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Abstract

This paper concerns the assessment of the effects of actions or poli-
cies from a combination of: (i) nonexperimental data, and (ii) causal
assumptions. The assumptions are encoded in the form of a directed
acyclic graph, also called “causal graph”, in which some variables are
presumed to be unobserved. The paper establishes new criteria for de-
ciding whether the assumptions encoded in the graph are sufficient for
assessing the strength of causal effects and, if the answer is positive,
computational procedures are provided for expressing causal effects in
terms of the underlying joint distribution.

1 Introduction

This paper explores the feasibility of inferring cause effect relationships from
various combinations of data and theoretical assumptions. The assumptions
considered will be represented in the form of an acyclic causal diagram con-
taining unmeasured variables [Pearl, 1995, Pearl, 2000] in which arrows rep-
resent the potential existence of direct causal relationships between the corre-
sponding variables. Our main task will be to decide whether the assumptions
represented in any given diagram are sufficient for assessing the strength of
causal effects from nonexperimental data and, if sufficiency is proven, to
express the target causal effect in terms of estimable quantities.
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It is well known that, in the absence of unmeasured confounders, all causal
effects are identifiable, that is, the joint response of any set Y of variables to
intervention on a set T of action variables, denoted Pt(y),1 can be estimated
consistently from nonexperimental data [Robins, 1986, Spirtes et al., 1993,
Pearl, 1993]. If some confounders are not measured, then the question of
identifiability arises, and whether the desired quantity can be estimated de-
pends critically on the precise locations (in the diagram) of those confounders
vis a vis the sets T and Y . Sufficient graphical conditions for ensuring the
identification of Pt(y) were established by several authors [Spirtes et al., 1993,
Pearl, 1993, Pearl, 1995] and are summarized in [Pearl, 2000, Chapters 3 and
4]. For example, a criterion called “back-door” permits one to determine
whether a given causal effect Pt(y) can be obtained by “adjustment”, that
is, whether a set C of covariates exists such that

Pt(y) =
∑

c

P (y|c, t)P (c) (1)

When there exists no set of covariates that is sufficient for adjustment,
causal effects can sometimes be estimated by invoking multi-stage adjust-
ments, through a criterion called “front door” [Pearl, 1995]. More gener-
ally, identifiability can be decided using do-calculus derivations [Pearl, 1995],
that is, a sequence of syntactic transformations capable of reducing expres-
sions of the type Pt(y) to subscript-free expressions. Using do-calculus as
a guide, [Galles and Pearl, 1995] devised a graphical criterion for identi-
fying Px(y) (where X and Y are singletons) that combines and expands
the “front-door” and “back-door” criteria (see [Pearl, 2000, pp. 114-8]).2

[Pearl and Robins, 1995] further derived a graphical condition under which
it is possible to identify Pt(y) where T consists of an arbitrary set of vari-
ables. This permits one to predict the effect of time varying treatments from
longitudinal data, in the presence of unmeasured confounders, some of which
are affected by previous treatments. This criterion was further extended by
[Robins, 1997] and [Kuroki and Miyakawa, 1999].

This paper develops new graphical identification criteria that generalize
and simplify existing criteria in several ways. In Sections 3-5, we study the

1[Pearl, 1995, Pearl, 2000] used the notation P (y|set(t)), P (y|do(t)), or P (y|t̂) for the
post-intervention distribution, while [Lauritzen, 2000] used P (y||t).

2[Galles and Pearl, 1995] claimed their graphical criterion to embrace all cases where
identification is verifiable by do-calculus. We show in this paper (Section 4.7) that their
criterion is not complete in this sense.
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identifiability problem in a simpler type of models called semi-Markovian
models in which each unobserved variable is a root node with exactly two
observed children. Section 3 concerns the identification of Px(v), where X
is a singleton and V is the set of all variables excluding X. It asserts that
Px(v) is identifiable if and only if there is no consecutive sequence of con-
founding arcs between X and X’s immediate successors in the diagram.3

When interest lies in the effect of X on a subset S of outcome variables,
not on the entire set V , it is possible, however, that Px(s) would be iden-
tifiable even though Px(v) is not. Section 4 first gives a sufficient criterion
for identifying Px(s), which is an extension of the criterion for identifying
Px(v). It says that Px(s) is identifiable if there is no consecutive sequence
of confounding arcs between X and X’s children in the subgraph composed
of the ancestors of S. Other than this requirement, the diagram may have
an arbitrary structure, including any number of confounding arcs between
X and S. This simple criterion is shown to cover all criteria reported in
the literature (with X singleton), including the “back-door”, “front-door”,
and those developed by [Galles and Pearl, 1995]. However, the criterion is
still not necessary for identifying Px(s). Section 4 further devises a proce-
dure for the identification and computation of Px(s), based on systematic
removal of certain nonessential nodes from G. This procedure is shown to be
more powerful than the one devised by [Galles and Pearl, 1995] ([Pearl, 2000,
pp. 114-8]). Section 5 deals with the identification of general causal effects,
Pt(s), where T and S are arbitrary subsets of variables, representing multiple
interventions and multiple outcomes, such as those encountered in the man-
agement of time varying treatments. This section established criteria that
extend those of [Pearl and Robins, 1995] and [Kuroki and Miyakawa, 1999],
and also provides criteria for the identification of direct effects, that is, the
effect of one variable on another when all other variables are held fixed (Sec-
tion 5.4). Finally, in Section 6, we show that causal effects in a model with
arbitrary sets of unobserved variables can be identified by converting the
model into a semi-Markovian model with the same identifiability properties.
Section 7 concludes the paper.

3A variable Z is an “immediate successor” (or a “child”) of X if there exists an arrow
X → Z in the diagram.
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2 Notation, Definitions, and Problem Formu-

lation

The use of causal models for encoding distributional and causal assumptions
is now fairly standard (see, for example, [Pearl, 1988, Spirtes et al., 1993,
Pearl, 1993, Jordan, 1998, Greenland et al., 1999, Lauritzen, 2000, Pearl, 2000]).
The simplest such model, called Markovian, consists of a directed acyclic
graph (DAG) over a set V = {V1, . . . , Vn} of vertices, representing variables
of interest, and a set E of directed edges, or arrows, that connect these ver-
tices. The interpretation of such a graph has two components, probabilistic
and causal. The probabilistic interpretation views the arrows as represent-
ing probabilistic dependencies among the corresponding variables, and the
missing arrows as representing conditional independence assertions: Each
variable is independent of all its non-descendants given its direct parents in
the graph.4 These assumptions amount to asserting that the joint probability
function P (v) = P (v1, . . . , vn) factorizes according to the product

P (v) =
∏

i

P (vi|pai) (2)

where Pai denotes the set of parents of variable Vi in the graph.5

The causal interpretation views the arrows as representing causal influ-
ences between the corresponding variables. In this interpretation, the fac-
torization of (2) still holds, but the factors are further assumed to represent
autonomous data-generation processes, that is, each conditional probability
P (vi|pai) represents a stochastic process by which the values of Vi are chosen
in response to the values pai (previously chosen for Vi’s parents), and the
stochastic variation of this assignment is assumed independent of the varia-
tions in all other assignments. Moreover, each assignment process remains
invariant to possible changes in the assignment processes that govern other
variables in the system. This modularity assumption enables us to predict
the effects of interventions, whenever interventions are described as specific

4We use family relationships such as “parents,” “children,” “ancestors,” and “descen-
dants,” to describe the obvious graphical relationships. For example, we say that Vi is a
parent of Vj if there is an arrow from node Vi to Vj , Vi → Vj .

5We use uppercase letters to represent variables or sets of variables, and use correspond-
ing lowercase letters to represent their values (instantiations). For example, pai represents
an instantiation of Pai.
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modifications of some factors in the product of (2). The simplest such inter-
vention involves fixing a set T of variables to some constants T = t, which
yields the post-intervention distribution

Pt(v) =

{ ∏

{i|Vi 6∈T} P (vi|pai) for all v consistent with T = t.

0 for all v inconsistent with T = t.
(3)

Eq. (3) represents a truncated factorization of (2), with factors correspond-
ing to the manipulated variables removed. This truncation follows immedi-
ately from (2) since, assuming modularity, the post-intervention probabilities
P (vi|pai) corresponding to variables in T are either 1 or 0, while those cor-
responding to unmanipulated variables remain unaltered.6 If T stands for a
set of treatment variables and Y for an outcome variable in V \T , then Eq.
(3) permits us to calculate the probability Pt(y) that event Y = y would
occur if treatment condition T = t were enforced uniformly over the popu-
lation. This quantity, often called the “causal effect” of T on Y , is what we
normally assess in a controlled experiment with T randomized, in which the
distribution of Y is estimated for each level t of T .

We see from Eq. (3) that the model needed for predicting the effect of
interventions requires the specification of three elements

M = 〈V,G, P (vi|pai)〉

where (i) V = {V1, . . . , Vn} is a set of variables, (ii) G is a directed acyclic
graph with nodes corresponding to the elements of V , and (iii) P (vi|pai), i =
1, . . . , n, is the conditional probability of variable Vi given its parents in G.
Since P (vi|pai) is estimable from nonexperimental data whenever V is ob-
served, we see that, given the causal graph G, all causal effects are estimable
from the data as well.7

Our ability to estimate Pt(v) from nonexperimental data is severely cur-
tailed when some variables in a Markovian model are unobserved, or, equiva-
lently, if two or more variables in V are affected by unobserved confounders;
the presence of such confounders would not permit the decomposition in
(2). Letting V = {V1, . . . , Vn} and U = {U1, . . . , Un′} stand for the sets

6Eq. (3) was named “Manipulation Theorem” in [Spirtes et al., 1993], and is also im-
plicit in Robins’ (1987) G-computation formula.

7It is in fact enough that the parents of each variable in T be observed [Pearl, 2000,
p. 78].
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of observed and unobserved variables, respectively, the observed probability
distribution, P (v), becomes a mixture of products:

P (v) =
∑

u

∏

{i|Vi∈V }

P (vi|pavi
)

∏

{i|Ui∈U}

P (ui|paui
) (4)

where Pavi
and Paui

stand for the sets of parents of Vi and Ui respectively,
and the summation ranges over all the U variables. The post-intervention
distribution,8 likewise, will be given as a mixture of truncated products

Pt(v) =

{ ∑

u

∏

{i|Vi 6∈T} P (vi|pavi
)
∏

i P (ui|paui
) v consistent with t.

0 v inconsistent with t.

(5)

And, the question of identifiability arises, i.e., whether it is possible to ex-
press Pt(v) as a function of the observed distribution P (v). Clearly, given a
causal model M and any two sets T and S in V , Pt(s) can be determined
unambiguously using (5). The question of identifiability is whether a given
causal effect Pt(s) can be determined uniquely from the distribution P (v) of
the observed variables, and is thus independent of the unknown quantities,
P (vi|pavi

) and P (ui|paui
), that involve elements of U .

Definition 1 [Causal-Effect Identifiability]
The causal effect of a set of variables T on a disjoint set of variables S
is said to be identifiable from a graph G if the quantity Pt(s) can be com-
puted uniquely from any positive probability of the observed variables—that
is, if P M1

t (s) = P M2
t (s) for every pair of models M1 and M2 with P M1(v) =

PM2(v) > 0 and G(M1) = G(M2) = G.

In other words, given the causal graph G, the quantity Pt(s) can be de-
termined from the observed distribution P (v) alone; the details of M are
irrelevant.

If, in a Markovian model with unobserved variables, each unobserved
variable is a root node with exactly two observed children, then the corre-
sponding model is called a semi-Markovian model. Semi-Markovian models
have relatively simple structures, and in Sections 3-5 we will study the identi-
fiability problem in semi-Markovian models only. In Section 6, we show that

8We only consider interventions on observed variables.
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causal effects in a Markovian model with arbitrary sets of unobserved vari-
ables can be identified by first converting the model into a semi-Markovian
model while keeping the identifiability properties.

In a semi-Markovian model, the observed probability distribution P (v)
in Eq.(4) can be written as

P (v) =
∑

u

∏

i

P (vi|pai, u
i)

∏

i

P (ui) (6)

where Pai and U i stand for the sets of the observed and unobserved parents
of Vi respectively. The post-intervention distribution is then given by

Pt(v) =

{ ∑

u

∏

{i|Vi 6∈T} P (vi|pai, u
i)

∏

i P (ui) v consistent with t.

0 v inconsistent with t.
(7)

It is convenient to represent a semi-Markovian model with a causal graph
G that does not show the elements of U explicitly but, instead, represents
the confounding effects of U variables using bidirected edges. A bidirected
edge between nodes Vi and Vj in G represents divergent edges Vi ← Uk → Vj

(see Figure 3 for an example graph). The presence of such bidirected edge
in G represents unmeasured factors (or confounders) that may influence two
variables in V ; we assume that substantive knowledge permits us to decide
if such confounders can be ruled out from the model.

3 Identification of Px(v)

Let X be a singleton variable. In this section we study the problem of
identifying the causal effects of X on V \{X}, (namely, on all other variables
in V ), a quantity denoted by Px(v).

3.1 The easiest case

Theorem 1 If there is no bidirected edge connected to X, then Px(v) is
identifiable and is given by

Px(v) = P (v|x, pax)P (pax) (8)
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Proof: Since there is no bidirected edge connected to X, we have that the
term P (x|pax, u

x) = P (x|pax) in Eq. (6) can be moved ahead of the summa-
tion, giving

P (v) = P (x|pax)
∑

u

∏

{i|Vi 6=X}

P (vi|pai, u
i)P (u)

= P (x|pax)Px(v). (9)

Hence,

Px(v) = P (v)/P (x|pax) = P (v|x, pax)P (pax) (10)

2

Theorem 1 also follows from Theorem 3.2.5 of [Pearl, 2000] which states
that for any disjoint sets S and T in a Markovian model M , if the parents
of T are measured, then Pt(s) is identifiable. Indeed, when the parents of
X are measured, there would be no bidirected edge entering X in the semi-
Markovian representation of M and the identification of Px(v) is insured.

3.2 A more interesting case

The case where there is no bidirected edge connected to any child of X is
also easy to handle. As an example, consider the graph given in Figure 1.
We have

P (v) = P (z|x)
∑

u

P (x|u)P (y|z, u)P (u), (11)

Px(v) = P (z|x)
∑

u

P (y|z, u)P (u). (12)

From Eq. (11), we have

∑

u

P (x|u)P (y|z, u)P (u) = P (v)/P (z|x), (13)

hence,

∑

u

P (y|z, u)P (u) =
∑

x

∑

u

P (x|u)P (y|z, u)P (u) =
∑

x

P (v)/P (z|x). (14)
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X Z Y

U (Unobserved)

Figure 1:

Substituting Eq. (14) into Eq. (12), we obtain

Px(y, z) = P (z|x)
∑

x′

P (x′, y, z)/P (z|x′) = P (z|x)
∑

x′

P (y|x′, z)P (x′). (15)

This derivation can be generalized to the case where X has several chil-
dren. Letting Chx denote the set of X’s children, we have the following
theorem.

Theorem 2 If there is no bidirected edge connected to any child of X, then
Px(v) is identifiable and is given by

Px(v) =
(

∏

{i|Vi∈Chx}

P (vi|pai)
)

∑

x

P (v)
∏

{i|Vi∈Chx}
P (vi|pai)

(16)

Proof: Let S = V \ (Chx∪{X}). Since there is no bidirected edge connected
to any child of X, the factors corresponding to the variables in Chx can be
moved ahead of the summation in Eqs. (6) and (7), and we have

P (v) =
(

∏

{i|Vi∈Chx}

P (vi|pai)
)

∑

u

P (x|pax, u
x)

∏

{i|Vi∈S}

P (vi|pai, u
i)P (u), (17)

and

Px(v) =
(

∏

{i|Vi∈Chx}

P (vi|pai)
)

∑

u

∏

{i|Vi∈S}

P (vi|pai, u
i)P (u). (18)

The variable X does not appear in the factors of
∏

{i|Vi∈S} P (vi|pai, u
i), hence

we augment
∏

{i|Vi∈S} P (vi|pai, u
i) with the term

∑

x P (x|pax, u
x) = 1, and

9



Z1

Z2X

Z3

Y

Figure 2:

write
∑

u

∏

{i|Vi∈S}

P (vi|pai, u
i)P (u) =

∑

x

∑

u

P (x|pax, u
x)

∏

{i|Vi∈S}

P (vi|pai, u
i)P (u)

=
∑

x

P (v)
∏

{i|Vi∈Chx}
P (vi|pai)

. (by (17)) (19)

Substituting this expression into Eq. (18) leads to Eq. (16). 2

The usefulness of Theorem 2 can be demonstrated in the model of Fig-
ure 2. Although the diagram is quite complicated, Theorem 2 is applicable,
and readily gives

Px(z1, z2, z3, y) = P (z1|x, z2)
∑

x′

P (x′, z1, z2, z3, y)

P (z1|x′, z2)

= P (z1|x, z2)
∑

x′

P (y, z3|x
′, z1, z2)P (x′, z2). (20)

Note that this expression remains valid when we add bidirected edges between
Z3 and Y and between Z3 and Z2.

3.3 The general case

When there are bidirected edges connected to the children of X, it may still
be possible to identify Px(v). To illustrate, consider the graph in Figure 3,
for which we have

P (v) =
∑

u1

P (x|u1)P (z2|z1, u1)P (u1)
∑

u2

P (z1|x, u2)P (y|x, z1, z2, u2)P (u2),

(21)
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2

1

U

U

Z1

Z

Y

X

2

Figure 3:

and

Px(v) =
∑

u1

P (z2|z1, u1)P (u1)
∑

u2

P (z1|x, u2)P (y|x, z1, z2, u2)P (u2). (22)

Let

Q1 =
∑

u1

P (x|u1)P (z2|z1, u1)P (u1), (23)

(24)

and

Q2 =
∑

u2

P (z1|x, u2)P (y|x, z1, z2, u2)P (u2). (25)

Eq. (21) can then be written as

P (v) = Q1 ·Q2, (26)

and Eq. (22) as

Px(v) = Q2

∑

x

Q1. (27)

Thus, if Q1 and Q2 can be computed from P (v), then Px(v) is identifiable
and given by Eq. (27). In fact, it is enough to show that Q1 can be computed
from P (v) (i.e., identifiable); Q2 would then be given by P (v)/Q1. To show
that Q1 can indeed be obtained from P (v), we sum both sides of Eq. (21)
over y, and get

P (x, z1, z2) = Q1 ·
∑

u2

P (z1|x, u2)P (u2). (28)
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Summing both sides of (28) over z2, we get

P (x, z1) = P (x)
∑

u2

P (z1|x, u2)P (u2), (29)

hence,

∑

u2

P (z1|x, u2)P (u2) = P (z1|x). (30)

From Eqs. (30) and (28),

Q1 = P (x, z1, z2)/P (z1|x) = P (z2|x, z1)P (x), (31)

and from Eq. (26),

Q2 = P (v)/Q1 = P (y|x, z1, z2)P (z1|x). (32)

Finally, from Eq. (27), we obtain

Px(v) = P (y|x, z1, z2)P (z1|x)
∑

x′

P (z2|x
′, z1)P (x′). (33)

From the preceding example, we see that because the two bidirected arcs
in Figure 3 do not share a common node, the set of factors (of P (v)) contain-
ing U1 is disjoint of those containing U2, and P (v) can be decomposed into a
product of two terms, each being a summation of products. This decomposi-
tion, to be treated next, plays an important role in the general identifiability
problem.

3.3.1 C-component

Let a path composed entirely of bidirected edges be called a bidirected path.
The set of variables V can be partitioned into disjoint groups by assigning two
variables to the same group if and only if they are connected by a bidirected
path. Assume that V is thus partitioned into k groups S1, . . . , Sk, and denote
by Nj the set of U variables that are parents of those variables in Sj. Clearly,
the sets N1, . . . , Nk form a partition of U . Define

Qj =
∑

nj

∏

{i|Vi∈Sj}

P (vi|pai, u
i)P (nj), j = 1, . . . , k. (34)
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The disjointness of N1, . . . , Nk implies that P (v) can be decomposed into a
product of Qj’s:

P (v) =
∑

u

∏

i

P (vi|pai, u
i)

∏

i

P (ui) =
k

∏

j=1

Qj. (35)

We will call each Sj a c-component (abbreviating “confounded component”)
of V in G or a c-component of G, and Qj the c-factor corresponding to
the c-component Sj. The product expressed in (35) will be called the Q-
decomposition of P (v). For example, in the model of Figure 3, V is parti-
tioned into the c-components S1 = {X,Z2} and S2 = {Z1, Y }, the corre-
sponding c-factors are given in Eq.s (23) and (25), and P (v) is decomposed
into a product of c-factors as in (26).

Let Pa(S) denote the union of a set S and the set of parents of S, that is,
Pa(S) = S ∪ (∪Vi∈SPai). We see that Qj is a function of Pa(Sj). Moreover,
each Qj can be interpreted as the post-intervention distribution of the vari-
ables in Sj, under an intervention that sets all other variables to constants,
or

Qj = Pv\sj
(sj). (36)

The importance of the c-factors stems from that all c-factors are identi-
fiable, as shown in the following lemma.

Lemma 1 Let a topological order over V be V1 < . . . < Vn, and let V (i) =
{V1, . . . , Vi}, i = 1, . . . , n, and V (0) = ∅. For any set C, let GC denote the
subgraph of G composed only of variables in C. Then

(i) Each c-factor Qj, j = 1, . . . , k, is identifiable and is given by

Qj =
∏

{i|Vi∈Sj}

P (vi|v
(i−1)). (37)

(ii) Each factor P (vi|v
(i−1)) can be expressed as

P (vi|v
(i−1)) = P (vi|pa(Ti) \ {vi}), (38)

where Ti is the c-component of GV (i) that contains Vi.

13



Proof: We prove (i) and (ii) simultaneously by induction on the number of
variables n.

Base: n = 1; we have one c-component Q1 = P (v1), which is identifiable
and is given by Eq. (37), and Eq. (38) is satisfied.

Hypothesis: When there are n variables, all c-factors are identifiable and
are given by Eq. (37), and Eq. (38) holds for all Vi ∈ V .

Induction step: When there are n + 1 variables in V , assuming that V
is partitioned into c-components S1, . . . , Sl, S

′, with corresponding c-factors
Q1, . . . , Ql, Q

′, and that Vn+1 ∈ S ′, we have

P (v) = Q′
∏

i

Qi. (39)

Summing both sides of (39) over vn+1 leads to

P (v(n)) = (
∑

vn+1

Q′)
∏

i

Qi. (40)

It is clear that each Si, i = 1, . . . , l, is a c-component of GV (n) . By the
induction hypothesis, each Qi, i = 1, . . . , l, is identifiable and is given by
Eq. (37). From Eq. (39), Q′ is identifiable as well, and is given by

Q′ =
P (v)
∏

i Qi

=
∏

{i|Vi∈S′}

P (vi|v
(i−1)), (41)

which is clear from Eq. (37) and the chain decomposition P (v) =
∏

i P (vi|v
(i−1)).

By the induction hypothesis, Eq. (38) holds for i from 1 to n. Next
we prove that it holds for Vn+1, which is in the c-component S ′ of G. In
Eq. (41), Q′ is a function of Pa(S ′), and each term P (vi|v

(i−1)), Vi ∈ S ′ and
Vi 6= Vn+1, is a function of Pa(Ti) by Eq. (38), where Ti is a c-component of
the graph GV (i) that contains Vi and therefore is a subset of S ′. Hence we
obtain that P (vn+1|v

(n)) is a function only of Pa(S ′) and is independent of
C = V \ Pa(S ′), which leads to

P (vn+1|pa(S ′) \ {vn+1}) =
∑

c

P (vn+1|v
(n))P (c|pa(S ′) \ {vn+1})

= P (vn+1|v
(n))

∑

c

P (c|pa(S ′) \ {vn+1})

= P (vn+1|v
(n)) (42)
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U2

Figure 4:

2

The proposition (ii) in Lemma 1 can also be proved by using d-separation
criterion [Pearl, 1988] to show that Vi is independent of V (i) \ Pa(Ti) given
Pa(Ti) \ {Vi}.

We show the use of Lemma 1 by an example shown in Figure 4, which has
two c-components S1 = {X2, X4} and S2 = {X1, X3, Y }. P (v) decomposes
into

P (x1, x2, x3, x4, y) = Q1Q2, (43)

where

Q1 =
∑

u2

P (x2|x1, u2)P (x4|x3, u2)P (u2), (44)

Q2 =
∑

u1,u3

P (x1|u1)P (x3|x2, u1, u3)P (y|x4, u3)P (u1)P (u3). (45)

By Lemma 1, both Q1 and Q2 are identifiable. The only admissible order of
variables is X1 < X2 < X3 < X4 < Y , and Eq. (37) gives

Q1 = P (x4|x1, x2, x3)P (x2|x1), (46)

Q2 = P (y|x1, x2, x3, x4)P (x3|x1, x2)P (x1). (47)

We can also check that the expressions obtained in Eq.s (31) and (32) for
Figure 3 satisfy Lemma 1.

3.3.2 The identification criterion for Px(v)

The Q-decomposition of P (v) (Eq. (35)) combined with Lemma 1 has impor-
tant implications on the general identifiability problem, and in this section
we show how to use this property to identify Px(v).
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Let X belong to the c-component SX with corresponding c-factor QX .
Let QX

x denote the c-factor QX with the term P (x|pax, u
x) removed, that is,

QX
x =

∑

nX

∏

{i|Vi 6=X,Vi∈SX}

P (vi|pai, u
i)P (nX), (48)

where nX is the set of U variables that are parents of SX . We have

P (v) = QX
∏

i

Qi, (49)

and
Px(v) = QX

x

∏

i

Qi. (50)

Since all Qi’s are identifiable by Lemma 1, Px(v) is identifiable if and only if
QX

x is identifiable, and we have the following theorem.

Theorem 3 Px(v) is identifiable if and only if there is no bidirected path
connecting X to any of its children. When Px(v) is identifiable, it is given
by

Px(v) =
P (v)

QX

∑

x

QX , (51)

where QX is the c-factor corresponding to the c-component SX that contains
X.

Proof: (ififif) If there is no bidirected path connecting X to any of its children,
then none of X’s children is in SX . Under this condition, removing the term
P (x|pax, u

x) from QX is equivalent to summing QX over X, and we can write

QX
x =

∑

x

QX . (52)

Hence from Eq.s (50) and (49), we obtain

Px(v) = (
∑

x

QX)
∏

i

Qi = (
∑

x

QX)
P (v)

QX
, (53)

which proves the identifiability of Px(v).
(only ifonly ifonly if) Sketch: Assuming that there is a bidirected path connecting X

to a child of X, one can construct two models (by specifying all conditional
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probabilities) such that P (v) has the same values in both models while Px(v)
takes different values. The proof is lengthy and is given in Appendix A. 2

We demonstrate the use of Theorem 3 by identifying Px1(x2, x3, x4, y)
in Figure 4. The graph has two c-components S1 = {X2, X4} and S2 =
{X1, X3, Y }, with corresponding c-factors given in (46) and (47). Since X1 is
in S2 and its child X2 is not in S2, Theorem 3 ensures that Px1(x2, x3, x4, y)
is identifiable and is given by

P x1(x2, x3, x4, y) = Q1

∑

x1

Q2

= P (x4|x1, x2, x3)P (x2|x1)
∑

x′
1

P (y|x′
1, x2, x3, x4)P (x3|x

′
1, x2)P (x′

1). (54)

More examples where Theorem 3 is applicable can be found in Figure 3.8 of
[Pearl, 2000], some of which required complicated do-calculus derivations.

4 Identification of Px(s)

Let X be a singleton variable and S ⊆ V be a set of variables. In this
section, we study the problem of identifying Px(s). Clearly, whenever Px(v)
is identifiable, so is Px(s). However, there are obvious cases where Px(v)
is not identifiable and still Px(s) is identifiable for some subsets S of V .
The simplest such example can be seen in Figure 5. Here, variable Z can
be ignored in the computation of Px(y), giving Px(y) = P (y|x) and Px(z) =
P (z), while (by Theorem 3) Px(y, z) is not identifiable. This example suggests
that a criterion similar to that of Theorem 3, applicable in some subgraphs
of G, would establish the identifiability of Px(s). We will show indeed that
Px(s) is identified when a systematic removal of certain nonessential nodes
from G will lead to an identification criterion based on Theorem 3. First we
give a criterion for identifying Px(s) which is a simple extension of Theorem 3.

4.1 A criterion for identifying Px(s)

For any set C ⊆ V , let An(C) denote the union of C and the set of ancestors
of the variables in C. The nonancestors of S are nonessential for identifying
Px(s) and we have the following lemma.
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Lemma 2 Px(s) is identifiable if and only if Px(s) is identifiable in the sub-
graph GAn(S).

Proof: See Appendix B. 2

From Lemma 2, a direct extension of Theorem 3 leads to the following crite-
rion.

Theorem 4 Px(s) is identifiable if there is no bidirected path connecting X
to any of its children in GAn(S).

When the condition in Theorem 4 is satisfied, we can compute Px(an(S)) by
applying Theorem 4 in GAn(S), and Px(s) can be obtained by marginalizing
over Px(an(S)).

This simple criterion can classify correctly all the examples treated in the
literature with X singleton, including those contrived by [Galles and Pearl, 1995].
In fact, for X and S being singletons, it is shown in [Tian and Pearl, 2002a]
that if there is a bidirected path connecting X to one of its children such
that every node on the path is in An(S), then none of the “back-door”,
“front-door”, and [Galles and Pearl, 1995] criteria is applicable. However,
this criterion is not necessary for identifying Px(s). In the next section, we
give an example in which Px(s) is identifiable but Theorem 4 is not applica-
ble, and the process of computing Px(s) will give us hints on how to improve
the criterion.

4.2 An example

To illustrate the general process of computing Px(s) making use of the fac-
torization of P (v) into c-factors, we work out an example in this section.
First we introduce a new notation. For any set C ⊆ V , define the quantity
Q[C](v) to denote the following function

Q[C](v) = Pv\c(c) =
∑

u

∏

{i|Vi∈C}

P (vi|pai, u
i)P (u). (55)
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Figure 6:

In particular, we have Q[V ](v) = P (v). And we set Q[∅](v) = 1 since
∑

u P (u) = 1. For convenience, we will often write Q[C](v) as Q[C]. Q[C]
is a generalization of the Qi’s defined in Section 3.3.1, where the set C was
restricted to be a c-component of G. Using this notation the Q-decomposition
Eq. (35) becomes

Q[V ] =
∏

i

Q[Si], (56)

where Si’s are the c-components of G. Lemma 1 says that all Q[Si]’s are
computable from Q[V ].

Consider the problem of identifying Px(y) in Figure 6(a). Theorem 4
is not applicable, but we will show that Px(y) is identifiable. Let V =
{X,Z, Y,W1,W2} and V ′ = {Z, Y,W1,W2}. V is partitioned into three c-
components: SX = {X,Z,W1}, {W2}, and {Y }. P (v) can be decomposed
into

P (v) = P (w2|w1)P (y|z)Q[SX ], (57)

where

Q[SX ] =
∑

u1,u2

P (x|w2, u1)P (w1|u1, u2)P (z|x, u2)P (u1)P (u2) (58)

= P (v)/(P (w2|w1)P (y|z)) = P (z, x|w2, w1)P (w1). (59)
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Px(v
′) is decomposed into

Px(v
′) = Q[V ′] = P (w2|w1)P (y|z)

∑

u1,u2

P (w1|u1, u2)P (z|x, u2)P (u1)P (u2).

(60)
We want to compute Px(y):

Px(y) =
∑

z,w1,w2

Px(v
′)

=
∑

z,w1,w2

Q[V ′]

=
∑

z,w1

P (y|z)
∑

u1,u2

P (w1|u1, u2)P (z|x, u2)P (u1)P (u2) (
∑

w2

P (w2|w1) = 1)

=
∑

z

P (y|z)
∑

u1,u2

P (z|x, u2)P (u1)P (u2) (
∑

w1

P (w1|u1, u2) = 1)

=
∑

z

P (y|z)Q[{Z}]. (61)

Note that the key reason for the factors of W1 and W2 to be summed out is
that Q[V ′] factorizes according to the subgraph GV ′ and that W1 and W2 are
not ancestors of Y in GV ′ (see Figure 6(b)). The problem of computing Px(y)
is then reduced to computing Q[{Z}], which may be computed from Q[SX ].
Again, noticing that W1 is not an ancestor of Z in GSX (see Figure 6(c)), we
sum W1 over Eq. (58):

∑

w1

Q[SX ] = Q[{X,Z}] (62)

=
∑

u1,u2

P (x|w2, u1)P (z|x, u2)P (u1)P (u2) (63)

= (
∑

u1

P (x|w2, u1)P (u1))(
∑

u2

P (z|x, u2)P (u2)) (64)

= Q[{X}]Q[{Z}] (65)

To compute Q[{X}] and Q[{Z}], summing Z over Eq. (64), we obtain

Q[{X}] =
∑

z,w1

Q[SX ] =
∑

w1

P (x|w2, w1)P (w1), (66)
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and from Eq. (65)

Q[{Z}] =

∑

w1
Q[SX ]

Q[{X}]
=

∑

w1
P (z, x|w2, w1)P (w1)

∑

w1
P (x|w2, w1)P (w1)

. (67)

Finally, substituting the expression for Q[{Z}] (67) into Eq. (61), we obtain

Px(y) =
∑

z

P (y|z)

∑

w1
P (z, x|w2, w1)P (w1)

∑

w1
P (x|w2, w1)P (w1)

. (68)

From this example, we see that the quantity Q[C] we defined in Eq. (55)
plays an important role in identifying Px(y). The ingredients that allowed us
to compute Px(y) were (i) our ability to sum out some factors from Q[V ′] as
in Eqs. (61), due to the fact that W1 and W2 are not ancestors of Y in GV ′ ;
(ii) our ability to compute Q[{X}] and Q[{Z}] from Q[{X,Z}], which is due
to the decomposition of Q[{X,Z}] into the product of Q[{X}] and Q[{Z}]
(Eq. (65)) because in the graph G{X,Z} (Figure 6(d)), {X,Z} is partitioned
into two c-components {X} and {Z}. Next, we generalize these ideas and
present two lemmas about Q[C] which will facilitate the computing of Px(s)
in general.

4.3 Lemmas

The next lemma provides a condition under which summing Q[C] over some
variables is equivalent to removing the corresponding factors. It also provides
a condition under which we can compute Q[W ] from Q[C], where W is a
subset of C, by simply summing Q[C] over the remaining variables (in C\W ),
like ordinary marginalization in probability theory. A set A ⊆ V is called an
ancestral set if it contains its own ancestors (A = An(A)).

Lemma 3 Let W ⊆ C ⊆ V , and W ′ = C \W . If W is an ancestral set in
the subgraph GC (An(W )GC

= W ), or equivalently, if none of the parents of
W is in W ′ (Pa(W ) ∩W ′ = ∅), then

∑

W ′

Q[C] = Q[W ]. (69)

Proof: First we show that the two conditions are equivalent. If W is an
ancestral set in GC , then obviously none of the parents of W is in W ′. On
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the other hand, if the parents of W are not in W ′, then Pa(W )GC
= W , and

therefore An(W )GC
= W .

From the definition of Q[C] (see Eq. (55)), Q[C] decomposes according to
the subgraph GC . Summing both sides of (55) over W ′, the set of nonances-
tors of W in GC , then leads to Eq. (69). 2

Next, we generalize Eq. (35) (i.e., Eq. (56)) and Lemma 1 to proper
subgraphs of G and obtain the following lemma.

Lemma 4 (Generalized Q-decomposition) Let H ⊆ V , and assume that
H is partitioned into c-components H1, . . . , Hl in the subgraph GH . Then we
have

(i) Q[H] decomposes as

Q[H] =
∏

i

Q[Hi]. (70)

(ii) Let k be the number of variables in H, and let a topological order of
the variables in H be Vh1 < · · · < Vhk

in GH . Let H(i) = {Vh1 , . . . , Vhi
} be

the set of variables in H ordered before Vhi
(including Vhi

), i = 1, . . . , k, and
H(0) = ∅. Then each Q[Hj], j = 1, . . . , l, is computable from Q[H] and is
given by

Q[Hj] =
∏

{i|Vhi
∈Hj}

Q[H(i)]

Q[H(i−1)]
, (71)

where each Q[H (i)], i = 0, 1, . . . , k, is given by

Q[H(i)] =
∑

h\h(i)

Q[H]. (72)

(iii) Each Q[H (i)]/Q[H(i−1)] is a function only of Pa(Ti), where Ti is the
c-component of the subgraph GH(i) that contains Vhi

.

Proof: (i) The decomposition of Q[H] into Eq. (70) follows directly from the
definition of c-component.

(ii)&(iii) Eq. (72) follows from Lemma 3 since each H (i) is an ancestral
set. We prove (ii) and (iii) simultaneously by induction on k.

Base: k = 1. There is one c-component Q[H1] = Q[H] = Q[H (1)] which
satisfies Eq. (71) because Q[∅] = 1, and Q[H1] is a function of Pa(H1).
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Hypothesis: When there are k variables in H, all Q[Hi]’s are computable
from Q[H] and are given by Eq. (71), and (iii) holds for i from 1 to k.

Induction step: When there are k + 1 variables in H, assuming that the
c-components of GH are H1, . . . , Hm, H ′, and that Vhk+1

∈ H ′, we have

Q[H] = Q[H(k+1)] = Q[H ′]
∏

i

Q[Hi]. (73)

Summing both sides of (73) over Vhk+1
leads to

∑

vhk+1

Q[H] = Q[H(k)] =
(

∑

vhk+1

Q[H ′]
)

∏

i

Q[Hi], (74)

where we have used Lemma 3. It is clear that each Hi, i = 1, . . . ,m, is a
c-component of the subgraph GH(k) . Then by the induction hypothesis, each
Q[Hi], i = 1, . . . ,m, is computable from Q[H (k)] =

∑

vhk+1
Q[H] and is given

by Eq. (71), where each Q[H (i)], i = 0, 1, . . . , k, is given by

Q[H(i)] =
∑

h(k)\h(i)

Q[H(k)] =
∑

h\h(i)

Q[H]. (75)

From Eq. (73), Q[H ′] is computable as well, and is given by

Q[H ′] =
Q[H(k+1)]
∏

i Q[Hi]
=

∏

{i|Vhi
∈H′}

Q[H(i)]

Q[H(i−1)]
, (76)

which is clear from Eq. (71) and the chain decomposition Q[H (k+1)] =
∏k+1

i=1
Q[H(i)]

Q[H(i−1)]
.

By the induction hypothesis, (iii) holds for i from 1 to k. Next we prove
that it holds for Q[H (k+1)]/Q[H(k)]. The c-component of G that contains
Vhk+1

is H ′. In Eq. (76), Q[H ′] is a function of Pa(H ′), and each term
Q[H(i)]/Q[H(i−1)], Vhi

∈ H ′ and Vhi
6= Vhk+1

, is a function of Pa(Ti), where
Ti is a c-component of the graph GH(i) that contains Vhi

and therefore is a
subset of H ′. Hence we obtain that Q[H (k+1)]/Q[H(k)] is a function only of
Pa(H ′). 2

The use of Lemma 4 can be shown with the example studied in Sec-
tion 4.2, where the subgraph G{X,Z} (Figure 6(d)) is partitioned into two
c-components {X} and {Z}, and therefore Q[{X}] and Q[{Z}] are both
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computable from Q[{X,Z}]. We can check that Eqs. (66) and (67) satisfy
(71).

The proposition (iii) in Lemma 4 may imply a set of functional constraints
to the distribution P (v) whenever Q[H] is computable from P (v). For exam-
ple, Q[{Z}] is a function of Pa({Z}) = {X,Z}, therefore the right hand side
of Eq. (67) is independent of the value of w2, which is a constraint to P (v).
A procedure that systematically finds functional constraints imposed on the
observed distributions in causal models with unobserved variables is given in
[Tian and Pearl, 2002b]. Next, we present a procedure for computing Px(s)
based on Lemmas 1, 3, and 4.

4.4 Computing Px(s)

Let V be partitioned into c-components SX , S1, . . . , Sk, where X ∈ SX , and
let V ′ = V \ {X}. We have

P (v) = Q[V ] = Q[SX ]
∏

i

Q[Si], (77)

and
Px(v

′) = Q[V ′] = Q[SX \ {X}]
∏

i

Q[Si]. (78)

We want to compute

Px(s) =
∑

V ′\S

Px(v
′) =

∑

V ′\S

Q[V ′]. (79)

Let D = An(S)GV ′ . By Lemma 3, Eq. (79) becomes

Px(s) =
∑

D\S

∑

V ′\D

Q[V ′] =
∑

D\S

Q[D]. (80)

Let DX = D ∩ SX , and Di = D ∩ Si, i = 1, . . . , k. From Eq. (78), Q[D] can
be written as

Q[D] = Q[DX ]
∏

i

Q[Di] (81)

Di is an ancestral set in GSi
from its definition, hence by Lemma 3,

Q[Di] =
∑

Si\Di

Q[Si], i = 1, . . . , k. (82)

24



However, DX may not be an ancestral set in GSX (although it is an ancestral
set in GSX\{X}), because X could be an ancestor of DX . Combining Eqs. 80–
82, we obtain

Px(s) =
∑

D\S

Q[DX ]
∏

i

∑

Si\Di

Q[Si]. (83)

Assume that in the graph GDX , DX is partitioned into c-components DX
1 , . . . , DX

l .
Then Q[DX ] =

∏

j Q[DX
j ], and we obtain

Px(s) =
∑

D\S

∏

j

Q[DX
j ]

∏

i

∑

Si\Di

Q[Si]. (84)

Since all the c-factors Q[Si]’s are identifiable, we obtain that Px(s) is identi-
fiable if all Q[DX

j ]’s are identifiable.
Since DX

j ⊂ SX , Q[DX
j ] is identifiable if it is computable from Q[SX ].

Next, we study the conditions for Q[DX
j ] to be computable from Q[SX ]. Let

F = An(DX
j )G

SX
.

• If F = DX
j , that is, if DX

j is an ancestral set in GSX , then by Lemma 3,
Q[DX

j ] can be computed as

Q[DX
j ] =

∑

SX\DX
j

Q[SX ]. (85)

• If F = SX , we are unable to determine whether Q[DX
j ] is computable

from Q[SX ] at this moment.

• Assume that DX
j ⊂ F ⊂ SX . By Lemma 3, we have

Q[F ] =
∑

SX\F

Q[SX ]. (86)

Assume that in the graph GF , DX
j is contained in a c-component H

(the variables in DX
j are connected by bidirected paths among them-

selves hence belong to one same c-component). By Lemma 4, Q[H]
can be computed from Q[F ] and thus is identifiable. We obtain that
the problem of whether Q[DX

j ] is computable from Q[SX ] is reduced
to that whether Q[DX

j ] is computable from Q[H].

25



Function Identify(C, T,Q)
INPUT: C ⊆ T ⊆ V , Q = Q[T ]. Assuming GT is composed of one single
c-component.
OUTPUT: Expression for Q[C] in terms of Q or FAIL to determine.

Let A = An(C)GT
.

• IF A = C, output Q[C] =
∑

T\C Q.

• IF A = T , output FAIL.

• IF C ⊂ A ⊂ T

1. Assume that in GA, C is contained in a c-component T ′.

2. Compute Q[T ′] from Q[A] =
∑

T\A Q by Lemma 4.

3. Output Identify(C, T ′, Q[T ′]).

Figure 7: A function determining if Q[C] is computable from Q[T ].

The preceding analysis gives a recursive procedure for determining whether
Q[DX

j ] is computable from Q[SX ]; at each step, we either find an expression
for Q[DX

j ], find the problem indeterminable, or reduce the problem to a
simpler one in the sense that H ⊂ SX . In general, for C ⊆ T ⊆ V , a recursive
algorithm for determining if Q[C] is computable from Q[T ] is presented in
Figure 7.

In summary, an algorithm for computing Px(s) is given in Figure 8. The
procedure consists of three basic phases. In phase-1, we compute the expres-
sions for all c-factors and find (graphically) the sets DX

j from the graph G. In
phase-2, we attempt to compute Q[DX

j ]’s from Q[SX ] by calling the function
Identify(DX

j , SX , Q[SX ]) given in Figure 7. In phase-3, if all Q[DX
j ]’s are

computable, we output the expression for Px(s) given in Eq. (84).
From the preceding analysis, we see that the problem of identifying Px(s)

is reduced to that of computing Q[C] from Q[T ] for some sets C ⊂ T ⊆ V ,
for which we give an algorithm in Figure 7. Now the open problem is: Is
Q[C] computable from Q[T ] if (i) GC has only one c-component (C itself),
(ii) GT has only one c-component (T itself), and (iii) in GT , all variables in
T \ C are ancestors of C (An(C)GT

= T )?
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Algorithm 1 (Computing Px(s))
INPUT: a set S ⊂ V .
OUTPUT: the expression for Px(s) or fail to determine.
Phase-1:

1. Find the c-components of G: SX , S1, . . . , Sk, where X ∈ SX .

2. Compute the c-factors Q[SX ], Q[S1], . . . , Q[Sk] by Lemma 1.

3. Let D = An(S)GV \{X}
, DX = D ∩ SX .

4. Let the c-components of GDX be DX
j , j = 1, . . . , l.

Phase-2:
For each set DX

j :
Compute Q[DX

j ] from Q[SX ] by calling the function
Identify(DX

j , SX , Q[SX ]) given in Figure 7. If the function returns
FAIL, then stop and output FAIL.

Phase-3:
Output Px(s) =

∑

D\S

∏

j Q[DX
j ]

∏

i

∑

Si\D
Q[Si].

Figure 8: An algorithm for computing Px(s)
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4.5 Useful graphical criteria

We have given a procedure for determining the identifiability of Px(s) and
finding its expression (when identifiable) in Figure 8. Next, we give some
graphical criteria based on Algorithm 1 which can be used for quickly judging
the identifiability of Px(s) by looking at the causal graph G.

The idea lies in systematically removing certain nonessential nodes from
G till Theorem 4 is applicable (or no more nodes can be removed). First,
Lemma 2 can be used to remove nonancestors of S from G. Next, we show
that all variables that are not in the same c-components as X can be removed.
To prove this conclusion, we present a utility lemma first. Let A ⊆ B ⊆ V .
We use Q[A]GB

to denote the function Q[A] =
∑

u

∏

{i|Vi∈A} P (vi|pa
′
i, u

i)P (u)

where PA′
i = PAi ∩ B. The difference between Q[A]GB

and Q[A] = Q[A]GV

is that some parents of A in G are removed in GB.

Lemma 5 Let A ⊆ B ⊆ V . Q[A] is computable from Q[B] if and only if
Q[A]GB

is computable from Q[B]GB
.

Proof: See Appendix C. 2

Using Lemma 5, we obtain the following lemma which reduces the identifia-
bility problem to some subgraph of G.

Lemma 6 Assume that X is in the c-component SX , and let DX = An(S)GV \{X}
∩

SX . Then Px(s) is identifiable if in the graph GSX , Px(D
X) is identifiable.

Proof: From Eq. (83), Px(s) is identifiable if Q[DX ] is identifiable. By
Lemma 5, Q[DX ] is identifiable if Q[DX ]G

SX
is identifiable. Let EX =

(SX \DX) \ {X}. In GSX , we have

Px(D
X) =

∑

EX

Px(S
X \ {X}) =

∑

EX

Q[SX \ {X}]G
SX

= Q[DX ]G
SX

, (87)

where we used Lemma 3 in the last step. Hence we obtain that Px(s) is
identifiable if Px(D

X) is identifiable in GSX . 2

Lemma 2 and 6 reduce the original problems of deciding the identifiability
of Px(s) in G to (usually simpler) problems of identifying the causal effect
of X on a different set of variables in some subgraphs of G. If the latter
problem is not recognized to be identifiable (via Theorem 4), we can of course
repeat the process and attempt to reduce it further, using Lemma 2 and 6
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alternatively.9 Such recursive application of Lemma 2 and 6 is illustrated in
the next example.

4.6 An Example

Consider the problem of identifying Px(y) in Figure 9(a). By Lemma 2,
Px(y) is identifiable in Figure 9(a) if it is identifiable in Figure 9(b), then by
Lemma 6, if it is identifiable in Figure 9(c). After applying Lemma 2 and
6 again (see Figure 9(d) and (e)), the problem is finally reduced to whether
Px(y) is identifiable in Figure 9(f), which is obviously true, and we conclude
that Px(y) is identifiable in Figure 9(a).

We now demonstrate the use of Algorithm 1 by computing Px(y) in Fig-
ure 9(a).
Phase-1:

1. The whole graph is one c-component.

2. DX = D = An({Y })GV \{X}
= {Y }.

3. We want to compute Px(y) = Q[{Y }].

Phase-2:

1. Compute Q[{Y }] by calling the function Identify({Y }, V, P (v)) in Fig-
ure 7. Let A1 = An({Y })G = {X,Y,W1,W2,W3,W4}. We have
{Y } ⊂ A1 ⊂ V . The graph GA1 (Figure 9(b)) has two c-components:
T1 = {X,Y,W1,W2,W3} and {W4}, and we have

Q[A1] =
∑

w5

P (v) = P (a1) = Q[T1]Q[{W4}]. (88)

A topological sort over A1 is: W3 < W4 < W1 < W2 < X < Y . By
Lemma 4, we obtain

Q[{W4}] =
Q[{W4,W3}]

Q[{W3}]
=

∑

w1,w2,x,y P (a1)
∑

w4,w1,w2,x,y P (a1)
= P (w4|w3), (89)

and from (88),

Q[T1] = P (a1)/P (w4|w3) = P (x, y, w1, w2|w3, w4)P (w3)

= P (x, y|w1, w2, w3, w4)P (w1, w2, w3). (90)

9Note that some causal effects identified by Algorithm 1 may not be identified by
repeatly using Lemma 2 and 6 which are meant for quick judgement only.
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2. Call the function Identify({Y }, T1, Q[T1]). Let A2 = An({Y })GT1
=

{X,Y,W1,W2} (see Figure 9(c)). We have {Y } ⊂ A2 ⊂ T1. The graph
GA2 (Figure 9(d)) has two c-components: T2 = {X,Y,W1} and {W2},
and we have

Q[A2] =
∑

w3

Q[T1] = Q[T2]Q[{W2}]. (91)

A topological sort over A2 is: W1 < W2 < X < Y . By Lemma 4, we
obtain

Q[{W2}] =
Q[{W2,W1}]

Q[{W1}]
=

∑

x,y Q[A2]
∑

w2,x,y Q[A2]
= P (w2|w1), (92)

and from (91) and (90),

Q[T2] =
∑

w3

Q[T1]/P (w2|w1)

=
∑

w3

P (x, y|w1, w2, w3, w4)P (w3|w1, w2)P (w1). (93)

3. Call the function Identify({Y }, T2, Q[T2]). Let A3 = An({Y })GT2
=

{X,Y } (see Figure 9(e)). We have {Y } ⊂ A3 ⊂ T2. The graph GA3

(Figure 9(f)) has two c-components: {X} and {Y }, and we have

Q[A3] =
∑

w1

Q[T2] = Q[{X}]Q[{Y }]. (94)

The only admissible order over A3 is: X < Y . By Lemma 4, we obtain

Q[{X}] =
∑

y

∑

w1

Q[T2] =
∑

w1,w3

P (x|w1, w2, w3, w4)P (w3|w1, w2)P (w1),

(95)
and

Q[{Y }] = (
∑

w1

Q[T2])/Q[{X}]

=

∑

w1,w3
P (x, y|w1, w2, w3, w4)P (w3|w1, w2)P (w1)

∑

w1,w3
P (x|w1, w2, w3, w4)P (w3|w1, w2)P (w1)

. (96)

Phase-3:
Finally, we obtain

Px(y) = Q[{Y }] =

∑

w1,w3
P (x, y|w1, w2, w3, w4)P (w3|w1, w2)P (w1)

∑

w1,w3
P (x|w1, w2, w3, w4)P (w3|w1, w2)P (w1)

. (97)
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4.7 Galles&Pearl’s graphical criterion vs. do-calculus

[Galles and Pearl, 1995] claimed that their graphical criterion will embrace
all cases where identification is verifiable by do-calculus. Here we show that
their criterion is not complete in this sense. Consider the problem of iden-
tifying Px(z) in Figure 6(a). Neither “back-door” nor “front-door” criterion
is applicable. The graphical criterion in [Galles and Pearl, 1995] also fails
because there is no set which can block all back-door paths from X to Z.
However we have that Px(z) = Q[{Z}] is identifiable and is given in Eq. (67).
Px(z) can also be computed by do-calculus as

P (z|x̂) = P (z|x̂, ŵ1) (98)

= P (z|x, ŵ1) (99)

= P (z|x,w2, ŵ1) (100)

=
P (z, x, w2|ŵ1)

P (x,w2|ŵ1)
(101)

=

∑

w1
P (z, x|w2, w1)P (w1)

∑

w1
P (x|w2, w1)P (w1)

(102)

Hence we see that the graphical criterion in [Galles and Pearl, 1995] is not
complete with respect to do-calculus. [Galles and Pearl, 1995] may have
failed to consider the possibility of removing a hat by transforming Eq. (100)
to (101).

5 Identification of Pt(s)

So far, we have assumed that intervention is applied to a single variable X.
In this section we study the problem of identifying Pt(s) where S and T
are arbitrary (disjoint) subsets of V . We will show that, as for identifying
Px(s), the problem of identifying Pt(s) is also reduced to identifying Q[C]
from Q[C ′] for some sets C ⊂ C ′, and we give a procedure for computing
Pt(s).
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5.1 Computing Pt(s)

Let T ′ = V \ T , we want to compute

Pt(s) =
∑

T ′\S

Pt(t
′) =

∑

T ′\S

Q[T ′]. (103)

Let D = An(S)GT ′ . Then by Lemma 3,

Pt(s) =
∑

D\S

∑

T ′\D

Q[T ′] =
∑

D\S

Q[D]. (104)

Assume that the subgraph GD is partitioned into c-components D1, . . . , Dl.
Then Q[D] can be decomposed into products of Q[Di]’s, and Eq. (104) can
be rewritten as

Pt(s) =
∑

D\S

∏

i

Q[Di]. (105)

We obtain that Pt(s) is identifiable if all Q[Di]’s are identifiable. Let G
be partitioned into c-components S1, . . . , Sk. Then any Di is a subset of
certain Sj since if the variables in Di are connected by a bidirected path in
a subgraph of G then they must be connected by a bidirected path in G.
Assuming Di ⊆ Sj, whether Q[Di] is identifiable can be determined by using
the function Identify(Di, Sj, Q[Sj]) given in Figure 7.

In summary, an algorithm for computing Pt(s) is given in Figure 10.
The procedure consists of three basic phases. In phase-1, we compute the
expressions for all c-factors and find (graphically) the set of Di’s from the
graph G. In phase-2, we attempt to compute Q[Di]’s by calling the func-
tion Identify(Di, Sj, Q[Sj]) given in Figure 7. In phase-3, if all Q[Di]’s are
identifiable, we output the expression for Pt(s) given in Eq. (105).

5.2 Useful graphical criteria

Next, we give some graphical criteria for quick judgement of the identifiability
of Pt(s) by looking at the causal graph G. First we give some graphical
conditions for identifying Pt(v) = Pt(v \ t), the causal effect of T on all other
variables in V . The following criterion is a corollary of Lemma 1.
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Algorithm 2 (Computing Pt(s))
INPUT: two disjoint sets S, T ⊂ V .
OUTPUT: the expression for Pt(s) or fail to determine.
Phase-1:

1. Find the c-components of G: S1, . . . , Sk.

2. Compute the c-factors Q[S1], . . . , Q[Sk] by Lemma 1.

3. Let D = An(S)GV \T
.

4. Let the c-components of GD be Di, i = 1, . . . , l.

Phase-2:
For each set Di such that Di ⊆ Sj:

Compute Q[Di] from Q[Sj] by calling the function Identify(Di, Sj, Q[Sj])
in Figure 7. If the function returns FAIL, then stop and output FAIL.

Phase-3:
Output Pt(s) =

∑

D\S

∏

i Q[Di].

Figure 10: An algorithm for computing Pt(s)
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Theorem 5 If there is no bidirected edge connecting variables in a set T to
variables not in T , then Pt(v) is identifiable. Let a topological order over V
be V1 < . . . < Vn, and let V (i) = {V1, . . . , Vi}, i = 1, . . . , n, and V (0) = ∅.
Then Pt(v) is given by

Pt(v \ t) =
∏

{i|Vi∈V \T}

P (vi|pa(Ci) \ {vi}), (106)

where Ci is the c-component of GV (i) that contains Vi.

In general, let T ′ = V \ T , let V be partitioned into c-components
S1, . . . , Sk, and let Ti = T ∩ Si, T

′
i = T ′ ∩ Si, i = 1, . . . , k. We have

Pt(t
′) =

∏

i

Q[T ′
i ]. (107)

Hence Pt(t
′) is identifiable if and only if each Q[T ′

i ] is computable from Q[Si].
On the other hand, we have

Ptj(v \ tj) = Q[T ′
j ]

∏

i6=j

Q[Si]. (108)

Hence Ptj(v \ tj) is identifiable if and only if Q[T ′
j ] is computable from Q[Sj].

And we obtain the following lemma.

Lemma 7 Let V be partitioned into c-components S1, . . . , Sk, and let Ti =
T ∩ Si, i = 1, . . . , k. Pt(v) is identifiable if and only if each Pti(v), i =
1, . . . , k, is identifiable.

In the subgraph GSj
,

P (sj) = Q[Sj]GSj
, and Ptj(sj \ tj) = Q[T ′

j ]GSj
. (109)

Hence by Lemma 5, Q[Cj] is computable from Q[Sj] if and only if Ptj(sj \ tj)
is identifiable in GSj

, which gives the following lemma.

Lemma 8 Let Si be a c-component of G, and Ti ⊆ Si. Pti(v) is identifiable
if and only if Pti(si) is identifiable in the graph GSi

.

One simple condition for Q[T ′
i ] to be computable from Q[Si] is that T ′

i

is an ancestral set in GSi
, or Ti contains its own descendants in GSi

. Under
this condition, by Lemma 3,

Q[T ′
i ] =

∑

Ti

Q[Si]. (110)

And we obtain the following theorem.
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Theorem 6 Let Si be a c-component of G, and Ti ⊆ Si. If the children
of variables in Ti are either in Ti or outside of Si (i.e. Ti contains its own
descendants in GSi

), then Pti(v) is identifiable, and is given by

Pti(v \ ti) =
P (v)

Q[Si]

∑

Ti

Q[Si]. (111)

Next, we give some graphical conditions for quick judgment of the iden-
tifiability of Pt(s).

Lemma 9 Let V be partitioned into c-components S1, . . . , Sk. Let Ti = T ∩
Si, Di = An(S)GV \T

∩ Si, i = 1, . . . , k. Then Pt(s) is identifiable if every
Pti(di) is identifiable in GSi

for i = 1, . . . , k.

Proof: From Eq. (105), Pt(s) is identifiable if each Q[Di] is identifiable. By
Lemma 5, Q[Di] is computable from Q[Si] if Q[Di]GSi

is computable from
Q[Si]GSi

. Let T ′
i = Si \ Ti. In GSi

, we have

Pti(di) =
∑

T ′
i\Di

Pti(t
′
i) =

∑

T ′
i\Di

Q[T ′
i ]GSi

= Q[Di]GSi
, (112)

where we used Lemma 3 in the last step. Hence we obtain that Pt(s) is
identifiable if each Pti(di) is identifiable in GSi

. 2

Lemma 10 Let T1 = T ∩An(S). Pt(s) is identifiable if and only if Pt1(s) is
identifiable in GAn(S).

Proof: It is well-known that Pt(s) = Pt1(s). The rest of the proof is the same
as that for Lemma 2 (see Appendix B). 2

Lemma 9 and 10 reduce the original problems of deciding the identifi-
ability of Pt(s) in G to some (usually simpler) identifiability problems in
subgraphs of G. They can be repeatedly applied to further reduce the prob-
lems, till inapplicable or till those problems are recognized to be identifiable
(for example, via Theorem 4 or 6).
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5.3 Examples

Next, we study some examples, to illustrate the use of Algorithm 2 and the
graphical criteria in Section 5.2.

Consider the problem of identifying Px1x2(y) in Figure 11(a), which was
studied in [Pearl and Robins, 1995]. G has two c-components S = {X1, Z, Y }
and {X2}, and X1 and X2 are in different c-components. Letting C =
V \ {X1, X2} = {Y, Z}, then An({Y })GC

= {Y } ⊂ S. By Lemma 9 we
have that Px1x2(y) is identifiable if Px1(y) is identifiable in the subgraph GS

(Figure 11(b)). Since the latter is true by Theorem 4, we conclude that
Px1x2(y) is identifiable. Next we compute Px1x2(y). We have

P (v) = P (x2|x1, z)Q[S], (113)

from which we obtain

Q[S] = P (v)/P (x2|x1, z) = P (y|x1, x2, z)P (x1, z). (114)

Px1x2(y) is computed as

Px1x2(y) =
∑

z

Q[{Y, Z}] = Q[{Y }], (115)

which can be computed by calling Identify({Y }, S,Q[S]) in Figure 7. Let
A = An({Y })GS

= {X1, Y }. We have {Y } ⊂ A ⊂ S. The graph GA has two
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c-components: {X1} and {Y }, and we have

Q[A] =
∑

z

Q[S] = Q[{X1}]Q[{Y }]. (116)

The only admissible order over A is: X1 < Y . By Lemma 4, we obtain

Q[{X1}] =
∑

y

∑

z

Q[S] = P (x1), (117)

and

Q[{Y }] =
∑

z

Q[S]/Q[{X1}] =
∑

z

P (y|x1, x2, z)P (z|x1). (118)

Finally, we obtain

Px1x2(y) = Q[{Y }] =
∑

z

P (y|x1, x2, z)P (z|x1), (119)

which coincides with Eq. (4.3) of [Pearl, 2000, page 122].
Consider the problem of identifying Px1x2(y) in Figure 12, which was stud-

ied in [Pearl and Robins, 1995]. G has two c-components S = {X2,W, Y }
and {X1}, and X1 and X2 are in different c-components. Letting C =
V \ {X1, X2} = {Y,W}, then An({Y })GC

= {Y } ⊂ S. By Lemma 9,
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Px1x2(y) is identifiable if Px2(y) is identifiable in GS. It is clear that Px2(y)
is identifiable (by Theorem 4), hence Px1x2(y) is identifiable.

Consider the problem of identifying Px1x2(y) in Figure 13, which was
studied in [Pearl and Robins, 1995]. G has three c-components {X1}, {Y },
and S = {X2, Z1, Z

′
1}, and X1 and X2 are in different c-components. By

Lemma 7, Px1x2(v) is identifiable if both Px1(v) and Px2(v) are identifiable,
which is true by Theorem 3. Therefore Px1x2(v) is identifiable. Next we
compute Px1x2(v). We have

P (v) = P (x1|z1)P (y|x2, z
′
1)Q[S], (120)

from which we obtain

Q[S] = P (v)/(P (x1|z1)P (y|x2, z
′
1)) = P (x2, z

′
1|x1, z1)P (z1). (121)

Px1x2(v) is computed as

Px1x2(y, z1, z
′
1) = P (y|x2, z

′
1)Q[{Z1, Z

′
1}]

= P (y|x2, z
′
1)

∑

x2

Q[S]

= P (y|x2, z
′
1)P (z′

1|x1, z1)P (z1)

= P (y|x2, z
′
1)P (z′

1, z1). (122)

Next, consider the problem of identifying Px1x2(y) in Figure 14, which
was studied in [Kuroki and Miyakawa, 1999]. X1 and X2 are in the same
c-component S = {X1, X2, Y }, and their children other than X2 itself are
not in S, hence Theorem 6 is applicable and Px1x2(v) is identifiable. We have

P (v) = P (z1|x1)P (z2|x1, x2)Q[S], (123)
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Figure 14: from [Kuroki and Miyakawa, 1999]

from which we obtain

Q[S] = P (v)/
(

P (z1|x1)P (z2|x1, x2)
)

= P (y|x1, x2, z1, z2)P (x2|x1, z1)P (x1). (124)

From Theorem 6, we have

Px1x2(y, z1, z2) = P (z1|x1)P (z2|x1, x2)
∑

x1,x2

Q[S]

= P (z1|x1)P (z2|x1, x2)
∑

x′
1,x′

2

P (y|x′
1, x

′
2, z1, z2)P (x′

2|x
′
1, z1)P (x′

1).

(125)

We further obtain

Px1x2(y) =
∑

z1,z2

P (z1|x1)P (z2|x1, x2)
∑

x′
1,x′

2

P (y|x′
1, x

′
2, z1, z2)P (x′

2|x
′
1, z1)P (x′

1),

(126)

which coincides with Eq. (3.12) of [Kuroki and Miyakawa, 1999].
Consider the problem of identifying Px1x2(y) in Figure 15(a), which was

studied in [Kuroki and Miyakawa, 1999]. X1 and X2 are in the same c-
component S = {X1, X2, Y }. By Lemma 8, Px1x2(v) is identifiable if Px1x2(y)
is identifiable in GS (Figure 15(b)). Let A = An({Y })GS

= {X1, Y }. By
Lemma 10, Px1x2(y) is identifiable in GS if Px1(y) is identifiable in the sub-
graph GA (Figure 15(c)). Since Px1(y) is obviously identifiable in GA, we
conclude that Px1x2(v) is identifiable. We have

P (v) = P (z2|x1, x2)Q[S], (127)
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Figure 15: from [Kuroki and Miyakawa, 1999]

from which we obtain

Q[S] = P (v)/P (z2|x1, x2) = P (y|z2, x1, x2)P (x1, x2). (128)

Px1x2(v) is computed as

Px1,x2(z2, y) = P (z2|x1, x2)Q[{Y }]. (129)

Q[{Y }] can be computed by calling Identify({Y }, S,Q[S]) in Figure 7. We
have

Q[A] =
∑

x2

Q[S] = Q[{X1}]Q[{Y }], (130)

from which we obtain

Q[{X1}] =
∑

y

Q[A] = P (x1), (131)

and

Q[{Y }] =
∑

x2

Q[S]/Q[{X1}] =
∑

x2

P (y|z2, x1, x2)P (x2|x1). (132)

Finally, substituting (132) into (129), we obtain

Px1,x2(z2, y) = P (z2|x1, x2)
∑

x′
2

P (y|z2, x1, x
′
2)P (x′

2|x1), (133)

and

Px1,x2(y) =
∑

z2

P (z2|x1, x2)
∑

x′
2

P (y|z2, x1, x
′
2)P (x′

2|x1), (134)
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which coincides with Eq. (3.21) of [Kuroki and Miyakawa, 1999].
In the examples studied so far, in Figure 11(a), 12, and 13, Px1x2(y)

can be identified using the criteria given in [Pearl and Robins, 1995]. In
Figure 14 and 15(a), Px1x2(y) can be identified by the extended front-door
criterion and the mixed-door criterion given in [Kuroki and Miyakawa, 1999]
respectively. Next we give an example shown in Figure 16(a), for which
Px1x2(w, y) is identifiable, but none of the criteria in [Pearl and Robins, 1995]
and [Kuroki and Miyakawa, 1999] is applicable. X1 and X2 are in the same c-
component S = {X1, X2, Y }. By Lemma 8, Px1x2(v) is identifiable if Px1x2(y)
is identifiable in GS (Figure 16(b)). The latter is obviously true, hence we
conclude that Px1x2(w, y) is identifiable. (Formally, let S ′ = An({Y })GS

=
{X2, Y }; by Lemma 10, Px1x2(y) is identifiable in GS if Px2(y) is identifiable
in the subgraph GS′ (Figure 15(c)), which is obvious.)

5.4 Identification of Direct Effects Ppay
(y)

Let Y be a single variable and let VY = V \ {Y } be the set of all other
variables. A special case of the identifiability problem is to identify the
direct effect Pvy

(y). We have

Pvy
(y) = Ppay

(y) = Q[{Y }]. (135)

Let Y be in the c-component SY . In general, the identifiability of Ppay
(y) can

be determined by using the function Identify({Y }, SY , Q[SY ]) in Figure 7. In
this section we give some graphical criteria for determining whether Ppay

(y)
is identifiable.

Theorem 7 If Y is not connected to bidirected links, then Ppay
(y) is identi-

fiable, and is given by
Ppay

(y) = P (y|pay). (136)
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Theorem 7 is obvious. The use of Theorem 7 can be shown by identifying the
direct effect on Y in Figure 13. Theorem 7 says that Px2,z′1

(y) is identifiable
and is equal to P (y|x2, z

′
1).

Theorem 8 Let Y be in the c-component SY . If there is no bidirected path
connecting Y and any of its parents (i.e., Y is not in the same c-components
with any of its parents), then Ppay

(y) is identifiable, and is given by

Ppay
(y) =

∑

SY \{Y }

Q[SY ]. (137)

Proof: Since none of the variables in SY \ {Y } is an ancestor of Y in the
subgraph GSY , by Lemma 3, Q[{Y }] =

∑

SY \{Y } Q[SY ]. 2

We demonstrate the use of Theorem 8 by identifying the direct effect on Y
in Figure 14. Y is in the c-component S = {X1, X2, Y }, and Q[S] is given in
Eq. (124). By Theorem 8, Pz1,z2(y) is identifiable and is given by

Pz1,z2(y) =
∑

x1,x2

P (y|x1, x2, z1, z2)P (x2|x1, z1)P (x1). (138)

Lemma 11 The direct effect on Y is identifiable if and only if the direct
effect on Y is identifiable in GAn({Y }).

Lemma 11 follows from Lemma 10.

Lemma 12 Let Y be in the c-component SY . The direct effect on Y is
identifiable if and only if the direct effect on Y is identifiable in GSY .

Proof: By Lemma 5, Q[{Y }] is computable from Q[SY ] if and only if Q[{Y }]G
SY

is computable from Q[SY ]G
SY

. 2

Lemma 11 and 12 can be applied alternatively to remove nodes from a
graph, until it is clear that the direct effect on Y is identifiable or until neither
lemmas is applicable. This leads to the following criterion.

Theorem 9 The direct effect on Y is identifiable if there exists no subgraph
GS of G satisfying all of the following: (i) Y ∈ S; (ii) GS has only one
c-component, S itself; (iii) All variables in S are ancestors of Y in GS.

The graph in Figure 17 satisfies conditions (i)-(iii), and for general graphs
of such a type, we are unable to determine the identifiability of the direct
effect on Y .
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6 Beyond Semi-Markovian Models

In Sections 3-5 we have studied the identifiability problem in semi-Markovian
models. Our method is based on the Q-decomposition of P (v) and Lemmas 1,
3, and 4. In a Markovian model with arbitrary sets of unobserved variables,
P (v) in Eq. (4) may also be decomposed into a product of summations as

P (v) =
∏

i

Q[Si], (139)

where Si’s form a partition of V and, similar to Eq. (55), each Q[Si] is given
by

Q[Si] =
∑

u

∏

{i|Vi∈Si}

P (vi|pavi
)

∏

{i|Ui∈U}

P (ui|paui
). (140)

The graphical conditions for this decomposition to be feasible are more com-
plicated than that in Section 3.3.1 and are given in [Tian and Pearl, 2002b],
which also showed that properties as given in Lemmas 1, 3, and 4 hold as
well. Therefore, we can use the same method developed in Sections 3-5 to
identify causal effects in a Markovian model with arbitrary sets of unobserved
variables. [Tian and Pearl, 2002b] also suggests that, instead of working di-
rectly with a complicated model with arbitrary sets of unobserved variables,
we may work with its semi-Markovian projection [Verma, 1993].
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Definition 2 (Projection) The projection of a DAG G over V ∪ U on
the set V , denoted by PJ(G, V ), is a DAG over V with bidirected edges
constructed as follows:

1. Add each variable in V as a node of PJ(G, V ).

2. For each pair of variables X,Y ∈ V , if there is an edge between them
in G, add the edge to PJ(G, V ).

3. For each pair of variables X,Y ∈ V , if there exists a directed path from
X to Y in G such that every internal node on the path is in U , add
edge X → Y to PJ(G, V ) (if it does not exist yet).

4. For each pair of variables X,Y ∈ V , if there exists a divergent path
between X and Y in G such that every internal node on the path is in
U (X L99 Ui 99K Y ), add a bidirected edge X L9999K Y to PJ(G, V ).

It is shown in [Tian and Pearl, 2002b] that G and PJ(G, V ) have the same
topological relations over V and the same partition of V into c-components.
Based on the results in [Tian and Pearl, 2002b], we conclude that if Pt(s)
is identified in PJ(G, V ) (using the methods in Sections 3-5), then it is
identified in G with the same expression.

In summary, to identify a causal effect Pt(s) in a model with arbitrary sets
of unobserved variables, we first construct the projection graph PJ(G, V ),
then attempt to compute Pt(s) in PJ(G, V ); if Pt(s) is computable in PJ(G, V ),
then Pt(s) is identifiable in G with the same expression.

7 Conclusion

This paper develops graphical criteria that permit one to decide, by merely
inspecting a causal diagram, whether the effect of a given action or policy
can be determined from passive observations, namely, from observations that
involve no experimental manipulations. The criteria developed simplify, gen-
eralize, and unify those reported in the literature, and are based on a general
decomposition scheme, called Q-decomposition, whereby a causal graph is
decomposed into C-components (subgraphs) among which there exists no
path of consecutive spurious dependencies.

We have shown that the effect of a singleton action on all other variables
in the system can be predicted if and only if the action variable is not in the
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same C-component as any of its direct successors. Extensions were further
developed to cases where the action affects several variables at once, and
where attention is focused on a subset of the response variables.

These results have wide and immediate applications in the health and so-
cial sciences, where investigators are often required to elucidate cause-effect
relationships (e.g., the effect of treatments on diseases) from observational
studies of populations under natural conditions. They also have applications
in artificial intelligence systems where agents, equipped with incomplete mod-
els of environment, are required to control their environment with no prior
manipulative training. The results developed in this paper enable researchers
and agents to decide whether the observations available are sufficient for con-
trolling one’s environment, whether additional observations are required, or
whether the assumptions underlying the model need be refined.
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A Proof for Theorem 3

In this appendix we prove the necessity part of the criterion given in Theo-
rem 3 for the identifiability of Px(v). To facilitate the proof, first we prove
the following lemma.

Lemma 13 Let S, T ⊆ V be two disjoint sets of variables. If Pt(s) is not
identifiable in G, then Pt(s) is not identifiable in the graph resulted from
adding a directed or bidirected edge to G. Equivalently, if Pt(s) is identifiable
in G, then Pt(s) is still identifiable in the graph resulted from removing a
directed or bidirected edge from G.

Proof: If Pt(s) is not identifiable in G, then there exist two models with the
same causal graph G, M1 and M2, such that

PM1(v) = P M2(v) > 0, and P M1
t (s) 6= P M2

t (s), (141)

where

PMk(v) =
∑

u

∏

i

PMk(vi|pai, u
i)PMk(u), k = 1, 2. (142)

For a graph G′ with extra edges added to G, we can always construct new
models in such a way that the added edges are ineffective.

(i) Let G′ be the graph identical to G except with an extra edge Y −→ Vj.
P (v) decomposes as

P (v) =
∑

u

P (vj|paj, y, uj)
∏

i6=j

P (vi|pai, u
i)P (u). (143)

We construct two models M ′
1 and M ′

2 with the causal graph G′ as

PM ′
k(vi|pai, u

i) = P Mk(vi|pai, u
i), i 6= j, k = 1, 2, (144)

PM ′
k(vj|paj, y, uj) = P Mk(vj|paj, u

j), k = 1, 2, (145)

PM ′
k(u) = P Mk(u), k = 1, 2. (146)

Clearly, if the pair (M1,M2) satisfies (141), so would the pair (M ′
1,M

′
2).

Hence Pt(s) is not identifiable in G′.
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Figure 18:

(ii) Let G′ be the graph identical to G except with an extra edge Vl ←→
Vj. P (v) decomposes as

P (v) =
∑

u′

P (u′)
∑

u

P (vj|paj, u
j, u′)P (vl|pal, u

l, u′)
∏

i6=j,i 6=l

P (vi|pai, u
i)P (u),

(147)
where U ′ represents the new unobserved variable. We construct two models
M ′

1 and M ′
2 with the causal graph G′ as

PM ′
k(vi|pai, u

i) = P Mk(vi|pai, u
i), i 6= j, i 6= l, k = 1, 2, (148)

PM ′
k(vi|pai, u

i, u′) = P Mk(vi|pai, u
i), i = j, l, k = 1, 2, (149)

PM ′
k(u) = P Mk(u), k = 1, 2. (150)

Again, if the pair (M1,M2) satisfies (141), so would the pair (M ′
1,M

′
2). Hence

Pt(s) is not identifiable in G′. 2

Next we prove the necessity part of Theorem 3.

Theorem If there is a bidirected path connecting X to any of its children
in G, then Px(v) is not identifiable.

Proof: Let Y be a child of X and assume that there is a bidirected path
connecting X and Y with variables Z1, . . . , Zk on the path (see Figure 18).
We will prove that, for any k ≥ 1, Px(y, z1, . . . , zk) is not identifiable in
the graph shown in Figure 18, which is a subgraph of G. By Lemma 13, if
Px(y, z1, . . . , zk) is not identifiable in a subgraph of G, then it is not identifi-
able in G, and therefore Px(v) is not identifiable in G.

Let U = {U1, . . . , Uk+1}. In Figure 18, we have

P (x, y, z1, . . . , zk)

=
∑

u

P (x|u1)P (y|x, uk+1)P (z1|u1, u2) · · ·P (zk|uk, uk+1)P (u1) · · ·P (uk+1),

(151)
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and

Px(y, z1, . . . , zk)

=
∑

u

P (y|x, uk+1)P (z1|u1, u2) · · ·P (zk|uk, uk+1)P (u1) · · ·P (uk+1). (152)

Let all variables X, Y , Z1, . . . , Zk, U1, . . . , Uk+1 be binary variables. We will
prove the nonidentifiability of Px(y, z1, . . . , zk) by constructing two models
such that in both models,

P (x, y, z1, . . . , zk) = (1/2)k+2, for all possible values of x, y, z1, . . . , zk,
(153)

while Px(y, z1, . . . , zk) has different values in the two models. The construc-
tion involves the specification of all conditional probabilities in a parametric
form, and shows two different parameterization both satisfying the set of
2k+2 equations in (153). We use the following parameterization, with five
parameters, a, b, c, d, and e.

P (ui) = 1/2, ui = 0, 1, and i = 1, . . . , k + 1 (154)

x u1 P (x|u1)
0 0 1/2 + a
0 1 1/2− a

(155)

y x uk+1 P (y|x, uk+1)
0 0 0 1/2 + b
0 0 1 1/2− b
0 1 0 1/2
0 1 1 1/2

(156)

z1 u1 u2 P (z1|u1, u2)
0 0 0 1/2 + c
0 0 1 1/2− c
0 1 0 1/2 + d
0 1 1 1/2− d

(157)
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zi ui ui+1 P (zi|ui, ui+1)
0 0 0 1/2 + e
0 0 1 1/2− e
0 1 0 1/2− e
0 1 1 1/2 + e

i = 2, . . . , k. (158)

Substituting (154) into (151), Eq. (153) becomes

1

2
=

∑

u

P (x|u1)P (y|x, uk+1)P (z1|u1, u2) · · ·P (zk|uk, uk+1). (159)

First we prove that if Eq. (159) is satisfied for x = 0, y = 0, z1 = 0, . . . , zk = 0,
then it is satisfied for all possible values of x, y, z1, . . . , zk. We have that, for
any a, b, c, d, e, the parameterization given in Eqs. (154)–(158) satisfies the
following properties

∑

u1

P (x|u1) = 1. (160)

∑

uk+1

P (y|x, uk+1) = 1. (161)

∑

ui+1

P (zi|ui, ui+1) = 1, i = 1, . . . , k. (162)

∑

ui

P (zi|ui, ui+1) = 1, i = 2, . . . , k. (163)

(a) For x = 1 and any values of y, z1, . . . , zk, Eq. (159) is satisfied:

∑

u

P (x = 1|u1)P (y|x = 1, uk+1)P (z1|u1, u2) · · ·P (zk|uk, uk+1)

=
1

2

∑

u

P (x = 1|u1)P (z1|u1, u2) · · ·P (zk|uk, uk+1) (by P (y|x = 1, uk+1) = 1/2)

=
1

2
(by Eqs. (162) and (160)) (164)
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(b) If, for a particular set of values x, y, z1, . . . , zk, Eq. (159) is satisfied, then
for the set of values x, 1− y, z1, . . . , zk, Eq. (159) is also satisfied:

∑

u

P (x|u1)P (1− y|x, uk+1)P (z1|u1, u2)P (z2|u2, u3) · · ·P (zk|uk, uk+1)

=
∑

u

P (x|u1)(1− P (y|x, uk+1))P (z1|u1, u2)P (z2|u2, u3) · · ·P (zk|uk, uk+1)

=
∑

u

P (x|u1)P (z1|u1, u2)P (z2|u2, u3) · · ·P (zk|uk, uk+1)−
1

2
(by Eq. (159))

= 1−
1

2
(by Eqs. (162) and (160))

=
1

2
(165)

(c) If, for a particular set of values x, y, z1, . . . , zk, Eq. (159) is satisfied, then
for the set of values x, y, z1, . . . , zi−1, 1− zi, zi+1, . . . , zk, Eq. (159) is satisfied
as well (for i = 1, . . . , k):

∑

u

P (x|u1)P (y|x, uk+1)P (z1|u1, u2) · · ·P (1− zi|ui, ui+1) · · ·P (zk|uk, uk+1)

=
∑

u

P (x|u1)P (y|x, uk+1)P (z1|u1, u2) · · ·P (zi−1|ui−1, ui)P (zi+1|ui+1, ui+2)

· · ·P (zk|uk, uk+1)−
1

2
(by Eq. (159))

= 1−
1

2
(by Eqs. (160)–(163))

=
1

2
(166)

From (a), (b), and (c), we obtain that if Eq. (159) is satisfied for x =
0, y = 0, z1 = 0, . . . , zk = 0, then it is satisfied for all possible values of
x, y, z1, . . . , zk.

Next, we substitute the conditional probabilities given in Eqs. (154)–(158)
into Eq. (159) for x = 0, y = 0, z1 = 0, . . . , zk = 0. Define

fu2,uk+1
=

∑

u3,...,uk

P (z2 = 0|u2, u3) · · ·P (zk = 0|uk, uk+1) (167)
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We obtain

f00 = (1/2 + e)k−1 +

(

k − 1

2

)

(1/2 + e)k−3(1/2− e)2

+

(

k − 1

4

)

(1/2 + e)k−5(1/2− e)4 + · · ·

=

i<k/2
∑

i=0

(

k − 1

2i

)

(1/2 + e)k−1−2i(1/2− e)2i. (168)

From Eq. (163), we have
∑

u2

fu2,uk+1
= 1. (169)

From Eq. (162), we have
∑

uk+1

fu2,uk+1
= 1. (170)

Define
f = f00 − 1/2, (171)

then fu2,uk+1
is given as

u2 uk+1 fu2,uk+1

0 0 1/2 + f
0 1 1/2− f
1 0 1/2− f
1 1 1/2 + f

Therefore, for x = 0, y = 0, z1 = 0, . . . , zk = 0, Eq. (159) becomes

1

2
=

∑

u1,uk+1,u2

P (x = 0|u1)P (y = 0|x = 0, uk+1)P (z1 = 0|u1, u2)fu2,uk+1

= (1/2 + a)(1/2 + b)[(1/2 + c)(1/2 + f) + (1/2− c)(1/2− f)]

+ (1/2 + a)(1/2− b)[(1/2 + c)(1/2− f) + (1/2− c)(1/2 + f)]

+ (1/2− a)(1/2 + b)[(1/2 + d)(1/2 + f) + (1/2− d)(1/2− f)]

+ (1/2− a)(1/2− b)[(1/2 + d)(1/2− f) + (1/2− d)(1/2 + f)]

= 1/2 + 2bf(c + d + 2ac− 2ad) (172)
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which leads to

bf(c + d + 2ac− 2ad) = 0. (173)

That is, with the parameterization given in (154)-(158), Eq. (153) holds if
and only if Eq. (173) holds.

For x = 0, y = 0, z1 = 0, . . . , zk = 0, Px(y, z1, . . . , zk) is computed as

Px=0(y = 0, z1 = 0, . . . , zk = 0)

=
1

2k+1

∑

u1,uk+1,u2

P (y = 0|x = 0, uk+1)P (z1 = 0|u1, u2)fu2,uk+1

=
1

2k+1
[1 + 4bf(c + d)] (174)

Let −1/2 < e0 < 1/2 be a number such that f 6= 0 (see (171) and (168)).
Consider the following two models:

Model 1 a = 1/4, b = 0, c = d = 1/4, e = e0.

Model 2 a = 1/4, b = 1/4, c = 1/12, d = −1/4, e = e0.

Eq. (173) holds in both models, hence the two models have the same distri-
bution P (x, y, z1, . . . , zk) = (1/2)k+2. By Eq. (174), in Model 1, Px=0(y =
0, z1 = 0, . . . , zk = 0) = (1/2)k+1, and in Model 2, Px=0(y = 0, z1 =
0, . . . , zk = 0) = (1/2)k+1(1 − f/6). Since f 6= 0, we have that Px=0(y =
0, z1 = 0, . . . , zk = 0) takes different values in Model 1 and 2. Therefore
Px(y, z1, . . . , zk) is not identifiable. 2

B Proof of Lemma 2

Lemma 2 Px(s) is identifiable if and only if Px(s) is identifiable in the sub-
graph GAn(S).

Proof: (only if) By Lemma 13.
(if) Summing both sides of Eq. (6) over V \ An(S), we have that the

marginal distribution P (an(S)) decomposes exactly according to the graph
GAn(S). Hence if Px(s) is identifiable in GAn(S), then it is computable from
P (an(S)), and therefore is identifiable in G. 2
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C Proof of Lemma 5

Lemma 5 Let A ⊆ B ⊆ V . Q[A] is computable from Q[B] if and only if
Q[A]GB

is computable from Q[B]GB
.

Proof: (only if) By Lemma 13.
(if) Proof by contradiction. Assume that Q[A] is not computable from

Q[B], then there exist two models, M1 and M2, with the same causal graph
G, satisfying

QMk [B](b, c) =
∑

u

∏

{i|Vi∈B}

PMk(vi|pa
′
i, ci, u

i)PMk(u), k = 1, 2, (175)

where PA′
i = PAi ∩B, Ci = PAi \B, and C = ∪iCi, such that

QM1 [B](b, c) = QM2 [B](b, c) > 0, for all values b, c, (176)

but

QM1 [A](b′, c′) 6= QM2 [A](b′, c′), for some particular value b′, c′. (177)

Q[B]GB
can be written as

Q[B]GB
(b) =

∑

u

∏

{i|Vi∈B}

P (vi|pa
′
i, u

i)P (u). (178)

We construct two models, M ′
1 and M ′

2, with the same causal graph GB as

PM ′
k(vi|pa

′
i, u

i) = P Mk(vi|pa
′
i, Ci = c′i, u

i), k = 1, 2, (179)

PM ′
k(u) = P Mk(u), k = 1, 2. (180)

Then we have

Q[B]
M ′

k

GB
(b) = Q[B]Mk(b, c′), and Q[A]

M ′
k

GB
(b) = Q[A]Mk(b, c′), k = 1, 2.

(181)

From Eqs. (181), (176) and (177), we obtain

QM ′
1 [B]GB

(b) = QM ′
2 [B]GB

(b) > 0, for all values b, (182)

and

QM ′
1 [A]GB

(b′) 6= QM ′
2 [A]GB

(b′), for the value b′, (183)

which says that Q[A]GB
is not computable from Q[B]GB
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