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Abstract

This paper concerns the assessment of the effects of actions
or
policy interventions from a combination of: (i) nonexperi-
mental data, and (ii) substantive assumptions. The assump-
tions are encoded in the form of a directed acyclic graph, also
called “causal graph”, in which some variables are presumed
to be unobserved. The paper establishes a necessary and suf-
ficient criterion for the identifiability of the causal effects of
a singleton variable on all other variables in the model, and
a powerful sufficient criterion for the effects of a singleton
variable on any set of variables.

Introduction
This paper explores the feasibility of inferring cause ef-
fect relationships from various combinations of data and
theoretical assumptions. The assumptions considered will
be represented in the form of an acyclic causal diagram
which contains both arrows and bi-directed arcs (Pearl 1995;
2000). The arrows represent the potential existence of direct
causal relationships between the corresponding variables,
and the bi-directed arcs represent spurious dependencies due
to unmeasured confounders. Our main task will be to decide
whether the assumptions represented in any given diagram
are sufficient for assessing the strength of causal effects from
nonexperimental data and, if sufficiency is proven, to ex-
press the target causal effect in terms of estimable quantities.

It is well known that, in the absence of unmeasured
confounders, all causal effects areidentifiable, that is, the
joint response of any setY of variables to intervention
on a setT of treatment variables, denotedPt(y),1 can be
estimated consistently from nonexperimental data (Robins
1987; Spirtes, Glymour, & Scheines 1993; Pearl 1993).
If some confounders are not measured, then the question
of identifiability arises, and whether the desired quantity
can be estimated depends critically on the precise loca-
tions (in the diagram) of those confounders vis a vis the
setsT and Y . Sufficient graphical conditions for ensur-
ing the identification ofPt(y) were established by several
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1(Pearl 1995; 2000) used the notationP (yjset(t)),P (yjdo(t)),
or P (yjt̂) for the post-intervention distribution, while (Lauritzen
2000) usedP (yjjt).

authors (Spirtes, Glymour, & Scheines 1993; Pearl 1993;
1995) and are summarized in (Pearl 2000, Chapters 3 and
4). For example, a criterion called “back-door” permits one
to determine whether a given causal effectPt(y) can be ob-
tained by “adjustment”, that is, whether a setC of covariates
exists such that

Pt(y) =
X
c

P (yjc; t)P (c) (1)

When there exists no set of covariates that is sufficient for
adjustment, causal effects can sometimes be estimated by
invoking multi-stage adjustments, through a criterion called
“front-door” (Pearl 1995). More generally, identifiability
can be decided usingdo-calculus derivations (Pearl 1995),
that is, a sequence of syntactic transformations capable of
reducing expressions of the typePt(y) to subscript-free ex-
pressions. Usingdo-calculus as a guide, (Galles & Pearl
1995) devised a graphical criterion for identifyingPx(y)
(whereX andY are singletons) that combines and expands
the “front-door” and “back-door” criteria (see (Pearl 2000,
pp. 114-8)).

This paper develops new graphical identification criteria
that generalize and simplify existing criteria in several ways.
We show thatPx(v), whereX is a singleton andV is the set
of all variables excludingX , is identifiable if and only if
there is no consecutive sequence of confounding arcs be-
tweenX andX ’s immediate successors in the diagram.2

When interest lies in the effect ofX on a subsetS of out-
come variables, not on the entire setV , it is possible that
Px(s) would be identifiable even thoughPx(v) is not. To
this end, the paper gives a sufficient criterion for identifying
Px(s), which is an extension of the criterion for identifying
Px(v). It says thatPx(s) is identifiable if there is no con-
secutive sequence of confounding arcs betweenX andX ’s
children in the subgraph composed of the ancestors ofS.
Other than this requirement, the diagram may have an arbi-
trary structure, including any number of confounding arcs
betweenX andS. This simple criterion is shown to cover
all criteria reported in the literature (withX singleton), in-
cluding the “back-door”, “front-door”, and those developed
by (Galles & Pearl 1995).

2A variableZ is an “immediate successor” (or a “child”) ofX
if there exists an arrowX ! Z in the diagram.
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Notation, Definitions, and Problem
Formulation

The use of causal models for encoding distributional and
causal assumptions is now fairly standard (see, for ex-
ample, (Pearl 1988; Spirtes, Glymour, & Scheines 1993;
Greenland, Pearl, & Robins 1999; Lauritzen 2000; Pearl
2000)). The simplest such model, calledMarkovian, con-
sists of a directed acyclic graph (DAG) over a setV =
fV1; : : : ; Vng of vertices, representing variables of inter-
est, and a setE of directed edges, or arrows, that con-
nect these vertices. The interpretation of such a graph has
two components, probabilistic and causal. The probabilis-
tic interpretation views the arrows as representing proba-
bilistic dependencies among the corresponding variables,
and the missing arrows as representing conditional indepen-
dence assertions: Each variable is independent of all its non-
descendants given its direct parents in the graph.3 These
assumptions amount to asserting that the joint probability
functionP (v) = P (v1; : : : ; vn) factorizes according to the
product

P (v) =
Y
i

P (vijpai) (2)

wherepai are (values of) the parents of variableVi in the
graph.4

The causal interpretation views the arrows as representing
causal influences between the corresponding variables. In
this interpretation, the factorization of (2) still holds, but the
factors are further assumed to represent autonomous data-
generation processes, that is, each conditional probability
P (vijpai) represents a stochastic process by which the val-
ues ofVi are chosen in response to the valuespai (previ-
ously chosen forVi’s parents), and the stochastic variation
of this assignment is assumed independent of the variations
in all other assignments. Moreover, each assignment pro-
cess remains invariant to possible changes in the assignment
processes that govern other variables in the system. This
modularity assumption enables us to predict the effects of in-
terventions, whenever interventions are described as specific
modifications of some factors in the product of (2). The sim-
plest such intervention involves fixing a setT of variables to
some constantsT = t, which yields the post-intervention
distribution

Pt(v) =

� Q
fijVi 62Tg

P (vijpai) v consistent witht:
0 v inconsistent witht.

(3)

Eq. (3) represents a truncated factorization of (2), with fac-
tors corresponding to the manipulated variables removed.
This truncation follows immediately from (2) since, assum-
ing modularity, the post-intervention probabilitiesP (vijpai)

3We use family relationships such as “parents,” “children,” “an-
cestors,” and “descendants,” to describe the obvious graphical rela-
tionships. For example, the parentsPAi of nodeVi are the set of
nodes that are directly connected toVi via arrows pointing toVi.

4We use uppercase letters to represent variables or sets of vari-
ables, and use corresponding lowercase letters to represent their
values (instantiations).

corresponding to variables inT are either 1 or 0, while
those corresponding to unmanipulated variables remain un-
altered.5 If T stands for a set of treatment variables andY
for an outcome variable inV nT , then Eq. (3) permits us to
calculate the probabilityPt(y) that eventY = y would oc-
cur if treatment conditionT = t were enforced uniformly
over the population. This quantity, often called thecausal
effect of T onY , is what we normally assess in a controlled
experiment withT randomized, in which the distribution of
Y is estimated for each levelt of T .

We see from Eq. (3) that the model needed for predicting
the effect of interventions requires the specification of three
elements

M = hV;G; P (vijpai)i

where (i)V = fV1; : : : ; Vng is a set of variables, (ii)G is a
directed acyclic graph with nodes corresponding to the ele-
ments ofV , and (iii) P (vijpai); i = 1; : : : ; n, is the condi-
tional probability of variableVi given its parents inG. Since
P (vijpai) is estimable from nonexperimental data whenever
V is observed, we see that, given the causal graphG, all
causal effects are estimable from the data as well.6

Our ability to estimatePt(v) from nonexperimental data
is severely curtailed when some variables in a Markovian
model are unobserved, or, equivalently, if two or more vari-
ables inV are affected by unobserved confounders; the pres-
ence of such confounders would not permit the decompo-
sition in (2). LetV andU stand for the sets of observed
and unobserved variables, respectively. Assuming that noU
variable is a descendant of anyV variable (called asemi-
Markovian model), the observed probability distribution,
P (v), becomes a mixture of products:

P (v) =
X
u

Y
i

P (vijpai; u
i)P (u) (4)

wherepai andui stand for the sets of the observed and un-
observed parents ofVi, and the summation ranges over all
theU variables. The post-intervention distribution, likewise,
will be given as a mixture of truncated products

Pt(v)

=

( X
u

Y
fijVi 62Tg

P (vijpai; u
i)P (u) v consistent witht:

0 v inconsistent witht.
(5)

and, the question of identifiability arises, i.e., whether it is
possible to expressPt(v) as a function of the observed dis-
tributionP (v).

Formally, our semi-Markovian model consists of five ele-
ments

M = hV; U;GV U ; P (vijpai; u
i); P (u)i

5Eq. (3) was named “Manipulation Theorem” in (Spirtes, Gly-
mour, & Scheines 1993), and is also implicit in Robins’ (1987)
G-computation formula.

6It is in fact enough that the parents of each variable inT be
observed (Pearl 2000, p. 78).



whereGV U is a causal graph consisting of variables inV �
U . Clearly, givenM and any two setsT andS in V , Pt(s)
can be determined unambiguously using (5). The question
of identifiability is whether a given causal effectPt(s) can
be determined uniquely from the distributionP (v) of the
observed variables, and is thus independent of the unknown
quantities,P (u) andP (vijpai; ui), that involve elements of
U .

In order to analyze questions of identifiability, it is con-
venient to represent our modeling assumptions in the form
of a graphG that does not show the elements ofU explic-
itly but, instead, represents the confounding effects ofU us-
ing bidirected edges. A bidirected edge between nodesVi
andVj represents the presence (inGV U ) of a divergent path
Vi L99 Uk 9 9 K Vj going strictly through elements ofU .
The presence of such bidirected edges inG represents un-
measured factors (or confounders) that may influence two
variables inV ; we assume that substantive knowledge per-
mits us to decide if such confounders can be ruled out from
the model. See Figure 1 for an example graph with bidi-
rected edges.

Definition 1 (Causal-Effect Identifiability) The causal ef-
fect of a set of variables T on a disjoint set of variables
S is said to be identifiablefrom a graph G if the quantity
Pt(s) can be computed uniquely from any positive probabil-
ity of the observed variables—that is, if PM1

t (s) = PM2
t (s)

for every pair of models M1 and M2 with PM1(v) =
PM2(v) > 0 and G(M1) = G(M2) = G.

In other words, the quantityPt(s) can be determined from
the observed distributionP (v) alone; the details ofM are
irrelevant.

The Identification of Px(v)
Let X be a singleton variable. In this section we study
the problem of identifying the causal effect ofX on V 0 =
V n fXg, (namely, on all other variables inV ), a quantity
denoted byPx(v).

The easiest case
Theorem 1 If there is no bidirected edge connected to X ,
then Px(v) is identifiable and is given by

Px(v) = P (vjx; pax)P (pax) (6)

Proof: Since there is no bidirected edge connected toX ,
then the termP (xjpax; ux) = P (xjpax) in Eq. (4) can be
moved ahead of the summation, giving

P (v) = P (xjpax)
X
u

Y
fijVi 6=Xg

P (vijpai; u
i)P (u)

= P (xjpax)Px(v): (7)

Hence,

Px(v) = P (v)=P (xjpax) = P (vjx; pax)P (pax): (8)

2

Theorem 1 also follows from Theorem 3.2.5 of (Pearl 2000)
which states that for any disjoint setsS andT in a Marko-
vian modelM , if the parents ofT are measured, thenPt(s)
is identifiable.

Z1

Z2X

Z3

Y

Figure 1:

A more interesting case

The case where there is no bidirected edge connected to any
child of X is also easy to handle. LettingChx denote the
set ofX ’s children, we have the following theorem.

Theorem 2 If there is no bidirected edge connected to any
child of X , then Px(v) is identifiable and is given by

Px(v) =
� Y
fijVi2Chxg

P (vijpai)
�X

x

P (v)Q
fijVi2Chxg

P (vijpai)

(9)

Proof: Let S = V n (Chx [ fXg) and A =Q
fijVi2Sg

P (vijpai; ui). Since there is no bidirected edge
connected to any child ofX , the factors corresponding to
the variables inChx can be moved ahead of the summation
in Eqs. (4) and (5). We have

P (v) =
� Y
fijVi2Chxg

P (vijpai)
�X

u

P (xjpax; u
x) � A � P (u);

(10)

and

Px(v) =
� Y
fijVi2Chxg

P (vijpai)
�X

u

A � P (u): (11)

The variableX does not appear in the factors ofA, hence we
augmentA with the term

P
x P (xjpax; u

x) = 1, and writeX
u

A�P (u) =
X
x

X
u

P (xjpax; u
x) � A � P (u)

=
X
x

P (v)Q
fijVi2Chxg

P (vijpai)
: (by (10)) (12)

Substituting this expression into Eq. (11) leads to Eq. (9).2

The usefulness of Theorem 2 can be demonstrated in the
model of Figure 1. Although the diagram is quite compli-
cated, Theorem 2 is applicable, and readily gives

P x(z1; z2; z3; y) = P (z1jx; z2)
X
x0

P (x0; z1; z2; z3; y)

P (z1jx0; z2)

= P (z1jx; z2)
X
x0

P (y; z3jx
0; z1; z2)P (x

0; z2): (13)
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Figure 2:

The general case
When there are bidirected edges connected to the children
ofX , it may still be possible to identifyPx(v). To illustrate,
consider the graph in Figure 2, for which we have

P (v) =
X
u1

P (xju1)P (z2jz1; u1)P (u1)

�
X
u2

P (z1jx; u2)P (yjx; z1; z2; u2)P (u2); (14)

and

Px(v) =
X
u1

P (z2jz1; u1)P (u1)

�
X
u2

P (z1jx; u2)P (yjx; z1; z2; u2)P (u2): (15)

Let

Q1 =
X
u1

P (xju1)P (z2jz1; u1)P (u1); (16)

and

Q2 =
X
u2

P (z1jx; u2)P (yjx; z1; z2; u2)P (u2): (17)

Eq. (14) can then be written as

P (v) = Q1 �Q2; (18)

and Eq. (15) as

Px(v) = Q2

X
x

Q1: (19)

Thus, ifQ1 andQ2 can be computed fromP (v), thenPx(v)
is identifiable and given by Eq. (19). In fact, it is enough to
show thatQ1 can be computed fromP (v) (i.e., identifiable);
Q2 would then be given byP (v)=Q1. To show thatQ1 can
indeed be obtained fromP (v), we sum both sides of Eq. (14)
overy, and get

P (x; z1; z2) = Q1 �
X
u2

P (z1jx; u2)P (u2): (20)

Summing both sides of (20) overz2, we get

P (x; z1) = P (x)
X
u2

P (z1jx; u2)P (u2); (21)

hence, X
u2

P (z1jx; u2)P (u2) = P (z1jx): (22)

From Eqs. (22) and (20),

Q1 = P (x; z1; z2)=P (z1jx) = P (z2jx; z1)P (x); (23)

and from Eq. (18),

Q2 = P (v)=Q1 = P (yjx; z1; z2)P (z1jx): (24)

Finally, from Eq. (19), we obtain

Px(v) = P (yjx; z1; z2)P (z1jx)
X
x0

P (z2jx
0; z1)P (x

0):

(25)

From the preceding example, we see that because the two
bidirected arcs in Figure 2 do not share a common node, the
set of factors (ofP (v)) containingU1 is disjoint of those
containingU2, andP (v) can be decomposed into a product
of two terms, each being a summation of products. This
decomposition, to be treated next, plays an important role in
the general identifiability problem.

C-components Let a path composed entirely of bidirected
edges be called abidirected path. The set of variablesV can
be partitioned into disjoint groups by assigning two variables
to the same group if and only if they are connected by a
bidirected path. Assume thatV is thus partitioned intok
groupsS1; : : : ; Sk, and denote byNj the set ofU variables
that are parents of those variables inSj . Clearly, the sets
N1; : : : ; Nk form a partition ofU . Define

Qj =
X
nj

Y
fijVi2Sjg

P (vijpai; u
i)P (nj); j = 1; : : : ; k:

(26)

The disjointness ofN1; : : : ; Nk implies thatP (v) can be
decomposed into a product ofQj ’s:

P (v) =

kY
j=1

Qj : (27)

We will call eachSj a c-component (abbreviating “con-
founded component”) ofV in G or a c-component ofG, and
Qj thec-factor corresponding to the c-componentSj . For
example, in the model of Figure 2,V is partitioned into the
c-componentsS1 = fX;Z2g andS2 = fZ1; Y g, the corre-
sponding c-factors are given in equations (16) and (17), and
P (v) is decomposed into a product of c-factors as in (18).

Let Pa(S) denote the union of a setS and the set of par-
ents ofS, that is,Pa(S) = S [ ([Vi2SPAi). We see that
Qj is a function ofPa(Sj). Moreover, eachQj can be inter-
preted as the post-intervention distribution of the variables
in Sj , under an intervention that sets all other variables to
constants, or

Qj = Pvnsj (sj) (28)

The importance of the c-factors stems from that all c-
factors are identifiable, as shown in the following lemma.



Lemma 1 Let a topological order over V be V1 < : : : <
Vn, and let V (i) = fV1; : : : ; Vig, i = 1; : : : ; n, and V (0) =
;. For any setC, letGC denote the subgraph ofG composed
only of variables in C. Then

(i) Each c-factor Qj , j = 1; : : : ; k, is identifiable and is
given by

Qj =
Y

fijVi2Sjg

P (vijv
(i�1)): (29)

(ii) Each factor P (vijv(i�1)) can be expressed as

P (vijv
(i�1)) = P (vijpa(Ti) n fvig); (30)

where Ti is the c-component of GV (i) that contains Vi.

Proof: We prove (i) and (ii) simultaneously by induction on
the number of variablesn.

Base:n = 1; we have one c-componentQ1 = P (v1),
which is identifiable and is given by Eq. (29), and Eq. (30)
is satisfied.

Hypothesis: When there aren variables, all c-factors are
identifiable and are given by Eq. (29), and Eq. (30) holds for
all Vi 2 V .

Induction step: When there aren + 1 vari-
ables in V , assuming thatV is partitioned into c-
componentsS1; : : : ; Sl; S0, with corresponding c-factors
Q1; : : : ; Ql; Q

0, and thatVn+1 2 S0, we have

P (v) = Q0
Y
i

Qi: (31)

Summing both sides of (31) overvn+1 leads to

P (v(n)) = (
X
vn+1

Q0)
Y
i

Qi: (32)

It is clear that eachSi; i = 1; : : : ; l, is a c-component of
GV (n) . By the induction hypothesis, eachQi; i = 1; : : : ; l,
is identifiable and is given by Eq. (29). From Eq. (31),Q0 is
identifiable as well, and is given by

Q0 =
P (v)Q
iQi

=
Y

fijVi2S0g

P (vijv
(i�1)); (33)

which is clear from Eq. (29) and the chain decomposition
P (v) =

Q
i P (vijv

(i�1)).
By the induction hypothesis, Eq. (30) holds fori from 1

to n. Next we prove that it holds forVn+1. In Eq. (33),Q0

is a function ofPa(S 0), and each termP (vijv(i�1)), Vi 2
S0 andVi 6= Vn+1, is a function ofPa(Ti) by Eq. (30),
whereTi is a c-component of the graphGV (i) and therefore
is a subset ofS0. Hence we obtain thatP (vn+1jv(n)) is a
function only ofPa(S 0) and is independent ofC = V n
Pa(S0), which leads to

P (vn+1jpa(S
0) n fvn+1g)

=
X
c

P (vn+1jv
(n))P (cjpa(S0) n fvn+1g)

= P (vn+1jv
(n))
X
c

P (cjpa(S0) n fvn+1g)

= P (vn+1jv
(n)) (34)

X1 X2 X3 X4 Y

U1 U3

U2

Figure 3:

2

The proposition (ii) in Lemma 1 can also be proved by using
d-separation criterion (Pearl 1988) to show thatVi is inde-
pendent ofV (i) n Pa(Ti) givenPa(Ti) n fVig.

We show the use of Lemma 1 by an example shown in
Figure 3, which has two c-componentsS1 = fX2; X4g and
S2 = fX1; X3; Y g. P (v) decomposes into

P (x1; x2; x3; x4; y) = Q1Q2; (35)

where

Q1 =
X
u2

P (x2jx1; u2)P (x4jx3; u2)P (u2); (36)

Q2 =
X
u1;u3

P (x1ju1)P (x3jx2; u1; u3)P (yjx4; u3)

� P (u1)P (u3): (37)

By Lemma 1, bothQ1 andQ2 are identifiable. The only
admissible order of variables isX1 < X2 < X3 < X4 < Y ,
and Eq. (29) gives

Q1 = P (x4jx1; x2; x3)P (x2jx1); (38)
Q2 = P (yjx1; x2; x3; x4)P (x3jx1; x2)P (x1): (39)

We can also check that the expressions obtained in Eq.s (23)
and (24) for Figure 2 satisfy Lemma 1.

The identification criterion for Px(v) Let X belong to
the c-componentSX with corresponding c-factorQX . Let
QX
x denote the c-factorQX with the termP (xjpax; ux) re-

moved, that is,

QX
x =

X
nX

Y
fijVi 6=X;Vi2SXg

P (vijpai; u
i)P (nX): (40)

We have

P (v) = QX
Y
i

Qi; (41)

Px(v) = QX
x

Y
i

Qi: (42)

Since allQi’s are identifiable,Px(v) is identifiable if and
only if QX

x is identifiable, and we have the following theo-
rem.

Theorem 3 Px(v) is identifiable if and only if there is no
bidirected path connecting X to any of its children. When



Px(v) is identifiable, it is given by

Px(v) =
P (v)

QX

X
x

QX ; (43)

where QX is the c-factor corresponding to the c-component
SX that contains X .

Proof: (ififif) If there is no bidirected path connectingX to any
of its children, then none ofX ’s children is inSX . Under
this condition, removing the termP (xjpax; ux) fromQX is
equivalent to summingQX overX , and we can write

QX
x =

X
x

QX : (44)

Hence from Eq.s (42) and (41), we obtain

Px(v) = (
X
x

QX)
Y
i

Qi = (
X
x

QX)
P (v)

QX
; (45)

which proves the identifiability ofPx(v).
(only ifonly ifonly if) Sketch: Assuming that there is a bidirected

path connectingX to a child ofX , one can construct two
models (by specifying all conditional probabilities) such
thatP (v) has the same values in both models whilePx(v)
takes different values. The proof is lengthy and is given in
(Tian & Pearl 2002). 2

We demonstrate the use of Theorem 3 by identifying
Px1(x2; x3; x4; y) in Figure 3. The graph has two c-
componentsS1 = fX2; X4g andS2 = fX1; X3; Y g, with
corresponding c-factors given in (38) and (39). SinceX1 is
in S2 and its childX2 is not inS2, Theorem 3 ensures that
Px1(x2; x3; x4; y) is identifiable and is given by

P x1(x2; x3; x4; y) = Q1

X
x1

Q2

=P (x4jx1; x2; x3)P (x2jx1)X
x0

1

P (yjx01; x2; x3; x4)P (x3jx
0
1; x2)P (x

0
1): (46)

A Criterion for Identifying Px(s)
LetX be a singleton variable andS � V be any set of vari-
ables. Clearly, wheneverPx(v) is identifiable, so isPx(s).
However, there are obvious cases wherePx(v) is not identi-
fiable and stillPx(s) is identifiable for some subsetsS of V .
In this section we give a criterion for identifyingPx(s).

Let An(S) denote the union of a setS and the set of
ancestors of the variables inS, and letGAn(S) denote the
subgraph ofG composed only of variables inAn(S). Sum-
ming both sides of Eq. (4) overV n An(S), we have that
the marginal distributionP (an(S)) decomposes exactly ac-
cording to the graphGAn(S). Therefore, ifPx(s) is identi-
fiable inGAn(S), then it is computable fromP (an(S)), and
thus is computable fromP (v). A direct extension of The-
orem 3 then leads to the following sufficient criterion for
identifyingPx(s).

Theorem 4 Px(s) is identifiable if there is no bidirected
path connecting X to any of its children in GAn(S).

When the condition in Theorem 4 is satisfied, we can com-
pute Px(an(S)) by applying Theorem 3 inGAn(S), and
Px(s) can be obtained by marginalizing overPx(an(S)).

This simple criterion can classify correctly all the exam-
ples treated in the literature withX singleton, including
those contrived by (Galles & Pearl 1995). In fact, forX and
S being singletons, it is shown in the Appendix that if there
is a bidirected path connectingX to one of its children such
that every node on the path is inAn(S), then none of the
“back-door”, “front-door”, and (Galles & Pearl 1995) crite-
ria is applicable. However, this criterion isnot necessary for
identifyingPx(s). Examples exist in whichPx(s) is iden-
tifiable but Theorem 4 is not applicable.7 An improved cri-
terion that covers those cases is described in (Tian & Pearl
2002).

Conclusion
We developed new graphical criteria for identifying the
causal effects of a singleton variable on a set of variables.
Theorem 4 has important ramifications to the theory and
practice of observational studies. It implies that the key to
identifiability lies not in blocking back-door paths between
X andS but, rather, in blocking back-door paths betweenX
and its immediate successors on the pathways toS. The po-
tential of finding and measuring intermediate variables that
satisfy this condition opens new vistas in experimental de-
sign.
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Appendix
In this appendix we show that Theorem 4 covers the crite-
rion in (Galles & Pearl 1995) (which will be called the G-P
criterion). The G-P criterion is for identifyingPx(y) with
X andY being singletons, and it includes the “front-door”
and “back-door” criteria as special cases (see (Pearl 2000,
pp. 114-8)). We will prove that if there is a bidirected path
connectingX to one of its children such that every node on
the path is an ancestor ofY , then the G-P criterion is not
applicable. There are four conditions in the G-P criterion,
among which Condition 1 is a special case of Condition 3,
and Condition 2 is trivial. Therefore we only need to con-
sider Condition 3 and 4.

Proof: Assume that there is a bidirected pathp fromX to
its childY1 such that every node onp is an ancestor ofY , and
that there is a directed pathq from Y1 to Y . We will show
by contradiction that neither Condition 3 nor Condition 4 is
applicable for identifyingPx(y). For any setZ, a node will
be calledZ-active if it is in Z or any of its descendants is in
Z, otherwise it will be calledZ-inactive.

(Condition 3Condition 3Condition 3) Assume that there exists a setZ that blocks
all back-door paths fromX to Y so thatPx(z) is identifi-

7This implies that, contrary to claims, the criterion developed
in (Galles & Pearl 1995) isnot complete.
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able.8 If every internal node onp is an ancestor ofX , or if
every nonancestor ofX onp isZ-active, then letW1 = Y1,
otherwise letW1 be theZ-inactive non-ancestor ofX that
is closest toX onp (see Figure 4). If every internal node on
the subpathp(W1; X) 9 is Z-active, then letW2 = X , oth-
erwise letW2 be theZ-inactive node that is closest toW1

onp(W1; X). From the definition ofW1 andW2, W2 must
be an ancestor ofX (or beX itself), and letp1 be any di-
rected path fromW2 toX . (i) If W1 6= Y1, lettingp2 be any
directed path fromW1 to Y , then from the definition ofW1

andW2 the pathp0 = (p1(X;W2); p(W2;W1); p2(W1; Y ))
is a back-door path fromX to Y that is not blocked byZ
(see Figure 4) sinceW2 is Z-inactive, all internal nodes
on p(W2;W1) is Z-active, andW1 is Z-inactive. (ii) If
W1 = Y1, there are two situations:

(a)Z consists entirely of nondescendants ofX . Then the
pathp00 = (p1(X;W2); p(W2; Y1); q(Y1; Y )) is a back-door
path fromX to Y that is not blocked byZ.

(b)Z contains a variableY 0 on q(Y1; Y ) so thatPx(z) is
identifiable. By the definition ofW1, every node onp is an
ancestor ofZ. Px(z) can not be identified by Theorem 4,
and the G-P criterion is not applicable for identifyingPx(z)
if Z contains more than one variable. IfZ contains only
one variableY 0, then every node onp is an ancestor ofY 0.
If Px(y0) is identifiable by Condition 3 of the G-P criterion
(Condition 4 is not applicable as proved later), then from
the preceding analysis there is aY 00 on the pathq(Y1; Y 0)
such that every node onp is an ancestor ofY 00 andPx(y00)
is identifiable. By induction, in the end we have every node
on p is an ancestor ofY1 andPx(y1) is identifiable, which
does not hold from the preceding analysis.

(Condition 4Condition 4Condition 4) Assume that there exist setsZ1 andZ2 that
satisfy all (i)–(iv) conditions in Condition 4. SinceZ1 has
to block the path((X;Y1); q(Y1; Y )), let V1 be the variable
in Z1 that is closest toY1 on the pathq (see Figure 5(a)). If
none of the internal node onp is in An(V1) n An(X) (the
set of ancestors ofV1 that are not ancestors ofX) or if every

8A path fromX toY is said to be aback-door path if it contains
an arrow intoX.

9We usep(W1; X) to represent the subpath ofp fromW1 toX.

variable inAn(V1)nAn(X) onp isZ2-active, then letW1 =
Y1, otherwise letW1 be theZ2-inactive variable inAn(V1)n
An(X) that is closest toX on p. Let p1 be any directed
path fromW1 to V1. If every internal node on the subpath
p(W1; X) is Z2-active, then letW2 = X , otherwise letW2

be theZ2-inactive node that is closest toW1 on p(W1; X).
SinceW2 must be an ancestor ofY , from the definition of
W1 andW2, there are two possible situations:

(a) W2 is an ancestor ofX or W2 = X . Let p2
be any directed path fromW2 to X (see Figure 5(a)).
From the definition ofW1 and W2, the path p0 =
(p2(X;W2); p(W2;W1); p1(W1; V1)) is a back-door path
from X to V1 2 Z1 that is not blocked byZ2 that does
not contain any descendant ofX (see Figure 5(a)).

(b) W2 is an ancestor ofY but not ancestor ofV1
(W2 2 An(Y ) nAn(V1)). Let p3 be any directed path from
W2 to Y (see Figure 5(b)). From the definition ofW1 and
W2, the pathp00 = (p1(V1;W1); p(W1;W2); p3(W2; Y )) is
a back-door path fromV1 2 Z1 to Y that is not blocked by
Z2 (see Figure 5(b)). 2

References
Galles, D., and Pearl, J. 1995. Testing identifiability of
causal effects. In Besnard, P., and Hanks, S., eds.,Uncer-
tainty in Artificial Intelligence 11. San Francisco: Morgan
Kaufmann. 185–195.
Greenland, S.; Pearl, J.; and Robins, J. 1999. Causal di-
agrams for epidemiologic research.Epidemiology 10:37–
48.
Lauritzen, S. 2000. Graphical models for causal infer-
ence. In Barndorff-Nielsen, O.; Cox, D.; and Kluppelberg,
C., eds.,Complex Stochastic Systems. London/Boca Raton:
Chapman and Hall/CRC Press. chapter 2, 67–112.
Pearl, J. 1988.Probabilistic Reasoning in Intelligence Sys-
tems. San Mateo, CA: Morgan Kaufmann.
Pearl, J. 1993. Comment: Graphical models, causality, and
intervention.Statistical Science 8:266–269.
Pearl, J. 1995. Causal diagrams for experimental research.
Biometrika 82:669–710.
Pearl, J. 2000.Causality: Models, Reasoning, and Infer-
ence. NY: Cambridge University Press.
Robins, J. 1987. A graphical approach to the identifica-
tion and estimation of causal parameters in mortality stud-
ies with sustained exposure periods.Journal of Chronic
Diseases 40(Suppl 2):139S–161S.
Spirtes, P.; Glymour, C.; and Scheines, R. 1993.Causa-
tion, Prediction, and Search. New York: Springer-Verlag.
Tian, J., and Pearl, J. 2002. On the identification of causal
effects. Technical Report R-290-L, Department of Com-
puter Science, University of California, Los Angeles.




