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Networks carrying probabilistic and causal information have a long and rich tradition,
which began with the geneticist Sewall Wright (1921). Variants have appeared in many
fields; within social science and economics, such models (usually linear) are known as Path
Diagrams or Structural Equations Models (SEM), and in artificial intelligence, such models
(usually nonlinear) are known as Bayesian networks. The capabilities for bidirectional in-
ferences (e.g., prediction and diagnosis), quick debugging and reconfiguring, combined with
a rigorous probabilistic foundation, led to the rapid emergence of Bayesian networks as the
method of choice for uncertain reasoning in Al and expert systems, replacing earlier, ad hoc
rule-based schemes [Pearl, 1988, Heckerman et al., 1995, Jensen, 1996].

The nodes in a Bayesian network represent variables of interest (e.g., the temperature of
a device, the gender of a patient, the price of a product, the occurrence of an event) and the
links represent informational or causal dependencies among the variables. The dependencies
are quantified by conditional probabilities for each node given its parents in the network.

The network supports the computation of the probabilities of any subset of variables given

*Portions of this paper are based on (Pearl and Russell, 2001)



evidence about any other subset.

Figure 1 illustrates a simple yet typical Bayesian network. It describes the causal rela-
tionships among the season of the year (X, ), whether it’s raining (X,), whether the sprinkler
is on (X3), whether the pavement is wet (X4), and whether the pavement is slippery (X;).
Here, the absence of a direct link between X; and Xj5, for example, captures our understand-
ing that there is no direct influence of season on slipperiness—the influence is mediated by

the wetness of the pavement. (If freezing is a possibility, then a direct link could be added.)

SPRINKLER (X;) (¥,) RAIN

Figure 1: A Bayesian network representing causal influences among five variables.

Perhaps the most important aspect of Bayesian networks is that they are direct repre-
sentations of the world, not of reasoning processes. The arrows in the diagram represent
real causal connections and not the flow of information during reasoning (as in rule-based
systems and neural networks). Inferences can be derived from Bayesian networks by propa-
gating information in any direction. For example, if the sprinkler is on, then the pavement
is probably wet (prediction); if someone slips on the pavement, that also provides evidence
that it is wet (abduction). On the other hand, if we see that the pavement is wet, that makes
it more likely that the sprinkler is on or that it is raining (abduction); but if we then observe
that the sprinkler is on, that reduces the likelihood that it is raining (explaining away). It is
this last form of reasoning, explaining away, that is especially difficult to model in rule-based

systems and neural networks in any natural way.

Probabilistic interpretation.

Any complete probabilistic model of a domain must, either explicitly or implicitly, represent



the joint distribution—the probability of every possible event as defined by the values of
all the variables. There are exponentially many such events, yet Bayesian networks achieve
compactness by factoring the joint distribution into local, conditional distributions for each
variable given its parents. If x; denotes some value of the variable X; and pa; denotes some
set of values for X;’s parents, then P(x;|pa;) denotes this conditional distribution. For ex-
ample, P(x4|zy, x3) is the probability of wetness given the values of sprinkler and rain. The
global interpretation of Bayesian networks specifies that the full joint distribution is given by

the product

In our example network, we have
P(a1, 22, w3, 24, 05) = P(x1) P(z2|z1) P(ws|z1) Pa|ze, xs) P(ws|s) (2)

Provided the number of parents of each node is bounded, it is easy to see that the number
of parameters required grows only linearly with the size of the network, whereas the joint
distribution itself grows exponentially. Further savings can be achieved using compact para-
metric representations—such as noisy-OR models, decision trees, or neural networks— for
the local conditional distributions.

The validity of the factorization in Equation 1 rests on a set of local independence as-
sumptions, asserting that each variable is independent of its nondescendants in the network
given its parents. For example, the parents of X, in Figure 1 are X, and X3 and they render

X, independent of the remaining nondescendant, X;. That is,
P(x4|71, 79, 73) = P(24]2, 73)

The collection of independence assertions formed in this way suffices to derive the factor-
ization in Equation 1, and vice versa. These independencies are most useful in constructing
Bayesian networks from human experts, because selecting as parents all the direct causes
of a given variable invariably satisfies the local conditional independence conditions [Pearl,

2000, p.30] . These independencies also lead directly to a variety of algorithms for reasoning.

Evidential reasoning.



From the product specification in Equation 1, one can express the probability of any desired
proposition in terms of the conditional probabilities specified in the network. For example,
the probability that the sprinkler is on, given that the pavement is slippery, is

P(X3=o0n, X5=true) 3)
P(X5=true)

P(X;3=o0n|X;=true) =

Both the numerator and denominator can be computed from Eq. (2) by summing over the
rest of the variables. These summations can often be simplified in ways that reflect the
structure of the network itself, and many algorithms have been developed, both exact and
approximate, to perform these probabilistic calculations [Pearl, 1988, Lauritzen and Spiegel-
halter, 1988; Zhang and Poole, 1996 Pearl, 1987, Jodan et al 1998]. The most appealing
ones use distributed, message-passing schemes along the links of the original network [Pearl,

1988 (p. 235), Mackay et al., 1998|

Causal networks.

All probabilistic models, no matter how refined and acccurate, describe a distribution over
possible observed events—as in Eq. 1-—but say nothing about what will happen if a certain
intervention occurs. For example, what if I turn the sprinkler on? What effect does that
have on the season, or on the connection between wetness and slipperiness? A causal network
is a Bayesian network with the added property that the parents of each node are its direct
causes—as in Figure 1. In such a network, the result of an intervention is obvious: the
sprinkler node is set to X3 =on and the causal link between the season X; and the sprinkler
X3 is removed. All other causal links and conditional probabilities remain intact, so the new

model is!
P(xq, 29,24, 5) = P(x1) P(xs|21) P(24|79, X3=0n) P(25|74)

Causal networks are defined, then, as oracles for interventions; the correct probability model

after intervening to fix any node’s value is given simply by deleting links from the node’s

!Notice that this differs from observing that X3 =on, which would result in a new model that included
the term P(Xs5=on|z;). This mirrors the difference between seeing and doing: after observing that the
sprinkler is on, we wish to infer that the season is dry, that it probably did not rain, and so on; an arbitrary

decision to turn the sprinkler on should not result in any such beliefs.



parents. For example, Fire — Smoke is a causal network whereas Smoke — Flire is
not, even though both networks are equally capable of representing any joint distribution
on the two variables. Causal networks model the environment as a modular collection of
stable mechanisms. These mechanisms may be reconfigured locally by interventions, with
correspondingly local changes in the model. This, in turn, allows causal networks to be used
very naturally for prediction by an agent that is considering various courses of action [Pearl,

1993b, 2000]

Causal structures and knowledge mining.

Many statistical routines are currently being developed under the enterprises of “knowledge
mining” or “knowledge discovery,” but none deserves this fancy title, because ”knowledge”
connotes stable relationships, invariant to local interventions and transportable across con-
texts — statistical routines are blind to considerations of stability. The general attitude is
that statistical associations alone would be sufficient in prediction tasks that involve no
manipulation.

This attitude is short sighted. First, black-box predictions are not as useful as those that
are accompanied with causal understanding of the underlying processes. For example, when
a statistical package predicts that customers who purchased product A are likely to purchase
a product B in the future, the question always arises whether the association discovered is
long-lived, and whether it is transportable across contexts. If one product is functionally
supplementary to another, the association between the two demands is stable. If, on the other
hand, demands for products A and B are correlated merely because the two were advertised
simultaneously in the same medium, the association is short lived, and will disappear as
soon as advertising strategies change.

Second, models are rarely used exclusively for passive predictions. Using an e-commerce
example again, vendors constantly try new techniques of presentation, and new methods of
capturing users’ attention. These changes are the commercial analogue of scientific exper-
imentation, and only causal models can capture the results of these experiments so as to
predict response to future changes.

Finally, even purely predictive tasks can benefit from the modularity inherent in causal

models. When some conditions in the environment undergo change, it is usually only a few



causal mechanisms that are affected by the change; the rest remain unaltered. It is simpler
and more effective, then, to reassess (judgmentally) or reestimate (statistically) the model
parameters knowing that the corresponding change in the model is also local, involving just
a few parameters, than to reestimate the entire model from scratch. In non-causal systems,
such as neural nets or those based on regression equations, a local change in mechanism
space would spread its effect over all model parameters, and that normally requires a major

effort of re-estimation or re-training.

Where does the structure come from?

In many applications, users of statistical methods possess valuable theoretical and profes-
sional knowledge (say, that symptoms do not cause diseases) that permits one to combine
causal and statistical information effectively — the human expert provides the qualitative
causal structure (depicted by the diagram) and the data provides the basis for assessing the
strengths of the causal connections. This symbiosis was in fact the motivating paradigm
behind econometric modeling, before it went into hiding 2. However, there have been two
major (mental) barriers for implementing this symbiosis: (1) Investigators (especially statis-
ticians) are reluctant to state causal information explicitly, because such information cannot
be tested directly in nonexperimental data (2) Causal information, even when tested, cannot
be expressed in the standard vocabulary of probability calculus. The second barrier, to my
view, far outweighs the first, and the development of new mathematical tools for causation,
both algebraic and graphical, now promises to reinstate causal modeling to its proper place

in data interpretation and knowledge mining.

Learning in Bayesian networks.

Given a causal structure, the conditional probabilities P(z;|pa;) can be updated continuously
from observational data using gradient-based or EM methods [Lauritzen, 1995, Binder et al,
1997] as weights are adjusted in neural networks. When hidden variables are involved, some

of the the conditional probabilities may not be identifiable, yet, even in such cases, many

2Most econometric texts in the past decade have refrained from defining what an economic model is, and
those that attempt a definition, erroneously view models as compact representations of density functions

(see Pearl, 2000, pp. 135-138)



causal quantities (e.g., total and direct effects) can still be assessed consistently from the

data (Pearl, 2000; Chapters 3 and 4).

Causal discovery.
One of the most exciting prospects in recent years has been the possibility of using Bayesian
networks to discover causal structures in raw statistical data [Pearl and Verma 1991, Spirtes
et al, 1993, Pearl, 2000] previously considered impossible without controlled experiments.
Consider, for example, the following intransitive pattern of dependencies among three events:
A and B are dependent, B and C are dependent, yet A and C are independent. If you ask
a person to supply an example of three such events, the example would invariably portray
A and C as two independent causes and B as their common effect, namely, A — B + C.
(For instance, A and C' could be the outcomes of two fair coins, and B represents a bell
that rings whenever either coin comes up heads.) Fitting this dependence pattern with a
scenario in which B is the cause and A and C are the effects is mathematically feasible but
very unnatural, because it must entail fine tuning of the probabilities involved; the desired
dependence pattern will be destroyed as soon as the probabilities undergo a slight change.
Such thought experiments tell us that certain patterns of dependency, which are totally
void of temporal information, are conceptually characteristic of certain causal directionali-
ties and not others. When put together systematically, such patterns can be used to infer
causal structures from raw data and to guarantee that any alternative structure compatible
with the data must be less stable than the one(s) inferred; namely, slight fluctuations in
parameters will enventually render that structure incompatible with the data. Using this
mild assumption of stability, methods were developed for identifying genuine and spurious
causes, with or without temporal information (Spirtes et al, 1993; Pearl, 2000; Chapter 2).
Alternative methods of identifying structure in data assign prior probabilities to the
parameters of the network and use Bayesian updating to score the degree to which a given
network fits the data [Cooper and Herskovitz, 1990, Heckerman et al., 1994]. Likewise, one
can trade off network complexity against degree of fit to the data [Friedman, 1998]. These
methods have the advantage of operating well under small sample conditions, but encounter

difficulties coping with hidden variables.
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Related Links to Bayesian networks

UCLA:  http://www.cs.ucla.edu/ judea/

UCLA:  http://www.cs.ucla.edu/ darwiche/cs262a/

Stanford: http://www.stanford.edu/class/cs228/
http://www.cs.berkeley.edu/ murphyk/Bayes/bayes.html
http://www.cs.berkeley.edu/ murphyk/pomdp.html

Harvard: http://deas.harvard.edu/courses/cs281r/

Duke: http://www.stat.duke.edu/courses/Spring99/sta294/

UC Irvine: http://www.ics.uci.edu/ dechter/275B.html



