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Abstract

Recently, Halpern and Pearl proposed a definition of actual
cause within the framework of structural models. In this pa-
per, we explicate some of the assumptions underlying their
definition, and re-evaluate the effectiveness of their account.
We also briefly contemplate the suitability of structural mod-
els as a language for expressing subtle notions of common-
sense causation.

Introduction

Providing an adequate definition for when one event causes
another has been a troublesome issue in philosophy for cen-
turies (Sosa & Tooley 1993). To partially illustrate the diffi-
culties involved, consider the following example:

Example (Firing Squad) There are two riflemen (R; and
R») in a firing squad. On their captain’s order, they both
shoot simultaneously and accurately. The prisoner dies.

From this story, we can ask causal queries such as: did
R;’s shot cause the prisoner’s death? We can also ask
whether the captain’s order caused the prisoner’s death. For
both of these queries, a satisfactory account of causation
should answer “yes,” to agree with our intuition. Most ac-
counts attempt to capture the concept of causation by con-
sidering sufficiency of the candidate cause, necessity of the
candidate cause, or some hybrid of the two. For instance,
the captain’s order is both necessary and sufficient for the
prisoner’s death (given that we assume the riflemen always
obey the captain’s order). Alternatively, R;’s shot is suffi-
cient, but not necessary, for the prisoner’s death to occur.
Additionally, it is possible to derive candidates that are suf-
ficient for the effect, but that we would not consider causes.

In a recent paper (Halpern & Pearl 2001), Halpern
and Pearl propose a definition of cause (which they term
actual cause) within the framework of structural causal
models. Specifically, they express stories as a structural
causal model (or more accurately, a causal world), and then
provide a definition for when one event causes another,
given this model of the story. Their definition is primarily
necessity—based. The main idea is that a candidate C' is
an actual cause of an effect £ when C' and E have both
occurred, and there exists
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some counterfactual contingency W under which E is coun-
terfactually dependent on C'. By this, we mean that had W
occurred, C and E would still have occurred, but E would
not have occurred were it not for C. For instance, in the
above example, the prisoner’s death is counterfactually de-
pendent on R;’s shot, under the counterfactual contingency
that R» did not shoot his rifle. Halpern and Pearl impose a
few restrictions such that not every contingency W can be
considered (we discuss this in greater detail in the next sec-
tion).
In this paper, we make the following contributions:

1. We explicate some of assumptions underlying the usage
of causal models for the commonsense causal reason-
ing addressed by Halpern and Pearl in (Halpern & Pearl
2001). Halpern and Pearl do not elaborate on how stories
are mapped into appropriate causal models; rather, they
simply use models that “seem right.” Spelling out the for-
mal implications of a given causal model is especially cru-
cial in light of the fact that different (seemingly sensible)
models of the same story can yield different answers for
identical queries. This analysis also helps us to determine
what problem Halpern and Pearl are actually addressing
with their definition. Namely, what kind of information
does their definition assume is encoded in the model? On
what basis do their conclusions about causation rest?

2. We evaluate the counterfactual strategy that provides the
foundation for Halpern and Pearl’s definition. We pro-
vide evidence that this strategy (despite the attempts at
restricting viable counterfactual contingencies) is far too
permissive.

3. After highlighting some problematic aspects of Halpern
and Pearl’s account, we briefly address whether this is at-
tributable to the framework in which it is based: the lan-
guage of structural models. Essentially a propositional
language, we consider whether the ontological commit-
ment of this framework limits the ability to effectively
capture notions that are essential to a valid account of cau-
sation.

Structural Models and a Definition of Cause

Halpern and Pearl define their notion of causation within the
language of structural models. Essentially, structural models
are a system of equations over a set of random variables. We
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Figure 1: Causal model for the Firing Squad scenario. All
variables are propositional. C = Ug; Ry = C; R2 = C;
D =R;V Rs.

can divide the variables into two sets: endogenous (each of
which have exactly one structural equation that determines
their value) and exogenous (whose values are determined by
factors outside the model, and thus have no corresponding
equation).

First we establish some preliminaries. We will generally
use upper-case letters (e.g. X, Y) to represent random vari-
ables, and the lower-case correspondent (e.g. z, y) to repre-
sent a particular value of that variable. Dom (X) will denote
the domain of a random variable X . We will use bold-face
upper-case letters to represent a set of random variables (e.g.
X,Y). The lower-case correspondent (e.g. x,y) will repre-
sent a value assignment for the corresponding set.

Formally, a structural causal model (or causal model) is
a triple (U, V,F), in which U is a finite set of exogenous
random variables, V is a finite set of endogenous random
variables (disjoint from U), and F = {Fx|X € V} where
Fx isafunction Dom(R) — Dom(X) that assigns a value
to X for each setting of the remaining variables in the model
R = UUV\{X}. Foreach X, we can define PA x, the
parent set of X, to be the set of variables in R. that can affect
the value of X (i.e. are non-trivial in F'x). We also assume
that the domains of the random variables are finite.

Causal models can be depicted as a causal diagram, a
directed graph whose nodes correspond to the variables in
UuVwithanedgefromY to X € ViffY € PAx.

Example In Figure 1, we see the firing squad scenario ex-
pressed as a causal model. Here, U = {Uc} and V =
{C, R1, R2, D}. All variables are propositional, with value
1 indicating a true proposition, and value 0 indicating that
the proposition is false (this will be the convention for most
causal models given as examples in this paper).

If we assume a particular value for the exogenous vari-
ables U (referred to as a context), then the resulting causal
model is called a causal world. We generally assume that
any particular value for U uniquely determines the values
of the variables in V. This always happens when the causal
diagram is acyclic (such causal models are called recursive).
Causal worlds are of interest since they represent a specific
situation, while causal models represent a more general sce-
nario. For instance, if we assume that Uz = 1 in our fir-
ing squad causal model, then the resulting causal world de-
scribes our story (given in the introduction). The more gen-

eral model allows for the situation in which the captain does
not signal.

To handle counterfactual queries, we define the concept
of submodels. Given a causal model M = (U,V,F),
X C V, x € Dom(X), the submodel of M under inter-
vention X = x is Mx=x = (U, V,Fx=x), where Fx—_, =
{Fy|Y € V\X} U{X = x}. Intuitively, the submodel
fixes the values of the variables in X at x (i.e, their values
are no longer determined by their parents’ values). Conse-
quently, the values of the remaining variables represent what
values they would have had if X had been x in the original
model. Mx—, and Fx_x are typically abbreviated M, and
Fx. The value of variable Y € V in submodel M, (under
context u) is represented as Yy, (u) (or simply Yy (u)).

Example (interventions) Consider the firing squad causal
model under context u = {Uc = 1} and the question:
would the prisoner be dead if we make sure that R, does not
fire his gun? This corresponds to evaluating D g,—¢(u). In
this case, the captain still signals, so rifleman 2 still shoots.
Thus Dg,—o(u) = 1, and we conclude that the prisoner still
dies in this counterfactual scenario.

Equipped with this background, we can now proceed to
Halpern and Pearl’s definition of actual cause:

Definition 1 Let M = (U, V,F) be a causal model. Let
XCV, YCV. X=xisanactual cause of Y = y
(denoted x o y) in a causal world (M, u) if the following
three conditions hold:

(ACl) X(u) =xand Y (u) =y.
(AC2) There exists W C V\X andvalues x’ € Dom(X)
and w € Dom (W) such that:

(@) Yew(u) #y.
(b) Yxw(u) =y.
(©) Yxwz(u) =y, forall Z C V\(X U W) such that
z = Z(u).
(AC3) X is minimal; no subset of X satisfies conditions
AC1 and AC2.

Intuitively, x is an actual cause of y if (AC1) x and y are
the “actual values” of X and Y (i.e. the values of X and Y
under no intervention), and (AC2) under some counterfac-
tual contingency w, the value of Y is dependent on X, such
that setting X to its actual value will ensure that Y main-
tains its “actual value,” even if we force all other variables
in the model back to their “actual values.” (AC3) is a simple
minimality condition.

Example In the firing squad example, we see that R; =
1 (the first rifleman’s shot) is indeed an actual cause of
D = 1 (death), since [AC1]R;(u) = 1, D(u) = 1,
[AC2(a)] D g,=g,R,=0(u) = 0, [AC2(0)]Dg,=1,R,=0(u) =
1, and [AC2(c)]DR,=1,R,=0,c=1(u) = 1. Here, our w is
Ry =0.

One useful theorem (proven by (Eiter & Lukasiewicz
2001) and (Hopkins 2002)) demonstrates that the minimality
condition of the definition forces every actual cause to be an
event over a single random variable (also called a primitive
event).



Theorem 2 Let M = (U,V,F) be a causal model. Let
X, Y CVandx € Dom(X),y € Dom(Y). lf x xy
under u, then X is a singleton.

Explicating Assumptions

In the next two sections, we will attempt to answer the fol-
lowing question: what information does a causal world en-
code? Specifically, what information are we using when we
decide that event A causes event B, given a causal world?

Halpern and Pearl (Halpern & Pearl 2001) give suggestive
comments that help illuminate the path, but stop short of
providing details:

It may seem strange that we are trying to understand
causality using causal models, which clearly already
encode causal relationships. Our reasoning is not cir-
cular. Our aim is not to reduce causation to noncausal
concepts, but to interpret questions about causes of
specific events in fully specified scenarios in terms of
generic causal knowledge such as what we obtain from
the equations of physics.

Essentially, a causal world encodes information from two
sources:

1. The choice of endogenous variables V.
2. The set of structural equations over V.

The latter item, the set of structural equations, gives us
all counterfactual information regarding the variables of in-
terest (i.e. the endogenous variables of the causal world).
With it, we can answer any question of the form: “If V had
been v, what would the value of X have been?” Clearly,
this counterfactual information is a cornerstone of Halpern
and Pearl’s definition. Furthermore, given a set of endoge-
nous variables and a story, it is generally straightforward to
formulate the appropriate structural equations.

Nevertheless, to answer questions of the form: “Did event
X = z cause event Y = y?”, we need more information
than simply a set of structural equations over X, Y, and an
arbitrary set of other variables. To take an example, consider
the following story, taken from (Halpern & Pearl 2000):

Example (Rock) Billy and Suzy both throw rocks at a bot-
tle. Suzy’s arm is better than Billy’s, so her rock gets to the
bottle first and shatters it. Billy’s throw was perfectly accu-
rate, so his rock would have shattered the bottle had Suzy’s
missed.

If we take the set of propositional random variables BT
(Billy Throws), ST (Suzy Throws), and BS (Bottle Shat-
tered), we can see that the structural equations over these
three variables are equivalent to the structural equations over
Ry, R», and D in the firing squad example. Nevertheless, in
this instance we would like to conclude that BT = 1 is not
a cause of BS = 1, whereas for the isomorphic query “Is
R, = 1acause of D = 1?” in the firing squad example, we
would like to conclude the opposite.

Thus we arrive at the second (and murkier) piece of infor-
mation encoded by a causal world — the choice of endoge-
nous variables.

A loads

B's gun
A \
B S —
B shoots D
death of
C prisoner
C loads
and shoots

Figure 2: Causal diagram for the Loader scenario.

Variable Selection

Halpern and Pearl are well aware of the sensitivity of their
definition to the choice of endogenous variables for the
causal world. They are vague, however, when it comes to
defining the semantics accorded to a particular choice of
endogenous variables. In this section, we consider what
their definition of cause assumes about local relationships
between variables. Specifically, we examine a single vari-
able in the causal world and its parents, and consider when a
parent is considered to be a cause of its child, under their def-
inition. Given local criteria, we can then establish guidelines
about what constitutes an “incorrect” choice of endogenous
variables.

Consider a variable Y, one of its parents X, and its struc-
tural equation Fy : Dom(PAy) — Dom(Y). Suppose
that X (u) = z and Y (u) = y. We want to extract condi-
tions from Fy that imply that z is a cause of y.

To do this, it is convenient to express the set of parent
value assignments p € Dom(PAy) such that Fy (p) = y
as a (propositional) logical sentence (which we will denote
A(Y = y)) over literals of the form Z = 2, for Z € PAy
and z € Dom(Z).

We illustrate this with a modified version of the firing
squad example.

Example (Loader) For a firing squad consisting of shooters
Band C,itis A’s job to load B’s gun. C loads and fires his
own gun. On a given day, A loads B’s gun. When the time
comes, B and C shoot the prisoner.

Suppose we choose to model this as a causal world
(whose causal diagram is pictured in Figure 2) over the fol-
lowing four propositional random variables: A (true iff A
loads B’s gun), B (true iff B shoots) C (true iff C loads and
shoots), and D (true iff the prisoner dies).

In the model, D(u) = 1, so consider the set of p €
Dom(PAp) such that Fp(p) = 1. We can express this as
the following logical sentence: A(D =1) = (A=1AB =
INC=1)V(A=1AB=1AC=0)V(A=0AB=
INC=1)V(A=1AB=0AC=1)V(A=0AB=
0 A C = 1), where each conjunct is a full instantiation p of
the parents of D such that Fip(p) = 1.

More interesting is the prime implicant form of this sen-
tence. Recall that an implicant of a sentence A is a term
(conjunction of literals) that entails A. A prime implicant



of A is an implicant of A that does not entail any other im-
plicant of A (besides itself). The prime implicant form of
a sentence is the disjunction of all of its prime implicants.
Note that this form is unique.

To continue our example, the prime implicant form of
A(D =1)is(A=1AB =1)V (C = 1). Observe that
(A=1AB=1AC=1and(A=1AB=1AC =0),
which are both implicants of A(D = 1), both entail impli-
cant (A = 1 A B = 1), thus they do not appear in the prime
implicant form.

The prime implicant form is interesting because it lends
itself to a natural causal interpretation. Each prime impli-
cant is a minimal set of value assignments to parents of F'F’
that ensures that F'F' = 1. Specifically in this example, the
prisoner will be guaranteed to die if A loads B’s gun and B
shoots, or alternatively, if C' loads and shoots.

This logical form is reminiscent of the causal criterion
laid out by John Mackie called the INUS condition (Mackie
1965). Consider an event C' and an effect E. Rather than
requiring that C is either necessary or sufficient (or both) to
achieve E, Mackie instead requires that C' is an insufficient
but necessary part of a condition which is itself unneces-
sary but sufficient for the result. For instance, A loading B’s
gun is a necessary part of a sufficient condition to ensure
the prisoner’s death. In terms of the prime implicant logical
form, sufficient conditions map to implicants. For instance,
A = 1A B = 1isasufficient condition for D = 1. Further-
more, since A = 1 A B = 1 is a prime implicate (hence no
subset of its conjuncts is an implicate), we observe that both
A = 1and B = 1 are necessary parts of this sufficient con-
dition. Hence any literal that appears in a prime implicate
satisfies the INUS condition.

Interestingly, we can prove the following:

Theorem 3 Consider a variable Y, one of its parents X,
and its structural equation Fy : Dom(PAy) — Dom(Y).
Suppose that X(u) = zand Y(u) = y. Thenif X = =
appears as an literal in any prime implicate of A(Y = y),
then x causes y according to Halpern and Pearl’s definition.

Proof Clearly AC1 holds, since X (u) = z and Y (u) = y.
Furthermore AC3 holds trivially. It remains to show AC2
holds. We will prove an equivalent contrapositive. Specif-
ically, we will suppose that AC2 does not hold, and prove
that under this supposition, X = z cannot appear as a literal
in any prime implicate of A(Y = y).

Suppose, then, that AC2 does not hold. This implies
that for the set of parents of Y not including X, W =
PAy\{X}, there is no instantiation w € Dom(W) such
that Y,w(u) = y and V1w (u) # y for 2’ # z. Hence for
any implicate of A(Y = y) of the form (X = z) AC, where
C is a conjunction of literals, (X = z') A C' is also an impli-
cate, for every 2’ € Dom(X). Hence C is also an implicate,
which means that any implicate containing the literal X = z
isnotprime. |

The implications of the above theorem are surprising. It
is encouraging that locally speaking, Halpern and Pearl’s
definition resembles the intuitively appealing criterion of
Mackie. At the same time, the theorem exposes the over-
permissiveness of Halpern and Pearl’s definition. Observe

that for z to cause y, X = z need only appear in some
prime implicate of A(Y = y). There is no requirement for
X = zto appear in a satisfied prime implicate. Consider the
following alteration of the loader example for emphasis.

Example We have the same situation as in the Loader ex-
ample above, except now B elects not to shoot. A still loads
B’s gun, C still loads and shoots, and the prisoner still dies.

This story can be modeled the same way as above (see
Figure 2), except now B(u) = 0. The prime implicate form
of D=1isstill (A =1AB=1)V (C = 1). Notice that
A(u) = 1land that A = 1 appears in A(D = 1), hence by
Theorem 3, Halpern and Pearl’s definition classifies A = 1
as a cause of D = 1. (alternatively, we can observe that the
intervention B = 1, C' = 0 satisfies AC2 of their definition).

Halpern and Pearl’s definition classifies A loading B’s
gun as a cause of the prisoner’s death because it is a nec-
essary part of a sufficient condition to cause the prisoner’s
death, but it completely disregards the fact that this suffi-
cient condition did not occur in the actual situation we are
concerned with! This is what prompts the definition to draw
such a counterintuitive conclusion. Given this observation,
it is trivial to construct any number of situations for which
Halpern and Pearl’s definition returns an answer contrary to
intuition.

In fact, locally speaking, Halpern and Pearl’s definition is
even more permissive than Theorem 3 suggests. The follow-
ing counterexample demonstrates that the converse of The-
orem 3 does not hold.

Example Suppose we have a causal world with three ran-
dom variables A, B,C such that Dom(C) = {0,1},
Dom(A) = Dom(B) = {0,1,2}. Define the structural
equations such that B = A + 1(mod3) and such that C = 1
iff (A =0AB =0)VB = 2 (note that thisis A(C = 1)). In
the actual world, let A = 1 (hence B = 2 and C = 1). Ac-
cording to Halpern and Pearl’s definition, A = 1 is a cause
of C = 1 (letting W = ). Observe that A = 1 does not
appear as a conjunct of any prime implicate of C' = 1.

Counterexamples can also be constructed for the case
where all variables are restricted to be propositional.

These observations shed light on what is considered to
be an appropriate choice of endogenous variables, under
Halpern and Pearl’s definition. Namely, the variables must
be chosen in such a way that the structural equations have a
strong causal semantics. By this, we mean that every prime
implicate for event X = x must unconditionally be a cause
of X = z. Observe that every term of a satisfied prime im-
plicate of A(X = z) will be considered to be a cause of
X = z, regardless of the values of the other variables in
the model. Often, structural equations do not possess these
strong causal semantics.

As one example, we can revisit the Rock story. Here we
observe that although A(BS = 1) is (ST = 1) V(BT = 1),
it is not the case that BT = 1 is unconditionally a cause of
BS = 1, since BT = 1 is not a cause of BS = 1 in the
event that ST = 1.

An alternative selection of variables for the Rock story
adds two additional variables to our previous choice: SH
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Figure 3: Causal diagrams for two formulations of the Rock
scenario.

(Suzy Hits), which is true if and only if Suzy’s rock hits
the bottle, and BH (Billy Hits), which is analogous. The
causal diagram for this alternate variable choice is depicted
in Figure 3. In their paper, Halpern and Pearl consider both
of these models, and reject the former because it does not
carry all the information from the story. Notably, the latter
is the only one which strong causal semantics. Specifically,
notice that if either Billy’s rock hits the bottle or if Suzy’s
rock hits the bottle, then both are causes of the shattering,
no matter what the values of the other variables in the model
happen to be.

From this perspective, Halpern and Pearl’s definition can
be viewed as a means of extracting more complex causal
relationships from simple causal relationships. The implicit
assumption is that every local interaction is causal (in the
strong sense expressed above), and given this, the problem
is to extract causal relationships between events that are not
directly linked.

The Counterfactual Strategy

We now turn our attention to the counterfactual strategy used
by Halpern and Pearl’s definition and evaluate its validity.
A fuzzy way to define causality (Yablo 2000) between two
events is to say: event C causes event E iff for some appro-
priate G, E is counterfactually dependent on C' when we
hold G fixed. Here, G is any imaginable statement about the
world. For instance, in the Rock story, if we hold fixed that
Billy does not throw his rock, then the bottle being shattered
is counterfactually dependent on Suzy throwing her rock.
As an example of an inappropriate G, consider the fact
that the occurrence of a full moon is counterfactually depen-
dent on whether you brushed your teeth this morning if we

hold it fixed that a full moon occurs only if you brushed your
teeth this morning. To consider a less trivial example, in the
Suzy-Billy story, the bottle being shattered is counterfactu-
ally dependent on Billy throwing his rock, given that we hold
fixed that Suzy does not throw her rock (still we should not
conclude that Billy’s throw causes the bottle to shatter).

Thus the key element of any counterfactual strategy is
how it identifies which G are appropriate to hold fixed. In-
tuitively, we would like to screen out the other causes of FE,
such that the only causal mechanism responsible for E is C.
Unfortunately, issues such as preemption make it extremely
difficult to systematically define which choices of G are ap-
propriate.

In Halpern and Pearl’s definition, they essentially allow
G to be anything that can be expressed as a conjunction of
primitive events involving any endogenous variable which is
neither a cause nor an effect variable. Naturally, this defini-
tion is too permissive (basically it allows for any imaginable
G, given a suitable choice of endogenous variables), thus
they make an effort (through AC2(c)) to restrict the permis-
siveness of the definition. Unfortunately, this restriction has
two defects. Firstly, it is non-intuitive. Secondly, it is not
restrictive enough.

This permissiveness was pointed out by Halpern and Pearl
using the following example.

Example (Loanshark) Larry the Loanshark contemplates
lurking outside (LL) of Fred’s workplace to cut off his
finger(LC), as a warning to him to repay his loan quickly.
Something comes up, however, so he does not do so (LL =
0 and LC = 0). That same day, Fred has his finger sev-
ered (£'S = 1) by a machine at the factory. He is rushed to
the hospital, where the finger is reattached, so if Larry had
shown up, he would have missed Fred. At day’s end, Fred’s
finger is functional (F'F' = 1), which would not have been
true had Larry shown up and Fred not had his accident.

In this case, Halpern and Pearl’s definition unintuitively
classifies Fred’s accident as a cause of his finger being func-
tional at day’s end. To remedy this problem, they propose a
scheme wherein “fanciful contigencies” are excluded from
consideration. Thus, given that the prior odds of Larry show-
ing up are slim, they conclude that Fred’s accident is not a
cause of his finger’s functionality. Nevertheless, this is a
rather unsatisfactory remedy to the problem. Consider what
happens if the story is amended such that Larry fully intends
to show up at the factory, but is improbably struck by light-
ning such that he doesn’t arrive. Hence the prior probability
of LL = 1 is high, and yet we still intuitively would like
to conclude that Fred’s accident did not cause his finger’s
functionality. In fact, we would only want to conclude that
Fred’s accident was a cause of his finger being functional at
day’s end in the event that Larry shows up in actuality.

In fact, the problem illustrated by this example is simply
a representative of any number of situations where it is pos-
sible to choose an inappropriate G to keep fixed.

Example (Bomb) Billy puts a bomb under Suzy’s chair.
Later, Suzy notices the bomb and flees the room. Still later,
Suzy has a prearranged medical checkup and is pronounced
healthy (Yablo 2000).
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Figure 4: Causal diagram for the Bomb scenario.

Given the causal world (with strong causal semantics)
whose causal diagram is shown in Figure 4, Halpern and
Pearl’s definition classifies Billy putting the bomb under
Suzy’s chair as a cause of Suzy being pronounced healthy.
Clearly this is an unintuitive result, however if we hold
fixed the fact that Suzy’s chair explodes, then Suzy being
pronounced healthy is counterfactually dependent on Billy
planting the bomb (otherwise, she would not have any warn-
ing that the chair would explode and would not flee).

The moral of the story is that a definition of cause based
exclusively on counterfactual contingencies must be consid-
erably less permissive than Halpern and Pearl’s definition.
Whether it is feasible to propose such a definition at all in
the structural model framework (without being overly re-
strictive) is considered in the next section.

Ontological Concerns

The question remains: although Halpern and Pearl’s defini-
tion is problematic, is it feasible to propose a satisfactory
definition of cause within the structural model framework?
Consider the following example from Jonathan Schaffer
(YYablo 2000) which parallels the Rock scenario.

Example (Magic) Imagine that it is a law of magic that the
first spell cast on a given day matches the enchantment that
midnight. Suppose that at noon Merlin casts a spell (the first
that day) to turn the prince into a frog, that at 6pm Morgana
casts a spell (the only other that day) to turn the prince into
a frog, and that at midnight the prince becomes a frog.

Intuitively, Merlin’s spell is a cause of the prince’s trans-
formation and Morgana’s is not. In this case, although there
is preemption, there are no intermediating events that we can
really play with and model. Spells work directly, and with-
out Merlin’s spell, the prince’s transformation would have
occurred at precisely the same time and in the same manner.
Hence it is far from clear how we could model this story
appropriately with a structural model. One concise way to

express this story uses first-order constructs. For example,
we could neatly express the rule that a spell works iff there
does not exist a previous spell cast that day.

Perhaps then, we should be looking beyond the ontologi-
cal commitment of structural models (which essentially are
built on propositional logic) to richer languages in which
subtle points of causality can be more easily expressed. This
is not to say that such a definition would be impossible
within the structural model framework, but the framework
does seem to overly limit our ability to do so.

Besides adding first-order constructs, we could also bene-
fit from adding other features to the structural model frame-
work, described briefly here (for a more detailed discussion,
see (Hopkins & Pearl 2002)):

Temporal constructs: Time plays a critical role in our
perceptions of causality, and yet it has no explicit represen-
tation in structural models. Time can be modeled within
this framework in the similar fashion as dynamic Bayesian
networks, yet this can often lead to counterintuitive conclu-
sions. Itis important to distinguish when an event causes an-
other event, as opposed to an event hastening another event
(as in a strong wind that causes Suzy’s rock to hit the bottle
earlier than anticipated, but does not cause the bottle to shat-
ter). It is difficult to phrase this fine distinction within the
structural model framework. (Halpern & Pearl 2000)

Distinction between condition and transition: Con-
sider the difference between an enduring condition (e.g., the
man is dead) versus a transitional event (e.g., the man dies).
While we may consider a heart attack the cause of a man
dying, we may be reluctant to consider the same heart attack
as the cause of the man being dead in the year 3000. Such
distinctions can be modeled by adding specialized classes
of random variables to the structural model framework, but
such classes are not part of the framework as it stands.

Distinction between presence and absence of an event:
We often apply stronger criteria when deciding whether the
absence of an event (e.g. a bystander’s inaction) is a cause,
as opposed to the presence of an event (e.g. a rifleman’s
shot). The underlying issue here is a matter of production —
the latter plays an active role in bringing about an effect (e.g.
a victim’s death), while the former does not. In the structural
model framework (where all events are value assignments to
random variables), such distinctions are lost. We can regain
such distinctions by adding distinguished values to the struc-
tural model framework (e.g., giving the value assignment 0
a special semantics).

Conclusions and Outlook

In this paper, we have attempted to explicate some of the
latent assumptions made in (Halpern & Pearl 2001) and to
evaluate their account of causality on two bases:

1. The effectiveness of their strategy of counterfactual de-
pendence modulo a set of facts which are kept fixed.

2. The suitability of the structural model framework to cap-
ture the subtleties involved in commonsense causation.

In the process, we have highlighted fundamental stum-
bling blocks for their definition. One of the key results



of this paper relates their definition to the prime implicate
form of the structural equations, which lays bare some of
the definition’s problematic aspects. Furthermore, we have
provided further evidence that the strategy of counterfactual
dependence employed is much too permissive.

The most promising direction for future research seems
to be finding ways to embed a definition of actual causation
in a richer, more expressive language. ldeally, these defi-
nitions would benefit from the positive features of Halpern
and Pearl’s account.
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