
BAYESIAN NETWORKS

Judea Pearl

Computer Science Department

University of California, Los Angeles, CA 90095

judea@cs.ucla.edu

Stuart Russell

Computer Science Department

University of California, Berkeley, CA 94720

russell@cs.berkeley.edu

To appear in M. Arbib (Ed.), Handbook of Brain Theory and Neural TECHNICAL REPORT
Networks, MIT Press, 2001. R-277

November 2000

Probabilistic models based on directed acyclic graphs (DAGs) have a long and rich tra-
dition, which began with the geneticist Sewall Wright (1921). Variants have apeared in
many �elds; within cognitive science and arti�cial intelligence, such models are known as
Bayesian networks. Their initial development in the late 1970s was motivated by the need
to model the top-down (semantic) and bottom-up (perceptual) combination of evidence in
reading. The capability for bidirectional inferences, combined with a rigorous probabilistic
foundation, led to the rapid emergence of Bayesian networks as the method of choice for
uncertain reasoning in AI and expert systems, replacing earlier, ad hoc rule-based schemes
[Pearl, 1988, Shafer and Pearl, 1990, Heckerman et al., 1995, Jensen, 1996].

The nodes in a Bayesian network represent propositional variables of interest (e.g., the
temperature of a device, the gender of a patient, a feature of an object, the occurrence of
an event) and the links represent informational or causal dependencies among the variables.
The dependencies are quanti�ed by conditional probabilities for each node given its parents
in the network. The network supports the computation of the probabilities of any subset of
variables given evidence about any other subset.

Figure 1 illustrates a simple yet typical Bayesian network. It describes the causal rela-
tionships among the season of the year (X1), whether it's raining (X2), whether the sprinkler
is on (X3), whether the pavement is wet (X4), and whether the pavement is slippery (X5).
Here, the absence of a direct link between X1 and X5, for example, captures our understand-
ing that there is no direct inuence of season on slipperiness|the inuence is mediated by
the wetness of the pavement. (If freezing is a possibility, then a direct link could be added.)

Perhaps the most important aspect of a Bayesian networks is that they are direct repre-
sentations of the world, not of reasoning processes. The arrows in the diagram represent real
causal connections and not the ow of information during reasoning (as in rule-based systems
and neural networks). Reasoning processes can operate on Bayesian networks by propagat-
ing information in any direction. For example, if the sprinkler is on, then the pavement is
probably wet (prediction); if someone slips on the pavement, that also provides evidence that
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Figure 1: A Bayesian network representing causal inuences among �ve variables.

it is wet (abduction). On the other hand, if we see that the pavement is wet, that makes it
more likely that the sprinkler is on or that it is raining (abduction); but if we then observe
that the sprinkler is on, that reduces the likelihood that it is raining (explaining away). It is
this last form of reasoning, explaining away, that is especially di�cult to model in rule-based
systems and neural networks in any natural way.

Probabilistic semantics. Any complete probabilistic model of a domain must, either
explicitly or implicitly, represent the joint distribution|the probability of every possible
event as de�ned by the values of all the variables. There are exponentially many such
events, yet Bayesian networks achieve compactness by factoring the joint distribution into
local, conditional distributions for each variable given its parents. If xi denotes some value
of the variable Xi and pai denotes some set of values for Xi's parents, then P (xijpai) denotes
this conditional distribution. For example, P (x4jx2; x3) is the probability of wetness given
the values of sprinkler and rain. The global semantics of Bayesian networks speci�es that
the full joint distribution is given by the product

P (x1; :::; xn) =
Y

i

P (xi j pai) (1)

In our example network, we have

P (x1; x2; x3; x4; x5) = P (x1) P (x2jx1) P (x3jx1) P (x4jx2; x3) P (x5jx4) (2)

Provided the number of parents of each node is bounded, it is easy to see that the number
of parameters required grows only linearly with the size of the network, whereas the joint
distribution itself grows exponentially. Further savings can be achieved using compact para-
metric representations|such as noisy-OR models, decision trees, or neural networks|for
the conditional distributions.

There is also an entirely equivalent local semantics, which asserts that each variable
is independent of its nondescendants in the network given its parents. For example, the
parents of X4 in Figure 1 are X2 and X3 and they render X4 independent of the remaining
nondescendant, X1. That is,

P (x4jx1; x2; x3) = P (x4jx2; x3)

The collection of independence assertions formed in this way su�ces to derive the global
assertion in Equation 1, and vice versa. The local semantics is most useful in constructing
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Bayesian networks, because selecting as parents the direct causes of a given variable auto-
matically satis�es the local conditional independence conditions. The global semantics leads
directly to a variety of algorithms for reasoning.

Evidential reasoning. >From the product speci�cation in Equation 1, one can express
the probability of any desired proposition in terms of the conditional probabilities speci�ed in
the network. For example, the probability that the sprinkler is on, given that the pavement
is slippery, is

P (X3= onjX5= true) =
P (X3= on;X5= true)

P (X5= true)

=

P
x1;x2;x4

P (x1; x2; X3= on; x4; X5= true)
P

x1;x2;x3;x4 P (x1; x2; x3; x4; X5= true)

=

P
x1;x2;x4

P (x1) P (x2jx1) P (X3= onjx1) P (x4jx2; X3= on) P (X5= truejx4)P
x1;x2;x3;x4 P (x1) P (x2jx1) P (x3jx1) P (x4jx2; x3) P (X5= truejx4)

These expressions can often be simpli�ed in ways that reect the structure of the network
itself. The �rst algorithms proposed for probabilistic calculations in Bayesian networks
used a local, distributed message-passing architecture, typical of many cognitive activities
[Pearl, 1982, Kim and Pearl, 1983]. Initially, this approach was limited to tree-structured
networks, but was later extended to general networks in Lauritzen and Spiegelhalter's (1988)
method of join-tree propagation. Other exact methods include cycle-cutset conditioning
[Pearl, 1988] and variable elimination [Zhang and Poole, 1996].

It is easy to show that reasoning in Bayesian networks subsumes the satis�ability problem
in propositional logic and, hence, is NP-hard. Monte Carlo simulation methods can be used
for approximate inference [Pearl, 1987], giving gradually improving estimates as sampling
proceeds. (These methods use local message propagation on the original network structure,
unlike join-tree methods.) Alternatively, variational methods [Jordan et al., 1998] provide
bounds on the true probability.

Uncertainty over time. Entities that live in a changing environment must keep track of
variables whose values change over time. Dynamic Bayesian networks [Dean and Kanazawa, 1989]
capture this process by representing multiple copies of the state variables, one for each time
step. A set of variables Xt denotes the world state at time t and a set of sensor variables Et

denotes the observations available at time t. The sensor model P (EtjXt) is encoded in the
conditional probability distributions for the observable variables, given the state variables.
The transition model P (Xt+1jXt) relates the state at time t to the state at time t+1. Keeping
track of the world means computing the current probability distribution over world states
given all past observations, i.e., P (XtjE1; : : : ;Et). Dynamic Bayesian networks are strictly
more expressive than other temporal probability models such as hidden Markov models and
Kalman �lters.

Learning in Bayesian networks. The conditional probabilities P (xijpai) can be up-
dated continuously from observational data using gradient-based or EM methods that use
just local information derived from inference [Lauritzen, 1995, Binder et al., 1997]|in much
the same way as weights are adjusted in neural networks. It is also possible to learn the
structure of the network, using methods that trade o� network complexity against degree of
�t to the data [Friedman, 1998].

Causal networks. Most probabilistic models, including general Bayesian networks,
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describe a distribution over possible observed events|as in Eq. 1|but say nothing about
what will happen if a certain intervention occurs. For example, what if I turn the sprinkler
on? What e�ect does that have on the season, or on the connection between wetness and
slipperiness? A causal network, intuitively speaking, is a Bayesian network with the added
property that the parents of each node are its direct causes|as in Figure 1. In such a
network, the result of an intervention is obvious: the sprinkler node is set to X3= on and
the causal link between the season X1 and the sprinkler X3 is removed. All other causal
links and conditional probabilities remain intact, so the new model is1

P (x1; x2; x4; x5) = P (x1) P (x2jx1) P (x4jx2; X3= on) P (x5jx4)

Causal networks are more properly de�ned, then, as Bayesian networks in which the cor-
rect probability model after intervening to �x any node's value is given simply by deleting
links from the node's parents. For example, Fire �! Smoke is a causal network whereas
Smoke �! Fire is not, even though both networks are equally capable of representing any
joint distribution on the two variables. Causal networks model the environment as a col-
lection of stable component mechanisms. These mechanisms may be recon�gured locally by
interventions, with correspondingly local changes in the model. This, in turn, allows causal
networks to be used very naturally for prediction by an agent that is considering various
courses of action [Pearl, 1996].

Functional Bayesian networks. The networks discussed so far are capable of sup-
porting reasoning about evidence and about actions. Additional re�nement is necessary in
order to process counterfactual information. For example, the probability that \the pave-
ment would not have been slippery had the sprinkler been OFF, given that the sprinkler is
in fact ON and that the pavement is in fact slippery" cannot be computed from the infor-
mation provided in Figure 1 and Eq. 1. Such counterfactual probabilities require a speci-
�cation in the form of functional networks, where each conditional probability P (xijpai) is
replaced by a functional relationship xi = fi(pai; �i), where �i is a stochastic (unobserved)
error term. When the functions fi and the distributions of �i are know, all counterfactual
statements can be assigned unique probabilities, using evidence propagation in a struc-
ture called a \twin network". When only partial knowledge about the functional form of
fi is available, bounds can be computed on the probabilities of counterfactual sentences.
[Balke and Pearl, 1995, Pearl, 2000].

Causal discovery. One of the most exciting prospects in recent years has been the
possibility of using Bayesian networks to discover causal structures in raw statistical data
[Pearl and Verma, 1991, Spirtes et al., 1993, Pearl, 2000]|a task previously considered im-
possible without controlled experiments. Consider, for example, the following intransitive
pattern of dependencies among three events: A and B are dependent, B and C are depen-
dent, yet A and C are independent. If you ask a person to supply an example of three such
events, the example would invariably portray A and C as two independent causes and B as
their common e�ect, namely, A ! B  C. (For instance, A and C could be the outcomes
of two fair coins, and B represents a bell that rings whenever either coin comes up heads.)

1Notice that this di�ers from observing that X3= on, which would result in a new model that included
the term P (X3= onjx1). This mirrors the di�erence between seeing and doing: after observing that the
sprinkler is on, we wish to infer that the season is dry, that it probably did not rain, and so on; an arbitrary
decision to turn the sprinkler on should not result in any such beliefs.
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Fitting this dependence pattern with a scenario in which B is the cause and A and C are
the e�ects is mathematically feasible but very unnatural, because it must entail �ne tuning
of the probabilities involved; the desired dependence pattern will be destroyed as soon as
the probabilities undergo a slight change.

Such thought experiments tell us that certain patterns of dependency, which are totally
void of temporal information, are conceptually characteristic of certain causal directionalities
and not others. When put together systematically, such patterns can be used to infer causal
structures from raw data and to guarantee that any alternative structure compatible with the
data must be less stable than the one(s) inferred; namely, slight uctuations in parameters
will render that structure incompatible with the data.

Plain beliefs. In mundane decision making, beliefs are revised not by adjusting nu-
merical probabilities but by tentatively accepting some sentences as \true for all practical
purposes". Such sentences, called plain beliefs, exhibit both logical and probabilistic char-
acter. As in classical logic, they are propositional and deductively closed; as in probability,
they are subject to retraction and to varying degrees of entrenchment. Bayesian networks
can be adopted to model the dynamics of plain beliefs by replacing ordinary probabilities
with non-standard probabilities, that is, probabilities that are in�nitesimally close to either
zero or one [Goldszmidt and Pearl, 1996].

Models of cognition. Bayesian networks may be viewed as normative cognitive models
of propositional reasoning under uncertainty. They handle noise and partial information
using local, distributed algorithms for inference and learning. Unlike feedforward neural
networks, they facilitate local representations in which nodes correspond to propositions
of interest. Recent experiments [Tenenbaum and Gri�ths, 2001] suggest that they capture
accurately the causal inferences made by both children and adults. Moreover, they capture
patterns of reasoning, such as explaining away, that are not easily handled by any competing
computational model. They appear to have many of the advantages of both the \symbolic"
and the \subsymbolic" approaches to cognitive modelling.

Two major questions arise when we postulate Bayesian networks as potential models of
actual human cognotion. First, does an architecture resembling that of Bayesian networks
exist anywhere in the human brain? At the time of writing, no speci�c work has been done to
design neurally plausible models that implement the required functionality, although no ob-
vious obstacles exist. Second, how could Bayesian networks|which are purely propositional
in their expressive power|handle the kinds of reasoning about individuals, relations, prop-
erties, and universals that pervades human thought? One plausible answer is that Bayesian
networks containing propositions relevant to the current context are constantly being assem-
bled, as needed, from a more permanent store of knowledge. For example, the network in
Figure 1 may be assembled to help explain why this particular pavement is slippery right
now, and to decide whether this can be prevented. The background store of knowledge
includes general models of pavements, sprinklers, slipping, rain, and so on; these must be
accessed and supplied with instance data to construct the speci�c Bayesian network struc-
ture. The store of background knowledge must utilize some representation that combines
the expressive power of �rst-order logical languages (such as semantic networks) with the
ability to handle uncertain information. Substantial progress has been made on constructing
systems of this kind [Halpern, 1990, Koller and Pfe�er, 1998], but as yet no overall cognitive
architecture has been proposed.
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