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Abstract authors (Spirtes, Glymour, & Scheines 1993; Pearl 1993;

Thi . 1995) and are summarized in (Pearl 2000, Chapters 3 and
is paper concerns the assessment of the effects of actions o “ # .

or 4). For example, a criterion called “back-door” permits one
policy interventions from a combination of: (i) nonexperi- to determine whether a given causal eff€pty) can be ob-
mental data, and (ii) substantive assumptions. The assump- tained by “adjustment”, that is, whether a 6eof covariates
tions are encoded in the form of a directed acyclic graph, also ~ €Xists such that
called “causal graph”, in which some variables are presumed
to be unobserved. The paper establishes a necessary and suf- Pi(y) = Z P(yle,t)P(c) (1)
ficient criterion for the identifiability of the causal effects of c

a singleton variable on all other variables in the model, and . . . -
a powerful sufficient criterion for the effects of a singleton When there exists no set of covariates that is sufficient for

variable on any set of variables. adjustment, causal effects can sometimes be estimated by
invoking multi-stage adjustments, through a criterion called

: “front-door” (Pearl 1995). More generally, identifiability
) IntrOdUCt.IQ.n . ) can be decided usingp-calculus derivations (Pearl 1995),
This paper explores the feasibility of inferring cause ef- that is, a sequence of syntactic transformations capable of
fect relationships from various combinations of data and reducing expressions of the typ(y) to subscript-free ex-
theoretical assumptions. The assumptions considered will pressions. Usinglo-calculus as a guide, (Galles & Pearl
be represented in the form of an acyclic causal diagram 1995) devised a graphical criterion for identifyirfy, (v)
which contains both arrows and bi-directed arcs (Pearl 1995; (whereX andY are singletons) that combines and expands
2000). The arrows represent the potential existence of direct the “front-door” and “back-door” criteria (see (Pearl 2000,
causal relationships between the corresponding variables, pp. 114-8)).
and the bi-directed arcs represent spurious dependencies due ' Thjs paper develops new graphical identification criteria

to unmeasured confounders. Our main task will be to decide {hat generalize and simplify existing criteria in several ways.
whether the assumptions represented in any given diagramye show thatP, (v), whereX is a singleton and is the set
are sufficient for assessing the strength of causal effects from ¢ 1 variables excludingy, is identifiable if and only if

nonexperimental data and, if sufficiency is proven, to ex- here is no consecutive sequence of confounding arcs be-
press the target causal effect in terms of estimable quantities. tyeen X and X’s immediate successors in the diagram.

It is well known that, in the absence of unmeasured \yhen interest lies in the effect 6 on a subses of out-

confounders, all causal effects adentifiable, that is, the come variables, not on the entire $ét it is possible that
joint response of any set’ of variables to intervention  p (s) would be identifiable even though, (v) is not. To
on a setl" of treatment variables, denotéd(y),” can be this end, the paper gives a sufficient criterion for identifying

estimated. consistently from nonexperimental data (Robins P,(s), which is an extension of the criterion for identifying
1987; Spirtes, Glymour, & Scheines 1993; Pearl 1993). p (;)) |t says thatP, (s) is identifiable if there is no con-

If gome_pon_fpunders are not measured, ther_l the question gactive sequence of confounding arcs betw&eand X's

of |dent|f|ap|I|ty arises, and whgther the desired quantity children in the subgraph composed of the ancestors. of
can be estimated depends critically on the precise loca- other than this requirement, the diagram may have an arbi-
tions (in the diagram) of those confounders vis a vis the ary structure, including any number of confounding arcs

setsT' andY'. Sufficient graphical conditions for ensur-  petweenX andS. This simple criterion is shown to cover
ing the identification off’(y) were established by several 5| criteria reported in the literature (with' singleton), in-

Copyright © 2002, American Association for Artificial Intelli-  cluding the “back-door”, “front-door”, and those developed
gence (www.aaai.org). All rights reserved. by (Galles & Pearl 1995).

Y(Pearl 1995; 2000) used the notatiBy|set(t)), P(y|do(t)),
or P(y|t) for the post-intervention distribution, while (Lauritzen 2A variable Z is an “immediate successor” (or a “child”) of

2000) usedP(y||t). if there exists an arrouX — Z in the diagram.
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Notation, Definitions, and Problem
Formulation

The use of causal models for encoding distributional and
causal assumptions is now fairly standard (see, for ex-
ample, (Pearl 1988; Spirtes, Glymour, & Scheines 1993;
Greenland, Pearl, & Robins 1999; Lauritzen 2000; Pearl
2000)). The simplest such model, call®trkovian, con-
sists of a directed acyclic graph (DAG) over a $ét=
{W1,...,V,} of vertices, representing variables of inter-
est, and a sefy of directed edges, or arrows, that con-
nect these vertices. The interpretation of such a graph has
two components, probabilistic and causal. The probabilis-
tic interpretation views the arrows as representing proba-
bilistic dependencies among the corresponding variables,
and the missing arrows as representing conditional indepen-
dence assertions: Each variable is independent of all its non-
descendants given its direct parents in the gfaphhese
assumptions amount to asserting that the joint probability
functionP(v) = P(vy,... ,v,) factorizes according to the
product

P(v) = H P(vilpa;) )

wherepa; are (values of) the parents of varialifg in the
graph?

corresponding to variables i are either 1 or 0, while
those corresponding to unmanipulated variables remain un-
altered® If T stands for a set of treatment variables and
for an outcome variable i \T', then Eq. (3) permits us to
calculate the probability;(y) that eventt” = y would oc-
cur if treatment conditiol” = ¢ were enforced uniformly
over the population. This quantity, often called taisal
effect of ' onY’, is what we normally assess in a controlled
experiment withHI" randomized, in which the distribution of
Y is estimated for each levebf T'.

We see from Eg. (3) that the model needed for predicting
the effect of interventions requires the specification of three
elements

M =(V,G, P(vilpa;))

where ()V = {V1,...,V,} is a set of variables, (ii}7 is a
directed acyclic graph with nodes corresponding to the ele-
ments ofV/, and (iii) P(vi|pa;),i = 1,... ,n, is the condi-
tional probability of variablé’; given its parents id/. Since
P(v;|pa;) is estimable from nonexperimental data whenever
V' is observed, we see that, given the causal g@plall
causal effects are estimable from the data as well.

Our ability to estimate?; (v) from nonexperimental data
is severely curtailed when some variables in a Markovian
model are unobserved, or, equivalently, if two or more vari-

The causal interpretation views the arrows as representing @0les inV” are affected by unobserved confounders; the pres-
causal influences between the corresponding variables. In €nce of such confounders would not permit the decompo-
this interpretation, the factorization of (2) still holds, butthe  Sition in (2). LetV andU stand for the sets of observed
factors are further assumed to represent autonomous data-2nd unobserved variables, respectively. Assuming that no

generation processes, that is, each conditional probability
P(vi|pa;) represents a stochastic process by which the val-
ues ofV; are chosen in response to the valpes (previ-
ously chosen fol;'s parents), and the stochastic variation
of this assignment is assumed independent of the variations
in all other assignments. Moreover, each assignment pro-
cess remains invariant to possible changes in the assignmen
processes that govern other variables in the system. This
modularity assumption enables us to predict the effects of in-
terventions, whenever interventions are described as specific
modifications of some factors in the product of (2). The sim-
plest such intervention involves fixing a eof variables to
some constant$’ = ¢, which yields the post-intervention
distribution

Py(v) = { (l;l{i\vieT} P(vi|pa;) v consistent witht.

v inconsistent witht.
3)

Eq. (3) represents a truncated factorization of (2), with fac-
tors corresponding to the manipulated variables removed.
This truncation follows immediately from (2) since, assum-
ing modularity, the post-intervention probabiliti$v;|pa;)

3We use family relationships such as “parents,” “children,” “an-
cestors,” and “descendants,” to describe the obvious graphical rela-
tionships. For example, the parer®si; of nodeV; are the set of
nodes that are directly connectedifovia arrows pointing td/;.

“We use uppercase letters to represent variables or sets of vari-
ables, and use corresponding lowercase letters to represent their

values (instantiations).

variable is a descendant of amy variable (called asemi-
Markovian model), the observed probability distribution,
P(v), becomes a mixture of products:

P)=)" H P(vilpa;, u’) P(u) (4)

Twherepai andu’ stand for the sets of the observed and un-

observed parents df;, and the summation ranges over all
theU variables. The post-intervention distribution, likewise,
will be given as a mixture of truncated products

Pi(v)
> TI P(vilpai,u')P(u) v consistent witt.
u {i|V;€T}
0 v inconsistent witht.
(5)

and, the question of identifiability arises, i.e., whether it is
possible to expresB;(v) as a function of the observed dis-
tribution P(v).

Formally, our semi-Markovian model consists of five ele-
ments

M = <V7 U,GVU,P(Ui|pG,i,Ui),P(U)>

SEq. (3) was named “Manipulation Theorem” in (Spirtes, Gly-
mour, & Scheines 1993), and is also implicit in Robins’ (1987)
G-computation formula.
8It is in fact enough that the parents of each variablg’ibe
observed (Pearl 2000, p. 78).



whereGyy is a causal graph consisting of variabled/irnx

U. Clearly, givenM and any two set§ andS in V, P;(s)

can be determined unambiguously using (5). The question
of identifiability is whether a given causal effeBf(s) can

be determined uniquely from the distributid®(v) of the
observed variables, and is thus independent of the unknown
quantities,P(u) and P (v;|pa;, u?), that involve elements of

U.

In order to analyze questions of identifiability, it is con-
venient to represent our modeling assumptions in the form
of a graphG that does not show the elementsliofexplic-
itly but, instead, represents the confounding effects ofs-
ing bidirected edges. A bidirected edge between nddes
andV; represents the presence (f¢y) of a divergent path
Vi «— Uy --» Vj; going strictly through elements @f.

The presence of such bidirected edgessimepresents un-
measured factors (or confounders) that may influence two
variables inV'; we assume that substantive knowledge per-
mits us to decide if such confounders can be ruled out from
the model. See Figure 1 for an example graph with bidi-
rected edges.

Definition 1 (Causal-Effect | dentifiability) The causal ef-
fect of a set of variables T' on a digoint set of variables
S is said to be identifiablefrom a graph G if the quantity
P, (s) can be computed uniquely from any positive probabil-
ity of the observed variables—that is, if P (s) = PM2(s)
for every pair of models M; and M, with PMi(y) =
PMz(p) > 0and G(M,) = G(M,) =G.

In other words, the quantit{;(s) can be determined from
the observed distributio®?(v) alone; the details ol are
irrelevant.

The ldentification of P,(v)

Let X be a singleton variable. In this section we study
the problem of identifying the causal effect & on V'’
V' \ {X}, (namely, on all other variables ¥), a quantity
denoted byP, (v).

Theeasiest case
Theorem 1 If there is no hidirected edge connected to X,
then P, (v) isidentifiable and is given by

P,(v) = P(v|z, pa;)P(pa;) (6)
Proof: Since there is no bidirected edge connectedto
then the termP(z|pa,,u”) = P(x|pa,) in Eq. (4) can be
moved ahead of the summation, giving

P(v) = P(alpa,)y, [ Plvilpai,u’)P(u)
u {i|Vi#X}
= P(z|pa,)P,(v). (7)
Hence,
PI(U) = P(U)/P(l‘|pam) = P(’U|m7paz)P(pam)' (8)
a

Theorem 1 also follows from Theorem 3.2.5 of (Pearl 2000)
which states that for any disjoint sefsand" in a Marko-
vian model}, if the parents of” are measured, the(s)

is identifiable.

X ~ \\_

v \

/

( ’ /
Zy /

\\ \//23 a
-

Figure 1:

=

Z,

A moreinteresting case

The case where there is no bidirected edge connected to any
child of X is also easy to handle. Lettingh, denote the
set of X''s children, we have the following theorem.

Theorem 2 If there is no bidirected edge connected to any
child of X, then P,.(v) isidentifiable and is given by

P(v)
P.(v) = P(vi|pai
v {i|Viel_[Chm} (vlpe )> ; [Liiv,ecn,y Ploilpai)
©)
Proof: Let S = V \ (Ch, U {X}) and A =

[ivies P(vi|pa;,u?). Since there is no bidirected edge
connected to any child ok, the factors corresponding to
the variables irC'h, can be moved ahead of the summation
in Egs. (4) and (5). We have

P(v) = ( H P(vi|pai)) ZP(x|paw,ug”) -A- P(u),
{ilVi€Cha} u
(10)
and
P.w)=( [[ Plilpa))d A-Pw). (11)

{i|Vi€eCh,}

The variableX does not appear in the factors4fhence we
augmentd with the term}__ P(z|pa,,u”) = 1, and write

Z A-P(u) = Z ZP(m|paw,uI) ~A-P(u)
_ P(v)

= (12)
— Hvieon.y Plvilpai)

- (by (10)

Substituting this expression into Eq. (11) leads to Eq.[(9).

The usefulness of Theorem 2 can be demonstrated in the
model of Figure 1. Although the diagram is quite compli-
cated, Theorem 2 is applicable, and readily gives

P($',21,22,Z37y)
P(z|2, 22)

Py(21,2,23,9) = P(z1|r,20) Y

= P(2’1|JZ,2’2)ZP(y,Z3|$I,Zl’z2)P(JZ,,Z2). (13)

2!
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The general case

When there are bidirected edges connected to the children

of X, it may still be possible to identify?, (v). To illustrate,
consider the graph in Figure 2, for which we have

ZP x|uy )P

Ul

2’2|2’1, Ul)P(U1)

ZP (z1]z,u2) P(ylz, 21, 22, u2) P(uz), (14)
and
v) :ZP(zz|z1,u1)P(u1)
ZP z1|®,u2) P(y|z, z1, 22, u2) P(us). (15)
Let
ZP z|u1)P(z] 21, u1) P(uy), (16)
and
ZP z1|z,u2) P(y|z, z1, 22, u2) P(u2). a7
Eq. (14) can then be written as
P) =Q1-Q2, (18)
and Eq. (15) as
(19)

= Q2ZQ1-

Thus, ifQ; and@, can be computed froR (v), thenP, (v)

is identifiable and given by Eq. (19). In fact, it is enough to
show thaty), can be computed froi?(v) (i.e., identifiable);
@ would then be given by’ (v)/Q:. To show thaty, can
indeed be obtained frof(v), we sum both sides of Eq. (14)
overy, and get

P(z,21,22) = Q1 - ZP(Z1|33;U2)P(U2)- (20)
Summing both sides of (20) oves, we get
P(z,2) ZP z1|z, u2) P(us), (21)

hence,
> P(z1|z,u2) Pus) = P(z|x). (22)
From Egs. (22) and (20),
Q1 = P(z,21,22)/P(z1]z) = P(22]z,21)P(x), (23)
and from Eqg. (18),
Q2 = P(v)/Q1 = P(ylz, 21, 22) P(z1]x).  (24)

Finally, from Eq. (19), we obtain
P(z1|z) Z P(zs|2', 21) P(z").

(25)

From the preceding example, we see that because the two
bidirected arcs in Figure 2 do not share a common node, the
set of factors (ofP(v)) containinglU; is disjoint of those
containinglUs, andP(v) can be decomposed into a product
of two terms, each being a summation of products. This
decomposition, to be treated next, plays an important role in
the general identifiability problem.

Py (v) = P(ylz, 21, 22)

C-components Let a path composed entirely of bidirected
edges be calledlaidirected path. The set of variableE can

be partitioned into disjoint groups by assigning two variables
to the same group if and only if they are connected by a
bidirected path. Assume that is thus partitioned intd:
groupsSs, . .. , Sk, and denote byV; the set ofU variables
that are parents of those variables9p Clearly, the sets

Ny, ..., Ny form a partition ofU. Define
Q=" JI Plpai,u’)P(n;), j=1,...,k
nj {i|V;€S;}
(26)

The disjointness ofVy, ... , Ny implies thatP(v) can be
decomposed into a product Qf;’s:

k
U) = H QJ
Jj=1

We will call eachS; a c-component (abbreviating “con-
founded component”) df in G or a c-component a&, and
Q; the c-factor corresponding to the c-componefit. For
example, in the model of Figure 2] is partitioned into the
c-components$; = {X, Z,} andS, = {Z;,Y}, the corre-
sponding c-factors are given in equations (16) and (17), and
P(v) is decomposed into a product of c-factors as in (18).
Let Pa(S) denote the union of a sétand the set of par-
ents ofS, that is,Pa(S) = S U (Uy,esPA;). We see that
Q; is afunction ofPa(S;). Moreover, eacld) ; can be inter-
preted as the post-intervention distribution of the variables
in S;, under an intervention that sets all other variables to
constants, or

(27)

Qj = Py, (55) (28)

The importance of the c-factors stems from that all c-
factors are identifiable, as shown in the following lemma.



Lemmal Let atopological order over V beV; < ... <
Ve,andlet VO =4V, ... Vi), i=1,... ,n,and V() =
(). For any set C, let G denotethe subgraph of G composed
only of variablesin C'. Then

(i) Each c-factor 5, j = 1,... , k, isidentifiable and is

given by
Q= JI Pit"). (29)
{ilVieS;}
(ii) Each factor P(v;|v(*~1)) can be expressed as
P(v;|o""1) = P(vi|pa(Ti) \ {vi}), (30)

where T; is the c-component of Gy,;) that contains V;.

Proof: We prove (i) and (ii) simultaneously by induction on
the number of variables.

Base:n = 1; we have one c-compone@;, = P(v;),
which is identifiable and is given by Eq. (29), and Eg. (30)
is satisfied.

Hypothesis: When there arevariables, all c-factors are
identifiable and are given by Eq. (29), and Eq. (30) holds for
allv, e V.

Induction step:  When there aren + 1 vari-
ables in V, assuming thatl’ is partitioned into c-

componentsSy, ..., S;, S’, with corresponding c-factors
Q1,.-.,Q;,Q',and that/,,; € S’, we have
v) = Q' [ @: (31)
Summing both sides of (31) ovey, ; leads to
P™) = (> Q" H Q- (32)
Unt1
It is clear that eacl$;,7 = 1,...,l, is a c-component of

Gy . By the induction hypothesis, eaéh,i = 1,... 1,
is identifiable and is given by Eqg. (29). From Eq. (33),is
identifiable as well, and is given by

,_ Pv) -
Q' = = P(vgl=1),
IT; @i {mgs'}

which is clear from Eq. (29) and the chain decomposition
P(v) =TT, P(v; [ =1).

By the induction hypothesis, Eq. (30) holds foirom 1
ton. Next we prove that it holds for, ;. In Eq. (33),Q’
is a function ofPa(S'), and each ternP (v;|v(=1), V; €
S"andV; # V,41, is a function of Pa(T;) by Eq. (30),
whereT; is a c-component of the grajhy, ) and therefore
is a subset of’. Hence we obtain thaP (v, 1|v(™) is a
function only of Pa(S’) and is independent af’ = V \
Pa(S"), which leads to

(33)

P(vnt1lpa(S") \ {vns1})

= Z P(vnt1]o™)P(clpa(S') \ {vn+1})

= P(opg1fo!™ ZP clpa(S) \ {vnt1})

= P(Un+1|v ) (34)

U1 Us
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The proposition (ii) in Lemma 1 can also be proved by using
d-separation criterion (Pearl 1988) to show thais inde-
pendent of” () \ Pa(T;) givenPa(T;) \ {V;}.
We show the use of Lemma 1 by an example shown in
Figure 3, which has two c-componeifis = { X, X, } and
Sy = {X1,X3,Y}. P(v) decomposes into

= Q1Q2,

P($1,$2,$3,$4,y) (35)
where
Q1= ZP(£62|331,UQ)P(£E4|ZL’3,U2)P(U2),

Q2 = Z P(331|U1)P

w1,u3

(36)

(1.3 |1.2, ui, u3)P(y|x4, U3)

- P(u1)P(us). (37)

By Lemma 1, both); and Q- are identifiable. The only
admissible order of variablesi§; < Xo < X3 < X, <Y,
and Eq. (29) gives
Q1 = P(x4|wy, w2, 23)P(x2]71), (38)
QQ = P(y|$1,.1'2,$3,$4)P($3|$1,$2)P($1). (39)

We can also check that the expressions obtained in Eq.s (23)
and (24) for Figure 2 satisfy Lemma 1.

The identification criterion for P,(v) Let X belong to
the c-componens X with corresponding c-factaX. Let

QX denote the c-factop* with the termP(z|pa,, u®) re-
moved, that is,
= Z H P(vi|pas, u’) P(nX).  (40)
nX {ilVi#X,VieS¥}
We have
v) = Q¥ [ @ (41)
=X [T e (42)

Since all@Q;’s are identifiable,P, (v) is identifiable if and
only if QX is identifiable, and we have the following theo-
rem.

Theorem 3 P, (v) is identifiable if and only if there is no
bidirected path connecting X to any of its children. When



P, (v) isidentifiable, it is given by
P(v)
ox 2%

where Q¥ isthe c-factor corresponding to the c-component
SX that contains X .

Proof: (if) If there is no bidirected path connectiigto any
of its children, then none ak’’s children is inSX. Under
this condition, removing the terfi(z|pa.., u*) from QX is
equivalent to summin@X over X, and we can write

P,.(v) =

(43)

QF => Q% (44)
Hence from Eq.s (42) and (41), we obtain
=0 [[e=Cengd.

which proves the identifiability oP,.(v).

(only if) Sketch: Assuming that there is a bidirected
path connecting( to a child of X, one can construct two
models (by specifying all conditional probabilities) such
that P(v) has the same values in both models whilgv)
takes different values. The proof is lengthy and is given in
(Tian & Pearl 2002). ]

We demonstrate the use of Theorem 3 by identifying
P, (z2,z3,24,y) In Figure 3. The graph has two c-
componentss; = {X,, X4} andS, = {X1,X3,Y}, with
corresponding c-factors given in (38) and (39). SiAceis
in Sy and its childX5 is not in.S,, Theorem 3 ensures that
P, (z2, %3, x4,y) is identifiable and is given by

Py, (22,73, 24,y) = Q1 ZQz
T1

=P(z4|21, 72, 23) P(22|71)

ZP(y|i’5ﬂa562,$3,$4)P($3|$37$2)P($'1)~

!
T

(46)

A Criterion for Identifying P,(s)
Let X be a singleton variable arfflC V' be any set of vari-
ables. Clearly, whenevdr, (v) is identifiable, so i, (s).
However, there are obvious cases whBrév) is not identi-
fiable and stillP, (s) is identifiable for some subsefsof V.
In this section we give a criterion for identifying, (s).

Let An(S) denote the union of a sef and the set of
ancestors of the variables #, and letG 4,,(s) denote the
subgraph of7 composed only of variables iAn(S). Sum-
ming both sides of Eq. (4) ovér \ An(S), we have that
the marginal distributiod®(an(S)) decomposes exactly ac-
cording to the graplé 4,,(s). Therefore, ifP,(s) is identi-
fiable inG 4,,(s), then itis computable fron® (an(S)), and
thus is computable fron?(v). A direct extension of The-
orem 3 then leads to the following sufficient criterion for
identifying P, (s).

Theorem 4 P,(s) is identifiable if there is no bidirected
path connecting X to any of its childrenin G' 4,,s)-

When the condition in Theorem 4 is satisfied, we can com-
pute P, (an(S)) by applying Theorem 3 i 4,,(s), and
P, (s) can be obtained by marginalizing ov@ (an(S)).

This simple criterion can classify correctly all the exam-
ples treated in the literature with® singleton, including
those contrived by (Galles & Pearl 1995). In fact, f6rand
S being singletons, it is shown in the Appendix that if there
is a bidirected path connecting to one of its children such
that every node on the path is itn(S), then none of the
“back-door”, “front-door”, and (Galles & Pearl 1995) crite-
riais applicable. However, this criterionrist necessary for
identifying P, (s). Examples exist in whictP, (s) is iden-
tifiable but Theorem 4 is not applicableAn improved cri-
terion that covers those cases is described in (Tian & Pearl
2002).

Conclusion

We developed new graphical criteria for identifying the
causal effects of a singleton variable on a set of variables.
Theorem 4 has important ramifications to the theory and
practice of observational studies. It implies that the key to
identifiability lies not in blocking back-door paths between
X andS but, rather, in blocking back-door paths betwéén
and its immediate successors on the pathways fbhe po-
tential of finding and measuring intermediate variables that
satisfy this condition opens new vistas in experimental de-
sign.
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Appendix

In this appendix we show that Theorem 4 covers the crite-
rion in (Galles & Pearl 1995) (which will be called the G-P
criterion). The G-P criterion is for identifying, (y) with
X andY being singletons, and it includes the “front-door”
and “back-door” criteria as special cases (see (Pearl 2000,
pp. 114-8)). We will prove that if there is a bidirected path
connectingX to one of its children such that every node on
the path is an ancestor &f, then the G-P criterion is not
applicable. There are four conditions in the G-P criterion,
among which Condition 1 is a special case of Condition 3,
and Condition 2 is trivial. Therefore we only need to con-
sider Condition 3 and 4.

Proof: Assume that there is a bidirected patftom X to
its childY; such that every node gnis an ancestor df , and
that there is a directed pathfrom Y; to Y. We will show
by contradiction that neither Condition 3 nor Condition 4 is
applicable for identifyingP,.(y). For any setZ, a node will
be calledZ-activeifiitis in Z or any of its descendants is in
7, otherwise it will be calledZ-inactive.

(Condition 3) Assume that there exists a B¢hat blocks
all back-door paths fronX to Y so thatP, (z) is identifi-

"This implies that, contrary to claims, the criterion developed
in (Galles & Pearl 1995) isot complete.
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able® If every internal node o is an ancestor ok, or if
every nonancestor of onp is Z-active, then letV, = Y7,
otherwise letl¥; be theZ-inactive non-ancestor oX that
is closest taX onp (see Figure 4). If every internal node on
the subpath (W, X) ° is Z-active, then let¥, = X, oth-
erwise letlW, be theZ-inactive node that is closest
onp(Wi, X). From the definition of1’; andWs, W, must
be an ancestor ok (or be X itself), and letp; be any di-
rected path fromi?; to X. (i) If Wy # Y1, lettingp, be any
directed path fron¥/; to Y, then from the definition ofV/;
andWWs the pathy' = (pi (X, Wa), p(Wa, W1), p2(W1,Y))
is a back-door path fronX to Y that is not blocked by
(see Figure 4) sincél, is Z-inactive, all internal nodes
on p(W,, W) is Z-active, andiW; is Z-inactive. (ii) If
W1 = Y1, there are two situations:

(a) Z consists entirely of nondescendantsiof Then the
pathp” = (p1 (X, W2),p(Ws, Y1), q(Y1,Y)) is a back-door
path fromX to Y that is not blocked by.

(b) Z contains a variabl®’ on¢(Y7,Y) so thatP, (z) is
identifiable. By the definition of¥;, every node omp is an
ancestor ofZ. P.(z) can not be identified by Theorem 4,
and the G-P criterion is not applicable for identifyifg(z)
if Z contains more than one variable. 4f contains only
one variableY”’, then every node op is an ancestor of”’.

If P,(y') is identifiable by Condition 3 of the G-P criterion
(Condition 4 is not applicable as proved later), then from
the preceding analysis there istd@ on the pathy(Y;,Y")
such that every node gnis an ancestor of” and P, (y"")

is identifiable. By induction, in the end we have every node
onp is an ancestor of; and P, (y;) is identifiable, which
does not hold from the preceding analysis.

(Condition 4) Assume that there exist sétsand Z, that
satisfy all (i)—(iv) conditions in Condition 4. Sincg; has
to block the path{(X, Y1), ¢(Y1,Y)), let V; be the variable
in Z; that is closest td7 on the pathy (see Figure 5(a)). If
none of the internal node gnis in An(V71) \ An(X) (the
set of ancestors df; that are not ancestors &f) or if every

8A path fromX toY is said to be dack-door path if it contains
an arrow intoX .
*We usep(W1, X) to represent the subpathfrom W, to X.

variable inAn(V1)\ An(X) onpis Z,-active, then letV; =
Y1, otherwise let?; be theZ,-inactive variable iMdn (V1) \
An(X) that is closest toX on p. Letp; be any directed
path fromW, to V;. If every internal node on the subpath
p(W1, X) is Z»-active, then letV, = X, otherwise lei?,
be theZ,-inactive node that is closest i@, onp(1Wy, X).
SinceW, must be an ancestor &f, from the definition of
W1 andW,, there are two possible situations:

(a) Wy is an ancestor ofX or W, = X. Let py
be any directed path froniV; to X (see Figure 5(a)).
From the definition ofW; and W,, the pathp’ =
(p2(X, W), p(Wo, W1),p1 (W1, V1)) is a back-door path
from X to V; € Z; that is not blocked byZ, that does
not contain any descendant &f(see Figure 5(a)).

(b) W5 is an ancestor ofY” but not ancestor ofi;
(W5 € An(Y) \ An(V1)). Letps be any directed path from
W, to Y (see Figure 5(b)). From the definition Bf; and
Wy, the pathy” = (p1 (Vi, Wh),p(W1, Wa),p3(W2,Y)) is
a back-door path frorry; € Z; to Y that is not blocked by
75 (see Figure 5(b)). O
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