— —Wgj —— —Yj
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Figure 13: 7, j face of Gs(D)

Figure 14: Paths connecting z; to y;

The condition for disconnecting those pathsis that, for every k, either x, or y;, is not
inv(t). ThereforeG;; isasshowninFig. 15. i.e, Vi; = {z;|i € N} U{y;|i € N} and
Eij ={zi,z;), (@i, vi), (%5,9;5), Wi, v5) } U (i X)s (X, yr), (Wi, y) | K # 0,5}

Notice that the number of possible cutsets in this graph is exponential since any
subset of verticesincluding X, y; and at least one of { X,y } foreachk # i,j isa
cutset.

4.3 Marginalized DAG’sthat can be represented by DAG’s

Based on the prvious sectionsiit is clear that marginalized DAG's are not always rep-
resentable by DAG's. It was shown in [Paz, 1992] that the annotated graph representa-
tion of DAG’sis unique. Moreover, the set of elements K (D) in the representation of
aDAG D does not contain degraded elements and all the elementsin K (D) how the
form (d,r(d)), where r(d) is a set of vertices whose removal from G(D) (given that
r(d)Nwv(t) = @ for atested triplet) enables the disconnection of the edge corresponding
tod in G(D), when the L2 agorithm is applied to A(D), for atriplet ¢. This feature
induces anecessary condition for Ag (D) to berepresented by a DAG, namely, K s(D)
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Figure 15: Graph G';;

must not include degraded elements and all the nondegraded elements (d, G ;) must
have the property that there is a unique and simple set of verticesin V;\ {u, v} which
separatesu fromv in G4, whered = (u, v). If thisnecessary condition is satisfied then,
based on the MDT procedure, we can reset K g(D) so that al the elementsin this set
havetheform (d, r(d)) wherer(d) is equal to the unique cutset seperating u fromv in
G 4, and then apply a polynomial procedureto A s(D), described in [Paz, 1992] which
will find a DAG D representing As(D), if such exists, or will declarethat Ag(D) is
not representable by a DAG (even though it satisfies the above necessary condition). In
fact, the above necessary condition can be simplified. We will show now that if all the
nondegraded elementsr, K 5(D), (d, G4), then &l the degraded elements are superflu-
ous and can be discarded. An element that has this property (of unique cutset) will be
called simple element.

Claim 1 If all the nondegraded elements in Ks(D) are simple, then the annoted
graphs As(D) = (Gs(D), Ks(D)) and A5 (D) = (Gs(D), K5(D)) are equivalent,
where K¢ (D) includes the nondegraded elements of K s(D) only.

Proof:
let t be any triplet over S. If ¢ is represented in A5(D), through the MDT procedure
thent isrepresentedin A g (D) sincethe degraded elements many induce the removal of
additional vertices, digoint of v(¢) and this cannot change the fact that ¢ is represented
in the UG generated by the MDT procedure.

To complete the proof assume that ¢ is represented in Ag(D) but it is not rep-
resented in A5 (D). Lett = (X;Y|Z) and let G; and G, be the UG's derived from
Gs(D) by theMDT procedure, for testing ¢, from A s (D) and A5 (D) correspondingly
is V} includes some vertices belonging to degraded elements disjoint of v(¢) which are
not included in V;. Ast is not represented in A5 (D) it is not represented in G} and
therefore there must be a path = from some vertex © € X to somevertex y € Y such
that all the vertices of a subpath of = arein V/\V;. Let # = z,v,...,vry esuch a
path. Let 7' be the trail corresponding to = in D And let v;,...,v; be the subpath
of 7' in V)\V}. Now V/\V} includes only vertices from degraded elements which, as
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such belong to ranges of elementsin K (D). Therefore we must have that, in D, v;_;
is oriented into v; and v; 4, is oriented into v; where v;_; and v;4, arein V4, since
otherwise v;_; or v;41 or both would also belong to V' backslashV;, contrary to the
choice of ¢ and j, this following from the fact that v; — v;_; impliesthat v;_; isin
the same range as v; and simularly for v; — v;4 (recall that v;, . .., v; belong to the
intersection of some rangesin K (D) with S). Thisimpliesthat in D, a collider must
exist on the subpath v;, . .., v;. If the collider is coupled then we can shortcircuit the
subpath by the arc joining the parents of that collider. Continuing the shortcircuiting
process several times we will get, eventually, atrial connecting v;—1 t0 v;+1, including
an uncoupled collider, which is avertex on the subpath v, . . . , v;.

Thisimpliesthat anondegraded element would have been included in both A 5 (D)
and A’ (D) which would have been processed by the MDT algorithm, disconnecting =
(notice that all the successors of the collder must belong to V/\V; since successors of
avertices in some range must belong to the same range). This argument holds for any
path connecting z to y through V,/\ V; and therefore, if ¢ isrepresented in A's(D) then
it isrepresented in A';(D) thus completing the proof. m|
It follows from the above claim that if all the elementsin K ¢(D) are simple, where
As(D) isthe annotated graph representation of a marginalized DAG, then we can dis-
card all the degraded element from K (D). Moreover every simple element (d, G )
can be replaced by aregular element (d, r(d)) where r(d) is the unique cutset discon-
necting v from v in G 4, since the condition for disconnecting « fromv isthat r(d), the
unigque cutset in G4, isdigoint of ¢.

Summing up: If Ag(D) = (Gs(D),Ks(D)) is such that al the nondegraded
elementsin K¢(D) aresimplethen K s(D) can bereplaced by aregular annotation and
then the procedure described in [Paz, 1992] can be applied to check whether A (D)
can be represented by a DAG. Thisisillustrated in the example below.

44 An Example

Let D bethe graph shownin Fig. ?? figl6

The annotated graph representation of D isshownin Fig. ??. figl7

Margindizing over S = {a, b, ¢, d} we get the annotated graph shown in Fig. ??.
figl8

The degraded element can be discarded. An equivalent DAG can be found and is
shownin Fig. ??. fig19

4.5 Checkingwhether two DAG’sarequivalent when both aremarginal-
ized over the same subset of their common vertices

This problem was considered in [Spirtes and Verma, 1992] where a polynomial algo-
rithm is suggested for solving it. It is reasonable to assume that the annotated graph
representation may also provide away for solving the above problem. The tools devel-
oped so far may however not be enough for this use. It may be necessary to provide
first ameans of simplifying the annotated graph representation of marginalized DAG's
so as to get some kind of cannomical(?) annotated graph which is unique. So far it is
not clear and it is probably not tru that the annotated graph representing a marginalized
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DAG as developedin the previous sectionsis unique and it is reasonabl e to assume that
some simplifications of the representation is possible, by eliminating s mplifying the
G4 graph. This subject is not pursued further in the work.

Conditioning

Given a GAG A, the procedure below will derive from A another GAG A’ which

represents the relation R(A) when conditioned for asubset T of its variables.
Procedure C

Input: aGAG A = (G, K) with

K= {@0r):i=i,...,5}U D
{(d,Gq):d€ E,C E} 2
andasubset T C V whereG = (V, E).
1. For every elementin K (0, ;) suchthat r; N T # 0, remove (0, r;) from K
2. For every elementin K (d,G4) suchthat dN T # @, remove (d, G4) from K.
3. Remove T and incident edges from G.

4. For any element (d, G4) not removedin step 2, suchthat V; NT # () do: For eny
vertex v € V;NT, removev from V; and connect by an edge any two verticesu
and w such that both u and w are adjacenttov in G 4.

Set A' = (G', K') where G' is the graph derived in step 3 and K’ is the annote-
tion derived from K after completion of steps 1,2, and 4.

e End of procedure
The fact that the procedure is correct follows directly from the MDT algorithm
and is left to the reader.
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