
LAYERWIDTH: Analysis of a New Metric for Directed Acyclic Graphs

Mark Hopkins
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
mhopkins@cs.ucla.edu

Abstract

We analyze a new property of directed acyclic
graphs (DAGs), called layerwidth, arising from
a class of DAGs proposed by Eiter and
Lukasiewicz. This class of DAGs permits cer-
tain problems of structural model-based causal-
ity and explanation to be tractably solved. In this
paper, we first address an open question raised by
Eiter and Lukasiewicz – the computational com-
plexity of deciding whether a given graph has
a bounded layerwidth. After proving that this
problem is NP-complete, we proceed by proving
numerous important properties of layerwidth that
are helpful in efficiently computing the optimal
layerwidth. Finally, we compare this new DAG
property to two other important DAG properties:
treewidth and bandwidth.

1 Introduction

Halpern and Pearl [4, 5] have recently proposed a set
of general-purpose definitions for cause and explanation.
These definitions are embedded in the language of recur-
sive structural models, the structure of which can be rep-
resented using a directed acyclic graph (DAG). In [1],
Eiter and Lukasiewicz explored classes of DAGs for which
Halpern and Pearl’s definitions could be computed in poly-
nomial time. In that work, they define what we will refer to
as a layer decomposition of a DAG. They show that causes
and explanations can be identified tractably in DAGs for
which we have a layer decomposition of bounded width
(given certain constraints on the query variables). We will
formally define these concepts in the next section.

Their work leaves several questions open. Is it possible
to compute the optimal layer decomposition (i.e. the layer
decomposition of lowest width) of a given DAG in poly-
nomial time? If not, how should such a decomposition be
computed? Moreover, what is the relationship of the width

of the optimal layer decomposition of a DAG to other pop-
ular graph metrics, such as treewidth?

In this paper, we strive to resolve these questions. We will
begin by briefly reviewing the Halpern and Pearl defini-
tion of cause and discussing the tractable cases identified
by Eiter and Lukasiewicz in [1]. Then we will formally
define a DAG property called layerwidth, which is simply
the width of the optimal layer decomposition of a DAG,
and show that this concept is well-defined. We follow this
by proving that the problem of computing the layerwidth
of a DAG (and hence the problem of computing the op-
timal layer decomposition) is NP-complete. Given this
intractability result, we provide a depth-first branch-and-
bound algorithm for computing the optimal decomposition.
This algorithm has the advantage of being an anytime al-
gorithm, and hence can also be used as a heuristic if inter-
rupted. Finally, we discuss the relationship of layerwidth
to two other DAG properties, treewidth and bandwidth.

2 Structural Causal Models and Layer
Decompositions

Halpern and Pearl [4, 5] propose their definitions within the
framework of structural causal models. Essentially, struc-
tural models are a system of equations over a set of random
variables. We can divide the variables into two sets: en-
dogenous (each of which have exactly one structural equa-
tion that determines their value) and exogenous (whose val-
ues are determined by factors outside the model, and thus
have no corresponding equation).

Formally, a structural causal model (or causal model) is a
triple �U�V�F�, in which U is a finite set of exogenous ran-
dom variables, V is a finite set of endogenous random vari-
ables (disjoint from U), and F � fFX jX � Vg where FX
is a function Dom�R� � Dom�X� that assigns a value to
X for each setting of the remaining variables in the model
R � U � VnfXg. For each X , we can define PAX , the
parent set of X , to be the set of variables in R that can af-
fect the value of X (i.e. are non-trivial in FX). We also
assume that the domains of the random variables are finite.

In Proceedings of the Ninetheenth Conference on Uncertainty in Artificial Intelligence,
San Francisco: CA, Morgan Kaufmann Publishers, 321-328, 2003.

TECHNICALEPORT
R-313
March 2003

Causal models can be depicted as a causal diagram, a di-
rected graph whose nodes correspond to the variables in
U � V with an edge from Y to X � V iff Y � PAX .
We are specifically interested in recursive causal models,
which are causal models whose causal diagram is acyclic.

Eiter and Lukasiewicz [1] have investigated classes of
causal diagrams for which many of the causal queries pro-
posed by [4] can be answered in polynomial time. These
queries include actual cause, computing all actual causes,
explanation, partial explanation, and �-partial explanation.
The details of these definitions are not directly relevant to
this paper. This paper concerns itself with the classes of
causal diagrams (directed acyclic graphs) for which these
queries can be answered polynomially.

All of the tractable classes identified by Eiter and
Lukasiewicz are subsumed by a class of directed acyclic
graph that they refer to as decomposable. To understand
this class of DAG, we need to define the concept of a layer
decomposition of a DAG. The intuition behind a layer de-
composition of a directed acyclic graph is to decompose
the DAG into a chain of directed acyclic subgraphs that
connect to one another through an independent set of in-
terface variables. Formally, a layer decomposition of a
DAG G � �V�A� is a list ��T �� S��� ���� �T k� Sk�� of pairs
�T i� Si� of subsets of V such that the following conditions
hold [1]:

D1. �T �� ���� T k� is an ordered partition of V .
D2. S� � T �, ..., Sk � T k.

D3. For every i � f�� ���� k��g, no two variables
A � T ������T i���T inSi andB � T i���
��� � T k are connected by an arrow in G.

D4. For every i � f�� ���� kg, every child of a
variable in Si in G belongs to �T inSi� �
Si��. Every child of a variable in S� be-
longs to �T �nS��.

D5. For every i � f�� ���� k� �g, every parent of
a variable in Si inG belongs to T i��. There
are no parents of any variable A � Sk.

Figure 1 depicts a DAG and three layer decompositions of
it. We will refer to each Ti as a block of the layer decom-
position. For example, we can refer to T� as the 4th block
of the decomposition. We will refer to each Si as the in-
terface of the corresponding block. Occasionally we will
informally refer to T � as the “rightmost” block of the layer
decomposition, and T k as the “leftmost” block, stemming
from our convention of graphically depicting layer decom-
positions (for instance, in Figure 1).

The definition is identical to the decomposition presented
by Eiter and Lukasiewicz in [1], except that we do not con-
strain the placement of any variables of the DAG. Eiter

A E

B

C

F

B

C
E

B
B

C

E E

F

A
C F

T
1

T
1

T
1

T
0

T
0

T
0

T
2

(a) (b)

(c) (d)

A

F

G

G
G

A

T
2

G

Figure 1: A DAG G and three layer decompositions of G
of width 4. The subellipse inside T i represents Si.

and Lukasiewicz require that certain root variables are con-
strained to be in the leftmost (kth) block, while another
subset of variables are constrained to be in the rightmost
(�th) block. We will address the impact of such constraints
later. For now, we consider the more basic problem.

We define the width of a layer decomposition as the lowest
integer w such that jT ij � w for every i � f�� ���� kg.

Notice that every layer decomposition has width at least 1,
and that every DAG G � �V�A� has the trivial decompo-
sition ���� V ��. Hence it is well-defined to talk about the
lowest width layer decomposition that exists for a particu-
lar DAG G. We refer to the width of such a decomposition
as the layerwidth of G.

3 Complexity Results

We now define the following problem:

LAYERWIDTH
INSTANCE: Directed acyclic graph G, positive
integer k.
QUESTION: Does there exist a layer decompo-
sition of G of width � k?

We will show that this problem is NP-complete. It is clear
that this problem is in NP, since as a certificate we can
simply present a (polynomial size) layer decomposition of
width k or less, which can be ”guessed” and verified in
polynomial time by a nondeterministic Turing machine.
Thus our main task is to prove that the problem is NP-hard.

We will prove this via a reduction from 3-PARTITION,
which is defined as follows [3]:

3-PARTITION
INSTANCE: Set A of �m elements, a bound
D � Z�, and a size s�a� � Z� for each a � A

Figure 2: A chain of directed cliques, subdivided into seg-
ments.

such that D�� � s�a� � D�� and such that
�a�As�a� � mD.
QUESTION: Can A be partitioned into m dis-
joint sets A�� A�� ���� Am such that, for every i �
f�� ����mg, �a�Ai

s�a� � D?

Notice that because of the constraint on s�a�, each set must
contain exactly 3 elements ofA. Thus the goal of this prob-
lem is to see if it is possible to partition the set of �m ele-
ments into m 3-element sets that each add up to D.

For example, say that we have the set of elements
f�� �� �� �� 	�
� �� ��� ��g, and bound D � ��. A valid
3-partition exists for this set of elements, namely A� �
f��
� �g� A� � f�� �� ��g� A� � f�� 	� ��g. Note that
�

 � � ��, �
 �
 �� � ��, and �
 	
 �� � ��.

Our reduction is inspired by the reduction proof of [2],
which shows the NP-hardness of computing the minimum
bandwidth of a tree of degree 3. Their construction uses
a special kind of tree which they dub “siphonophoric,”
due to its similarities with pelagic hydrozoa of the order
Siphonophora. Our construction bears less of a resem-
blance to aquatic life, however we will borrow liberally
from their terminology, when appropriate.

We will need the notion of a chain of directed cliques.
To construct a directed clique over a set of nodes W �
fw�� ���� wkg, we add arrows such that there is an arrow
from wi to wj if (and only if) i � j. The sink of this clique
is w� and the source of this clique is wk . We will call the
set Wnfw�g the segment of W and define the source of
segment Wnfw�g to be the source of the clique W . For
segment W , we will use the notation W src to denote the
singleton set containing the source of W .

A chain of directed cliques is a minimal DAG G over sets
of nodes �fw�g�W�� W�� ����Wl� such that W� � fw�g is a
directed clique with sinkw�,W��W

src
�

is a directed clique
with sink W src

�
, ..., Wl � W src

l�� is a directed clique with
sink W src

l��. By minimal, we mean that G does not contain
any edges except those required to satisfy the conditions
stipulated above, e.g., G does not contain any arrows from
W� to W�. We will refer to each Wi as the segments of the
chain and call w� the tip of the chain. We show a chain of
directed cliques in Figure 2.

...

"arm"
m nodes

"hand"
ca nodesi

ti, 2ti, m--2ti, m--1
ti, m ti, 1

Figure 3: A tentacle corresponding to 3-partition element
ai.

Given an instance of 3-PARTITION, we will now construct
a DAG G such that the layerwidth of G is k (or less) if
and only if the instance has a satisfying 3-partition (where
k is some value that will be fixed shortly). We begin by
constructing the so-called body of our graph.

The body of the graph will consist of a chain of directed
cliques over �fp�g� P� B�� B�� ���� Bm� H� such that:

� jP j � k.

� For every i � f�� �� ����mg, jBij � k� ��i���� cD.

� jH j � k.

where c � �m�
 �m and k � ���m� �
 cD�
 �. The
specific values of c and k are not important to worry about
now, except to show that we can construct the body of the
graph in polynomial time. For this, we must observe that 3-
PARTITION is “strongly” NP-complete [3], which for our
purposes means that 3-PARTITION remains NP-complete,
even when we restrict our focus to instances such that D is
bounded above by a (suitably large) polynomial function of
m. Thus, we need only show that the size of the graph we
are constructing is polynomial in m and D.

The body has �
 �k
 �m
i���k � ��i � �� � cD� �

�m�D
 ��mD
 ��m � �m�D � �m� vertices, thus it
can be constructed in time polynomial inm andD. We will
refer to segment H as the head of the body, segments Bi

as the spine of the body, and segment P as the tail of the
body.

Now for each ai � A, we construct a tentacle of the graph.
A tentacle will consist of a chain ofm nodes attached to the
source of a directed clique of cai nodes, shown in Figure 3.
We refer to the directed clique at the end of each tentacle as
the hand of the tentacle. We refer to the chain of m nodes
as the arm of the tentacle. For the tentacle corresponding to
3-partition element ai, we refer to the node of the arm that
is jth closest to the hand as ti�j . For example, the arm node
closest to the hand is ti�� and the arm node closest to the
head is ti�m. Each tentacle is attached to one of the nodes
(it does not matter which) in the head of the body, i.e. ti�m
is the child of an arbitrary node of the head.

Notice that the tentacles contain �m�m � �m� arm nodes,
and cmD � �m�D
 �m�D hand nodes, thus these can
also be constructed in time polynomial in m and D.

This completes the description of the construction of the
DAG G corresponding to an instance of 3-PARTITION.
Observe that for a fixed m and D, the only difference be-
tween graphs corresponding to different instances is the
size of the hands of the tentacles. Intuitively, we are trying
to fit exactly three hands into each block of the layer de-
composition containing a spine segment. It can be shown
that this is possible if (and only if) there exists a valid 3-
partition for the instance.

The proof proceeds roughly as follows. Suppose that there
exists some layer decompositionD ofGwith width k. First
observe that the body is a chain of directed cliques, and that
each segment of the body must appear in a single block of
D. In other words, no body segment can span two blocks.
Furthermore, the head segment must appear in the leftmost
block and the tail segment must appear in the rightmost
block of D (actually, the second to rightmost – the tip ap-
pears in the rightmost block). Moreover, each spine seg-
ment must appear in its own block (in between the head
and tail blocks) since any two spine segments contain more
than k variables.

Since the head and tail blocks each contain k variables,
the tentacles must squeeze into the available space in the
blocks occupied by the spine segments. In fact, there is
just enough space in these blocks to accommodate the vari-
ables of the tentacles. The proof proceeds to show that
the tentacles fit in these blocks if (and only if) a valid 3-
partition exists for the instance of 3-PARTITION that the
DAG corresponds to. In this case, we can fit three hands
into each block containing a spine segment. We must be
careful about how the arms fit in – the choice of c is chosen
such that the proof works.

Lemma 1 Suppose that we have an instance of 3-
PARTITION, and that G is the DAG corresponding to the
construction outlined above. If there exists a valid 3-
partition for this instance, then the layerwidth of G is at
most k.

Proof Without loss of generality, let the 3-partition of
A � fa�� ���� a�mg be A� � fa�� a�� a�g� A� �
fa�� a�� a�g� ���� Am � fa�m��� a�m��� a�mg. Construct
the following layer decomposition of G:

� T � � p�; S� � p�.

� T � � P ; S� � P src.

� For every i � f�� ����m� �g:

T i � Bi��

� F��i���	� � F��i���	� � F��i���	�

� ftj�i��j� � j � ��i� �� � �g

� ft��i���	��j j� � j � i� �g

� ft��i���	��j j� � j � i� �g

� ft��i���	��j j� � j � i� �g

Si � Bsrc
i��

� ftj�i��j� � j � ��i� �� � �g

� Tm	� � H ; Sm	� � �.

We need to prove that this is a valid layer decomposition
of G and that the width of the decomposition is no greater
than k. First, observe that this is an ordered partition of G,
and that S� � T �� ���� Sm	� � Tm	�, thus D1 and D2 are
satisfied.

Check D3. Let Q�i� be the proposition that D3 holds for
integer i. We want to show that Q�i� holds for all i �
f�� �� ����m � �g. Clearly Q��� holds, since T �nS� � �.
Q��� holds, since the only parents of the nodes in the tail
(except for the source, which is in S�) are other nodes in the
tail. Now we prove the rest by strong induction. Suppose
that for some i � f�� �� ����mg, Q�j� holds for all j �
f�� �� ���� ig. We want to show that Q�i � �� holds. By
the inductive hypothesis, we know that no two variables
A � T � � ��� � T i�� � T inSi and B � T i	� � ��� � Tm	�

are connected by an arrow in G. Thus we need only show
that no two variablesA � Si�T i	�nSi	� andB � T i	��
��� � Tm	� are connected by an arrow in G. It is easy to
see that every path from any such B to A must go through
Si	�, thus Q�i��� holds. By induction,Q�i� holds for all
i � f�� �� ����m� �g. Thus D3 holds.

Check D4. First, observe that the only variable in S� has
no children, thus trivially, every child of a variable in S�

belongs to T �nS�. Let Q�i� be the proposition that D4
holds for integer i. We want to show that Q�i� holds for
all i � f�� �� ����m� �g. Q��� holds, since the children of
P src are all in S� or T �nS�. Let i � f�� �� ����m��g. The
children of Bsrc

i�� are Bi��nBsrc
i�� and Bsrc

i�� (except when
i � �, when it is P src). These variables are all in �T i Si��
Si��. The children of ftj�i��j� � j � ��i � �� � �g are
also contained in �T i Si� � Si��, hence Q�i� holds for all
i � f�� �� ����m � �g. Finally, Q�m � �� holds trivially,
since Sm	� is the empty set. So D4 holds.

Check D5. Let Q�i� be the proposition that D5 holds for
integer i. We want to show that Q�i� holds for all i �
f�� �� ����m � �g. Q��� holds, since the parents of p� is
the set P , which is in T �. Q��� holds, since the parents of
P src is the set B�, which is fully contained in T �. Let i �
f�� �� ����m��g. The parents of Bsrc

i�� is the set Bi (except
for when i=m+1, in which case it is the head), which is fully
contained in T i	�. The parents of the tentacle variables in
Si are also fully contained in T i	�. Hence Q�i� holds for
all i � f�� �� ����m� �g. Finally, we observe that Sm	� is
empty, thus D5 holds.

Lastly, we need to check that no block of the layer de-
composition contains more than k variables. Let Q�i� be
the proposition that block T i contains k or fewer vari-

ables. Clearly, jT �j � � � k. jT �j � jP j � k. Let
i � f�� �� ����m� �g.

jT ij � jBi��j� jF��i�����j� jF��i�����j� jF��i�����j

�jftj�i��j� � j � ��i� �� � �gj

�jft��i������j j� � j � i� �gj

�jft��i������j j� � j � i� �gj

�jft��i������j j� � j � i� �gj

� k � ���i� ��� ��� cD

�ca��i����� � ca��i����� � ca��i�����

���i� �� � �

���i� ��

� k � ��i� ��� cD � cD � ��i� ��

� k

Finally, jTm��j � jH j � k. Thus no block of the layer
decomposition contains more than k variables. Hence we
have proven the lemma.

Next we must show the converse.

Lemma 2 Suppose that we have an instance of 3-
PARTITION, and that G is the DAG corresponding to the
construction outlined above. If the layerwidth of G is at
most k, then there exists a valid 3-partition for this in-
stance.

Proof Observe that each segment of the body of G must
be contained in a single block of any layer decomposition
of G. To see this, notice that any variable V that appears
in the interface of a block cannot have any ancestor with an
arrow pointing to a descendent of V . Thus, for a segment,
only the source can appear in the interface of a block, and
the rest of the segment must necessarily appear in that same
block. We can further observe that no layer decomposition
of width k for G can contain two segments of G, since the
size of every segment is at least k � ��m � �� � cD, and
��k���m����cD� � �k����m���cD� � �k�k � k.
Hence any layer decomposition of G of width k must have
the following form:

� p� � T �; p� � S�.

� P � T �; P src � S�.

� For every i � f�� ����m��g: Bi�� � T i; Bsrc
i�� � Si.

� H � Tm��.

Furthermore, we can observe that all of the tentacle vari-
ables must appear in one of fT �� T �� ���� Tm��g, since the
tentacle must appear to the “right” of Tm��, which con-
tains the head (and the ancestors of the tentacles), and to

the “left” of T �, since this block is completely filled by
the tail (i.e. it has k variables already, and cannot per-
mit more). The number of variables in the tentacles is:
�m� � cmD, while the number of the “open” spaces in
fT �� T �� ���� Tm��g (i.e., the number of variables that can
be added to these blocks before they reach their maximum
of k variables each) is: 	m

i����i���� cD � �m�� cmD.
Hence in any layer decomposition of G of width k, each of
fT �� T �� ���� Tm��g must contain exactly k variables of G.

With these results in hand, let us prove the equivalent con-
trapositive of our lemma, namely, we will show that if there
does not exist a 3-partition for our instance, then there can
be no layer decomposition of G of width k or less. Given
what we have already established, clearly there can be no
layer decomposition of G of width less than k. Now sup-
pose that there does not exist a 3-partition, and yet there
exists a layer decomposition of G with width k.

Observe that the segment of each tentacle’s hand (which is
a directed clique) must be completely contained by a sin-
gle block of the layer decomposition. By our supposition,
there must be some j � f�� �� ����m� �g such that the set
A� of ai’s that correspond to the hand segments that are
contained by T j do not add up to D. Suppose these ai’s
sum to greater than D. Then:

	ai�A�ai � D � �

� 	ai�A��cai � �� � c�D � ��� �m

� cD � �c� �m�

� cD � ��m� ��

Thus any block that contains a spine segment and these
hand segments must have greater than �k � ��m � �� �
cD� � �cD � ��m � ��� � k variables. Hence it is not
possible for the ai’s to sum to greater than D.

Suppose these ai’s sum to less than D. Then:

	ai�A�ai � D � �

� 	ai�A��cai � �� � c�D � ��

We will show that we cannot fill the block to k variables.
T j contains at most �k� �� cD� � c�D� �� � k� �� c

variables. Thus, to fill T j , we need to place at least c � �
variables in it. However, the only variables left are the arm
variables, of which there are only �m� � c � �. Thus
jT j j must be less than k, which is impossible in any layer
decomposition of G with width k. Thus we have contra-
dicted our assumption. Given that there does not exist a
3-partition, there cannot exist a layer decomposition of G
with width k. This proves the lemma.

Given what we have established, the following theorem is
immediate:

Theorem 3 LAYERWIDTH is NP-complete.

In the definition of layer decompositions proposed in [1],
there is an additional constraint on the definition to allow
causes to be tractably identified. Namely, the “cause” vari-
ables of the causal network (DAG) must be placed in the
interface of the leftmost block of the layer decomposition,
and the “effect” variables must be placed in the rightmost
block of the layer decomposition. With the above result in
hand, it is a straightforward exercise to prove that the prob-
lem of finding the optimal layer decomposition of a DAG
subject to such constraints is also NP-complete.

Define the following problem:

LAYERWIDTH WITH CONSTRAINTS
INSTANCE: Directed acyclic graphG � �V�A�,
positive integer k, nonempty subset of variables
C � V , nonempty subset of variables E � V .
QUESTION: Does there exist a layer decomposi-
tion of G with j blocks that has width � k, such
that C � Sj�� and E � T �?

Given Theorem 3, the following theorem is relatively
straightforward.

Theorem 4 LAYERWIDTH WITH CONSTRAINTS is NP-
complete.

Proof Suppose that we have a box B that can compute
LAYERWIDTH WITH CONSTRAINTS. We can show
that given such a box, we can compute the layerwidth of
a DAG G in polynomial time. Observe that there exists an
optimal layer decomposition D of G has some sink vari-
able Vsink in T � and some source variable Vsrc in the in-
terface of the leftmost block of D. Hence, to compute the
layerwidth of G, we can feed G, along with every possible
pair of source and sink variables of G, as input to B. One
of these O�n�� calls will give �G� Vsrc� Vsink� as input to
B, which will return either D, or some other optimal layer
decomposition of G.

4 Computation

In the previous sections, we have established the in-
tractability of finding the optimal layer decomposition for a
given DAG. In this section, we consider how we can com-
pute such a decomposition as efficiently as possible. To this
end, we propose a depth-first branch-and-bound algorithm.
In choosing this approach, we gain the advantage of inter-
ruptability, i.e. the computation can be stopped at any point
and will return the best result it has found thus far. Hence
it can also be used as a heuristic algorithm if run-time is
constrained.

We need to first establish a few preliminary definitions.
First, we define a partial layer decomposition (PLD) of a

A E

B

C

F

B

C
E B

B

C
E

EF A
C F

T
1

T
1T

1

T
0

T
0T

0

T
2

(a) (b)

(c) (d)

Figure 4: A DAG G (a) and three PLDs of G (b,c,d).

DAG G � �V�A�. This is simply a layer decomposition
of G�W �, where G�W � is the subgraph of G over a subset
of variables W � V (consisting of W and the arrows of
G that both originate from a node in W and terminate at
a node in W). We will refer to the set W as V ars�D�,
where D denotes the PLD. Figure 4(b) shows a PLD D of
a DAGG such that V ars�D� � fB�C�Eg. Since the PLD
is a layer decomposition of G�fB�C�Eg�, we can further
define the width of a PLD to be the width of this layer
decomposition. The width of the PLD in Figure 4(b) is 2.

Second, we define a sub-PLD D� of a PLD D of DAG
G � �V�A�. Simply put, a sub-PLD D� of a PLD D is a
layer decomposition over a subset of the variables inD that
maintains the relative positions of these variables. In for-
mal terms, let D � ��T �

� � S
�
��� �T

�
� � S

�
��� ���� �T

k
� � S

k
� �� be a

PLD of G. Let D� � ��T �
� � S

�
��� �T

�
� � S

�
��� ���� �T

j
� � S

j
��� be

a PLD of G such that V ars�D�� � V ars�D�. Then D�

is a sub-PLD of PLD D iff there exists some non-negative
integer m such that for all i � f�� �� ���� jg, we have that
T i
� � T i�m

� and Si
� � Si�m

� . This definition is a bit hard
to parse, but the intuition behind it is quite straightforward.
Figure 4(b) is a sub-PLD of Figure 4(c) and Figure 4(d)
since the relative positions of B�C, and E are maintained,
but notice that Figure 4(c) is not a sub-PLD of Figure 4(d).

Third, given DAG G � �V�A� and a PLD D of G, an in-
sertion of variable X � �V nV ars�D�� into D is a new
PLD D� of G such that (a) V ars�D�� � V ars�D� � fXg
and (b) D is a sub-PLD of D�. Furthermore, to insert vari-
able X into PLD D is to produce an insertion of X into D.
For example, Figure 4(c) is an insertion of variable F into
Figure 4(b).

Finally, we need the concept of a boundary variable. Given
a DAG G � �V�A� and a subset W � V , we define a
boundary variable of W as any variable X � V nW such
that some parent or child of X in DAG G is a member of
W . For example, for the DAG in Figure 4(a), the boundary
variables of fB�Eg are A and C (but not F).

Now to establish our search space, we need to prove a the-

orem. This theorem essentially allows our search space to
be a binary search tree.

Theorem 5 Let D be a PLD of DAG G � �V�A�. Let
X � V be a boundary variable of V ars�D�. Then there
exist at most two unique insertions of X into D.

Proof Let D � ��T �
� � S

�
��� �T

�
� � S

�
��� ���� �T

k
� � S

k
� ��. D�

must have either k � � blocks or k � � blocks (notice that
D has k �� blocks). It must have at least k � � blocks be-
causeD is a sub-PLD ofD�, thus the k�� blocks ofD map
to k � � blocks of D�. Furthermore, D� can have at most
k � � blocks, since it has only one additional variable than
D, and this variable is adjacent to some of the variables of
D. Hence D� can take three forms:

1. D� � ��T �
� � S

�
��� �T

�
� � S

�
��� ���� �T

k
� � S

k
� ��. In this case,

for all i � f�� �� ���� kg, we have that T i
� � T i

� and
Si
� � Si

�. Furthermore, for some i � f�� �� ���� kg,
X � T i

�.

2. D� � ��T �
� � S

�
��� �T

�
� � S

�
��� ���� �T

k��

� � Sk��

� ��. In this
case, for all i � f�� �� ���� kg, we have that T i

� � T i
�

and Si
� � Si

�. Furthermore, X � T k��

� .

3. D� � ��T �
� � S

�
��� �T

�
� � S

�
��� ���� �T

k��

�
� Sk��

�
��. In this

case, for all i � f�� �� ���� kg, we have that T i
� � T i��

�

and Si
� � Si��

� . Furthermore, X � T �
� .

Suppose that Y is a parent of X . There are four cases to
consider:

� Case 1: Suppose that Y � Si
� for some i � f�� ���� kg.

Then D� must take form 1, since form 2 leads to a
contradiction of D4, while form 3 also contradicts D4.
Thus in D�, either X � �T i

�nS
i
�� or X � Si��

� (from
D4).

� Case 2: Suppose that Y � S�� . Then D� cannot take
form 2, since this violates D4. IfD� takes form 3, then
Y � S�� , hence X � S�� , otherwise D4 is violated. If
D� takes form 1, then Y � S�� , hence X � �T �

� nS
�
��,

otherwise D4 is violated.

� Case 3: Suppose that Y � �T i
�nS

i
�� for some i �

f�� ���� kg. Then D� must take form 1, since form
2 leads to a contradiction of D3, while form 3 also
violates D3. Thus in D�, either X � �T i

�nS
i
�� or

X � Si��

� . Otherwise, either D5 or D3 would be
violated.

� Case 4: Suppose that Y � �T �
� nS

�
��. Then D� cannot

take form 2, since this violates D3. If D� takes form
3, then Y � �T �

� nS
�
��, hence X � S�� , otherwise D3

is violated. If D� takes form 1, then Y � �T �
� nS

�
��,

hence X � �T �
� nS

�
��, otherwise either D5 or D3

would be violated.

A B

T
1

T
0

C

A

B

C

Figure 5: Since A is the parent of C, C’s insertion into any
PLD containing A is constrained to two unique positions.

Suppose that Y is a child of X . There are three cases to
consider:

� Case 1: Suppose that Y � Si
� for some i � f�� ���� k�

�g. Then D� must take form 1, since form 2 leads to a
contradiction of D5, while form 3 also contradicts D5.
Thus in D�, either X � �T i��

� nSi��

� � or X � Si��

�

(from D5).

� Case 2: Suppose that Y � Sk
� . Then D� cannot take

form 1 or form 3, since either violates D5. If D � takes
form 2, then Y � Sk

� , hence either X � Sk��

� or
X � �T k��

� nSk��

� �.

� Case 3: Suppose that Y � �T i
�nS

i
�� for some i �

f�� ���� kg. Then D� must take form 1, since form 2
leads to a contradiction of D3, while form 3 also vio-
lates D3. Thus in D�, either X � �T i

�nS
i
�� or X � Si

�.
Otherwise, either D4 or D3 would be violated.

In all of the (exhaustive and mutually exclusive) cases,
there are at most two PLDs D’ that satisfy the conditions
of the theorem.

This theorem means that we can represent all possible layer
decompositions of DAGG as a binary search tree. Suppose
that an internal node of the search tree corresponds to some
PLD over a proper subset of variables W of G. At the
subsequent level, we choose a boundary variable of W and
produce all possible PLDs that result from inserting this
variable into the PLD. From the theorem, there are only
two of these. Clearly as long as G is connected and W is
non-empty, there will always be some boundary variable to
choose. But what about the base case, when W is empty?
The following theorem gives us our starting point.

Theorem 6 Let G � �V�A� be a directed, acyclic graph.
Let X � V . Then there exist exactly two unique PLDs D
of G such that V ars�D� � fXg.

Proof Simply put, the two PLDs take the form ��T�� S���.
In one, T� � fXg and S� � fXg. In the other, T� �
fXg and S� � �. There are no other PLDs over a single
variable.

A B

B B

B B
AA
B

ABA

graph:

Figure 6: A complete search tree for a simple chain graph
over two variables.

Hence we have established our search space. At the root,
we begin with the trivial PLD over the empty set, and at
each subsequent level of the search tree, we insert some
boundary variable into the PLDs that we have generated at
the previous level of the tree. Figure 6 shows a complete
search space for a simple chain graph over two variables.

There is no reason that we need to insert nodes to our PLD
in a fixed order down every path of our search tree. Instead,
at each node of our search tree we can dynamically choose
to insert any node of the graph that has a parent or child
that has already been inserted to the PLD (recall that this
condition restricts the number of possible insertions to at
most two). This strategy is advantageous because we can
first add any nodes for which there is only one possible in-
sertion, given the current PLD. Furthermore, if any nodes
exist for which there is no possible insertion, we can im-
mediately return nil (meaning that no layer decomposition
subject to the given constraints exists). We will refer to this
process as resolution. These observations give rise to the
following basic algorithm:

Let G � �V�A� be a directed, acyclic graph. Then the call
BasicLD�G� �� returns an optimal layer decomposition of
G, where algorithm BasicLD is defined as follows:

Algorithm BasicLD(DAG G, PLD D):

1. Let D � Resolution�G�D�.

2. If V ars�D� � V , then return D.

3. If D � nil then return nil.

4. If V ars�D� � � then let X be any node of G;
otherwise let X � V be any boundary variable of
V ars�D�.

5. For every insertion Di of X into D: Let Fi �
BasicLD�G�Di�.

6. If all Fi � nil, then return nil. Otherwise, return the
layer decomposition Fi of minimum width.

For now, we defer a precise consideration of the function
Resolution�G�D�, except to say that it returns nil if there
is some variable of G that cannot be inserted into D and
otherwise recursively places all variables of G for which
there is only one possible insertion until all variables of G
that are not in V ars�D� have at least two possible inser-
tions.

Theorem 7 BasicLD�G� �� returns an optimal layer de-
composition of G.

Proof Consider the search tree of BasicLD�G� ��. Sup-
pose that N is a node of this search tree corresponding to
the call BasicLD�G�D�. Notice that if N is at level k of
the search tree, then D is a PLD of G, by an easy inductive
argument. Define PLD�N� � D. Notice further that for
any leaf node N of the search tree, PLD�N� corresponds
to a layer decomposition of G.

Clearly then, BasicLD�G� �� returns the lowest-width
layer decomposition ofG, among the layer decompositions
represented by the leaves of the search tree. Thus to prove
that it returns the optimal layer decomposition of G, we
need only show that every layer decomposition ofG is rep-
resented by some leaf of the search tree.

We prove this by induction. Fix any layer decomposition
D of G. We want to show that if there exists some node
N such that PLD�N� is a sub-PLD of D, then either
PLD�N� � D (in which case N is a leaf node), or N
has a child N � such that PLD�N �� is also a sub-PLD of
D. Notice that for rootR of the search tree, PLD�R� � �,
which is a sub-PLD of every layer decomposition of G.
Thus if we can prove the above statement, then we will
have proven that there exists some leafN of the search tree
such that PLD�N� � D.

Assume that N is a node of the search tree such that
PLD�N� is a sub-PLD of D. If N is a leaf node,
then PLD�N� � D, since the only sub-PLD of D over
V ars�D� is D itself. IfN is not a leaf node, then by Theo-
rem 5 and resolution, it has exactly two children. Suppose
N � is one of these children. Then V ars�PLD�N ��� �
V ars�PLD�N�� � W , where W is the set of variables
added to PLD�N� by resolution (step 1) and by selec-
tion (step 4). Let D� be the unique sub-PLD D� of D over
V ars�PLD�N�� �W . Since PLD�N� is a sub-PLD of
D, it must also be a sub-PLD of D�. Thus there must exist
some child N � of N such that PLD�N �� � D�.

Hence by induction, for every layer decomposition D of
G, there must exist some leafN of the search tree such that
PLD�N� � D. Thus BasicLD�G� �� returns the optimal
layer decomposition of G.

We claim that the worst-case time complexity is O��n �

poly�n��, where n is the number of nodes of V and poly�n�
is a polynomial functional of n. Since we have already es-

tablished that the search tree has O��n� nodes (from The-
orem 5), we need only show that a polynomial amount of
work is done at each node. This is relatively trivial, since
steps 2, 3, and 4 can clearly be performed in polynomial
time, while step 6 requires us to be able to compute the
width of a given layer decomposition, which can easily
be shown to be polynomial. Step 5 requires us to gener-
ate all insertions of a boundary variable into a PLD. From
Theorem 5, at most two such layer decompositions exist.
They are also easy to generate, since we are essentially just
adding a node to the existing layer decomposition. We will
further assume thatResolution�G�D� runs in polynomial-
time, thus BasicLD runs in time O��n � poly�n��.

Let us now turn our attention to the important resolution
step. It is not hard to go through each of the boundary vari-
ables and assess which have zero or one possible insertion,
given the constraints placed upon them by previously in-
serted parents and children. But is this all that we can do? It
turns out that there exists a non-trivial class of graph nodes
which we can automatically insert, even if there seems to
be two possible insertions for the node.

Theorem 8 Let D be a sub-PLD of DAG G. Let X be a
root variable of G such that X is a boundary variable of
V ars�D�. Define w�D�� to be the width of the optimal
layer decomposition D�� such that D� is a sub-PLD of D��.
Then w�D�� is the same for every insertion D� of X into
D.

Proof For a givenD, there exist two possible insertionsD�

of X into D. One of these inserts X into Si and the other
inserts X into �TinSi�. Consider a layer decomposition
D�� of G such that D� is a sub-PLD of D��. Then if X is in
Si, then we can move X to �TinSi� to create a new layer
decomposition of the same width (and vice versa).

Theorem 9 Let D be a sub-PLD of DAG G � �V�A�. Let
X � V be a boundary variable of V ars�D�. If in G, any
ancestor of X is directly connected to any descendant of
X , then there exists at most one insertion D� of X into D
such that D� is a sub-PLD of a layer decomposition of G.

Proof Let Y be an ancestor of X that is directly connected
to some descendant Z of X in G. Thus in any layer de-
composition D�� � ��T �� S��� ���� �T k� Sk�� of G, one of
two cases are possible, from the definition of layer decom-
position:

� For some i � f�� ���� kg, Y � T i and Z � Si��.

� For some i � f�� ���� kg, Y � T i and Z � �T inSi�.

In either case, X � �T inSi� (from D4 and D5).

Suppose D� is a sub-PLD of G satisfying conditions (a),
(b), and (c). Let some parent P of X be a member of

V ars�D�, thus P � T i for some i. Thus in D�, X �
�T inSi�. Otherwise,D� is not a sub-PLD ofD��, since then
D�� could not satisfy the conditions above. Let some child
C of X be a member of V ars�D�, and suppose C � S i

for some i. Thus in D�, X � �T inSi� because D� is a sub-
PLD of D��. Suppose C � �T inSi� for some i. Thus in
D�, X � �T inSi� because D� is a sub-PLD of D��. Hence
there is only one unique D� satisfying the conditions of the
theorem.

The upshot of these two theorems is that we do not have to
branch on two special classes of DAG variables: root vari-
ables, and variables that have any ancestor directly con-
nected to any descendant. This can in fact constitute a
large proportion of the variables in a given DAG. Notice
that both of these variable sets can be determined stati-
cally in polynomial time simply by looking at the struc-
ture of the DAG. Hence using a resolution function that uti-
lizes these theorems means that BasicLD has running time
O��m � poly�n��, where m is the number of DAG vari-
ables that are neither roots nor have an ancestor directly
connected to a descendant.

We have now developed a depth-first search algorithm
whose goal is to find the leaf of minimum width in a tree
of known depth. Hence, this algorithm is an ideal candi-
date to transform into a branch-and-bound algorithm. To
do so, we need a cost function g�N� for each internal node
N and a heuristic function h�N� that is a lower-bound on
the minimum-width layer decomposition that is a descen-
dant of N . In this case, it is convenient to set g�N� � � for
all internal nodes N and simply focus on how to establish
a tight lower bound on the lowest possible width it is possi-
ble to achieve, starting with the PLD represented by search
tree node N (which we denote PLD�N�).

Clearly for a given node N of the search tree, PLD�N�
is a sub-PLD of every layer decomposition represented by
a descendant leaf. Thus the width of PLD�N� is a lower
bound on the best width of any layer decomposition rep-
resented by a descendant in the search tree. Hence we
could set h�N� to the width of PLD�N�. This is conceptu-
ally simple and straightforward to compute. However, we
can do better than this. Suppose that in G, there is a par-
ent X of some variable Y � V ars�PLD�N�� such that
X �� PLD�N�. In other words, we have inserted Y in the
layer decomposition, but not its parent. What can we say
about where its parent must be inserted? Although we can-
not say for certain the specific location of X , we can say
precisely which block X must end up in (though it may
or may not be in that block’s interface). But all we need
to compute the width of the resulting layer decomposition
is to know which variables are in which block. Thus we
can compute h�N� to be the width of PLD�N� once the
uninserted parents of V ars�N� are added to their corre-
sponding blocks.

C F

T
1

T
0

E

A

C

B

E

F

G

A B

H

G

Figure 7: A DAG G and a PLD of G over fC�F�Gg.
Clearly, any layer decomposition that we can obtain by in-
serting fA�B�E�Hg into the PLD must have width at least
2, since this is the width of the PLD. However, the parent
set of fC�Fg all must share a block with C, thus any layer
decomposition that we can obtain by insertion must have
width at least 4.

Theorem 10 Let D be a sub-PLD of DAG G. Let X be
a variable of G such that X �� V ars�D� but such that at
least one child Y ofX in DAGG is a member of V ars�D�.
Let D� � ��T �� S��� ���� �T k� Sk�� be any layer decompo-
sition ofG such thatD is a sub-PLD ofD�. Then if Y � Si

for some i � f�� ���� k � �g, then X � T i��. Otherwise, if
Y � �T inSi� for some i � f�� ���� kg, then X � T i.

Proof Suppose Y � Si for some i � f�� ���� k � �g. Then
by D5, X � T i��. Suppose Y � �T inSi� for some
i � f�� ���� kg. Then by D3 and D4, X � T i. Notice that
Y cannot be a member of Sk, otherwise D5 is necessarily
violated.

We show an example of the heuristic resulting from Theo-
rem 10 in Figure 7. Using this heuristic to turn our existing
algorithm into a depth-first branch-and-bound algorithm is
simple. At every node N such that h�N� is greater than or
equal to the best width found thus far in the computation,
return nil and do not proceed to explore the subtree rooted
atN . Since the heuristic is admissible, our algorithm main-
tains its optimality.

Hence in this section, we have developed a depth-first
branch-and-bound algorithm for determining the optimal
layer decomposition of a directed acyclic graph. This algo-
rithm benefits from a number of important properties that
we have proven about layer decompositions. The algorithm
has the added advantage of being anytime. In other words,
it finds a solution as soon as it hits a leaf, and from then on,
giving the algorithm extra time simply makes the solution
better, until the computation is interrupted or completed.
Finally, it is easy to adapt this algorithm to the situation in
which we have constraints on where certain variables must
be placed in the final layer decomposition. To do so, we
simply ignore any leaf representing a layer decomposition
that does not comply with our constraints.

5 Comparison with Other DAG Properties

In this section, we compare the layerwidth of a DAG with
two other important DAG properties: treewidth and band-
width. Notice that both treewidth and bandwidth also have
definitions for undirected graphs, but here we are con-
cerned with directed, acyclic graphs. We will show that,
in general, treewidth and layerwidth are non-comparable in
the sense that neither dominates the other. For example,
there exists a DAG whose treewidth exceeds its layerwidth,
and there also exists a DAG whose layerwidth exceeds its
treewidth. The same can be said of the relationship between
bandwidth and layerwidth.

The treewidth of a DAG can be defined in a number of dif-
ferent ways. We will define it here in terms of elimination
orders. Consider a DAG G � �V�A�. First, we must mor-
alize the DAG, i.e. pairwise connect all parents of every
node, then drop directionality from all edges of the graph.
An elimination order of G is simply any ordering of the
variables in V . To eliminate a variable X � V from G, we
pairwise connect all neighbors of X , then remove X from
the graph along with any incident edges. The width of an
elimination order � is the maximal number of neighbors
that any node has at its point of elimination, if we eliminate
the nodes in the order perscribed by �. The treewidth of a
DAGG is the lowest width among all elimination orders of
G.

Theorem 11 If the layerwidth of a DAG G is w, then the
treewidth ofG is less than or equal to �w��. Furthermore,
this bound is strict, i.e. for every w, there exists a DAG G
with layerwidth w and treewidth �w � �.

Proof Suppose that D � ��T �� S��� ���� �T k� Sk�� is a
layer decomposition of G of width w. Let � be an elim-
ination order of D such that for i � f�� ���� k � �g, all the
variables in T i appear before all the variables in T i�� in �.
We want to show that the width of � is at most �w � �. By
induction, we can easily prove that at the point of elimina-
tion, any variable in T i can only be connected to variables
in T i or T i��, which is a total of �w � � variables (not
including itself).

To see that this bound is strict, consider the DAG G �
�V� � V� � fXg� A� where V� and V� are independent sets
of w variables each, every variable in V� is the parent of
every variable in V�, and every variable in V� is the parent
of X . Clearly D � ��T �� S��� �T �� S��� �T �� S��� where
T � � S� � fXg, T � � S� � V�, and T � � S� � V� is a
layer decomposition of G of width w. However the moral
graph ofG contains a clique of size �w over V��V�, hence
the treewidth of G is at least �w � �.

We actually cannot provide a bound in the opposite direc-
tion. In fact, there are graphs of treewidth 1 whose layer-
width is jV j��. Namely, the rooted, directed tree of height

1 (with jV j � � leaves) has this property. Furthermore,
there are graphs of treewidth 2 whose layerwidth is jV j� �
(the worst possible layerwidth). Specifically, a chain of jV j
nodes where the root node is connected to the terminal node
has this property.

Now we turn our attention to bandwidth. To define the
bandwidth of a DAG, we will first review the concept of
a topological order. A topological order � of a DAG
G � �V�A� is an ordering of the variables in V such that
if X � V is a parent of Y � V , then X appears before
Y in �. We define the width of a topological order to be
the maximum distance between a parent and its child in the
order. For instance, for the DAG pictured in Figure 7, the
width of topological order A�B�E�C� F�G�H is 3, since
C is in position 4 and A is in position 1. The bandwidth of
a DAG G is the lowest width among all topological orders
of G.

Theorem 12 If the layerwidth of a DAG G is w, then the
bandwidth of G is less than or equal to �w � �. Further-
more, this bound is strict, i.e. for every w, there exists a
DAG G with layerwidth w and bandwidth �w � �.

Proof Suppose that D � ��T �� S��� ���� �T k� Sk�� is a
layer decomposition of G of width w. Let � be an topo-
logical order of D such that for i � f�� ���� kg, all the vari-
ables in T i appear before all the variables in T i�� in �.
Variables in T � can only be connected to other variables in
T �. Moreover, for i � f�� ���� kg, all the variables in T i can
only be connected to the variables in T i � T i��. Thus the
furthest distance between a parent and a child in � is �w��
(the number of variables in T i � T i��, minus one).

To see that this bound is strict, consider DAG G � �V� �
V�� A� where V� and V� are independent sets ofw variables
each, and every variable in V� is the parent of every variable
in V�. Clearly D � ��T �� S��� �T �� S�� where T � � S� �
V�, and T � � S� � V� is a layer decomposition of G of
width w. However in any topological order of G, some
variable of V� must appear first, and some variable of V�
must appear last. Thus every order has width �w� �.

Just as with treewidth, we cannot provide a bound in the
opposite direction. There are graphs of bandwidth 2 whose
layerwidth is jV j � � (the worst possible layerwidth).

6 Discussion

In this paper, we have provided a detailed analysis of a
DAG decomposition called a layer decomposition, recently
proposed by Eiter and Lukasiewicz [1]. As we have men-
tioned, many intractable problems of causality and expla-
nation in structural models have been found to be tractable
for structural models whose DAG representation has a layer
decomposition of bounded width [1].

Here, we have considered the problem from a broader per-
spective – as a general property of DAGs called layer-
width. As such, any intractable DAG problem can poten-
tially benefit from the analysis presented here. This raises
the question: the subset of DAGs of bounded layerwidth
is an attractive subset for what kind of DAG problems (be-
sides structural model-based causality)? It is hard to give
specifics, but one possibility might be problems concerning
dynamic Bayesian networks, whose structure lends itself to
decomposition into layers. In any event, we have sought in
this paper to establish layerwidth as a new metric for the
toolbox of researchers designing DAG algorithms.

References

[1] Thomas Eiter and Thomas Lukasiewicz. Causes
and explanations in the structural-model approach:
Tractable cases. In Proceedings of the Eighteenth Con-
ference on Uncertainty in Artificial Intelligence (UAI),
pages 146–153. Morgan Kaufmann, 2002.

[2] Michael R. Garey, R.L. Graham, David S. Johnson, and
Donald E. Knuth. Complexity results for bandwidth
minimization. SIAM Journal of Applied Mathematics,
34:477–495, 1978.

[3] Michael R. Garey and David S. Johnson. Comput-
ers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[4] Joseph Halpern and Judea Pearl. Causes and explana-
tions: A structural-model approach. Technical Report
R–266, UCLA Cognitive Systems Laboratory, 2000.

[5] Joseph Halpern and Judea Pearl. Causes and explana-
tions: A structural-model approach – part i: Causes. In
Proceedings of the Seventeenth Conference on Uncer-
tainty in Artificial Intelligence, pages 411–420, 2001.

