
Probabilities of Causation: Bounds and Identi�cation

Jin Tian and Judea Pearl
Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles, CA 90024
fjtian, judea g@cs.ucla.edu

In Proceedings of the Sixteenth Conference on Uncertainy

in Arti�cial Intelligence, San Francisco, CA: Morgan

Kaufmann, 589{598, 2000.

Abstract

This paper deals with the problem of esti-
mating the probability that one event was
a cause of another in a given scenario. Us-
ing structural-semantical de�nitions of the
probabilities of necessary or su�cient cau-
sation (or both), we show how to optimally
bound these quantities from data obtained
in experimental and observational studies,
making minimal assumptions concerning the
data-generating process. In particular, we
strengthen the results of Pearl (1999) by
weakening the data-generation assumptions
and deriving theoretically sharp bounds on
the probabilities of causation. These results
delineate precisely how empirical data can be
used both in settling questions of attribution
and in solving attribution-related problems
of decision making.

1 Introduction

Assessing the likelihood that one event was the cause
of another guides much of what we understand about
(and how we act in) the world. For example, few
of us would take aspirin to combat headache if it
were not for our conviction that, with high proba-
bility, it was aspirin that \actually caused" relief in
previous headache episodes. [Pearl, 1999] gave coun-
terfactual de�nitions for the probabilities of neces-
sary or su�cient causation (or both) based on struc-
tural model semantics, which de�nes counterfactuals
as quantities derived from modi�able sets of func-
tions [Galles and Pearl, 1997, Galles and Pearl, 1998,
Halpern, 1998, Pearl, 2000, chapter 7].

The central aim of this paper is to estimate probabil-
ities of causation from frequency data, as obtained in
experimental and observational statistical studies. In
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general, such probabilities are non-identi�able, that
is, non-estimable from frequency data alone. One
factor that hinders identi�ability is confounding {
the cause and the e�ect may both be in
uenced
by a third factor. Moreover, even in the absence
of confounding, probabilities of causation are sensi-
tive to the data-generating process, namely, the func-
tional relationships that connect causes and e�ects
[Robins and Greenland, 1989, Balke and Pearl, 1994].
Nonetheless, useful information in the form of bounds
on the probabilities of causation can be extracted from
empirical data without actually knowing the data-
generating process. We show that these bounds im-
prove when data from observational and experimental
studies are combined. Additionally, under certain as-
sumptions about the data-generating process (such as
exogeneity and monotonicity), the bounds may col-
lapse to point estimates, which means that the prob-
abilities of causation are identi�able { they can be ex-
pressed in terms of probabilities of observed quantities.
These estimates often appear in the literature as mea-
sures of attribution, and our analysis thus explicates
the assumptions that must be ascertained before those
measures can legitimately be interpreted as probabili-
ties of causation.

The analysis of this paper extends the results reported
in [Pearl, 1999] [Pearl, 2000, pp. 283-308]. Pearl de-
rived bounds and identi�cation conditions under cer-
tain assumptions of exogeneity and monotonicity, and
this paper narrows his bounds and weakens his as-
sumptions. In particular, we show that for most of
Pearl's results, the assumption of strong exogeneity
can be replaced by weak exogeneity (to be de�ned in
Section 3.3). Additionally, we show that the point
estimates that Pearl obtained under the assumption
of monotonicity (De�nition 6) constitute valid lower
bounds when monotonicity is not assumed. Finally,
we prove that the bounds derived by Pearl, as well
as those provided in this paper are sharp, that is,
they cannot be improved without strengthening the



assumptions. We illustrate the use of our results in
the context of legal disputes (Section 4) and personal
decision making (Section 5).

2 Probabilities of Causation:

De�nitions

In this section, we present the de�nitions for the three
aspects of causation as de�ned in [Pearl, 1999]. We
use the language of counterfactuals in its structural
model semantics, as given in Balke and Pearl (1995),
Galles and Pearl (1997, 1998), and Halpern (1998).
We use Yx = y to denote the counterfactual sentence
\Variable Y would have the value y, had X been x."
The structural model interpretation of this sentence
reads: \Deleting the equation for X from the model
and setting the value of X to a constant x will yield a
solution in which variable Y will take on the value y."

One property that the counterfactual relationships sat-
isfy is the consistency condition [Robins, 1987]:

(X = x)) (Yx = Y ) (1)

stating that if we intervene and set the experimental
conditions X = x equal to those prevailing before the
intervention, we should not expect any change in the
response variable Y . This property will be used in sev-
eral derivations of this section and Section 3. For de-
tailed exposition of the structural account and its ap-
plications see [Pearl, 2000, chapter 7]. For notational
simplicity, we limit the discussion to binary variables;
extension to multi-valued variables are straightforward
(see Pearl 2000, p. 286, footnote 5).

De�nition 1 (Probability of necessity (PN))
Let X and Y be two binary variables in a causal model
M , let x and y stand for the propositions X = true
and Y = true, respectively, and x0 and y0 for their
complements. The probability of necessity is de�ned
as the expression

PN
�
= P (Yx0 = false j X = true; Y = true)
�
= P (y0x0 jx; y) (2)

In other words, PN stands for the probability that
event y would not have occurred in the absence of event
x, y0x0 , given that x and y did in fact occur.

Note that lower case letters (e.g., x; y) stand for propo-
sitions (or events). Note also the abbreviations yx for
Yx = true and y0x for Yx = false. Readers accustomed
to writing \A > B" for the counterfactual \B if it were

A" can translate Eq. (2) to read PN
�
= P (x0 > y0jx; y).

PN has applications in epidemiology, legal reasoning,
and arti�cial intelligence (AI). Epidemiologists have
long been concerned with estimating the probability
that a certain case of disease is attributable to a par-
ticular exposure, which is normally interpreted coun-
terfactually as \the probability that disease would not
have occurred in the absence of exposure, given that
disease and exposure did in fact occur." This counter-
factual notion is also used frequently in lawsuits, where
legal responsibility is at the center of contention (see
Section 4).

De�nition 2 (Probability of su�ciency (PS))

PS
�
= P (yxjy

0; x0) (3)

PS �nds applications in policy analysis, AI, and psy-
chology. A policy maker may well be interested in the
dangers that a certain exposure may present to the
healthy population [Khoury et al., 1989]. Counterfac-
tually, this notion is expressed as the \probability that
a healthy unexposed individual would have gotten the
disease had he/she been exposed." In psychology, PS
serves as the basis for Cheng's (1997) causal power the-
ory [Glymour, 1998], which attempts to explain how
humans judge causal strength among events. In AI,
PS plays a major role in the generation of explana-
tions [Pearl, 2000, pp. 221-223].

De�nition 3 (Probability of necessity and su�ciency
(PNS))

PNS
�
= P (yx; y

0

x0) (4)

PNS stands for the probability that y would respond
to x both ways, and therefore measures both the suf-
�ciency and necessity of x to produce y.

Although none of these quantities is su�cient for de-
termining the others, they are not entirely indepen-
dent, as shown in the following lemma.

Lemma 1 The probabilities of causation satisfy the
following relationship [Pearl, 1999] :

PNS = P (x; y)PN + P (x0; y0)PS (5)

Since all the causal measures de�ned above invoke
conditionalization on y, and since y is presumed af-
fected by x, the antecedent of the counterfactual yx,
we know that none of these quantities is identi�able
from knowledge of frequency data alone, even under



condition of no confounding. However, useful infor-
mation in the form of bounds may be derived for
these quantities from frequency data, especially when
knowledge about causal e�ects P (yx) and P (yx0) is
also available1. Moreover, under some general assump-
tions about the data-generating process, these quanti-
ties may even be identi�ed.

3 Bounds and Conditions of

Identi�cation

In this section we will assume that experimental data
will be summarized in the form of the causal e�ects
P (yx) and P (yx0), and nonexperimental data will be
summarized in the form of the joint probability func-
tion: PXY = fP (x; y); P (x0; y); P (x; y0); P (x0; y0)g.

3.1 Linear programming formulation

Since every causal model induces a joint probability
distribution on the four binary variables: X , Y , Yx
and Yx0 , specifying the sixteen parameters of this dis-
tribution would su�ce for computing the PN, PS, and
PNS. Moreover, since Y is a deterministic function of
the other three variables, the problem is fully speci�ed
by the following set of eight parameters:

p111 = P (yx; yx0 ; x) = P (x; y; yx0)

p110 = P (yx; yx0 ; x0) = P (x0; y; yx)

p101 = P (yx; y
0

x0 ; x) = P (x; y; y0x0)

p100 = P (yx; y
0

x0 ; x0) = P (x0; y0; yx)

p011 = P (y0x; yx0 ; x) = P (x; y0; yx0)

p010 = P (y0x; yx0 ; x0) = P (x0; y; y0x)

p001 = P (y0x; y
0

x0 ; x) = P (x; y0; y0x0)

p000 = P (y0x; y
0

x0 ; x0) = P (x0; y0; y0x)

where we have used the consistency condition Eq. (1).
These parameters are further constrained by the prob-
abilistic equality

1X
i=0

1X
j=0

1X
k=0

pijk = 1

pijk � 0 for i; j; k 2 f0; 1g (6)

In addition, the nonexperimental probabilities PXY

impose the constraints:

p111 + p101 = P (x; y)

p011 + p001 = P (x; y0) (7)

p110 + p010 = P (x0; y)

1The causal e�ects P (yx) and P (y
x
0) can be estimated

reliably from controlled experimental studies, and from
certain observational (i.e., nonexperimental) studies which
permit the control of confounding through adjustment of
covariates [Pearl, 1995].

and the causal e�ects, P (yx) and P (yx0), impose the
constraints:

P (yx) = p111 + p110 + p101 + p100

P (yx0) = p111 + p110 + p011 + p010 (8)

The quantities we wish to bound are:

PNS = p101 + p100 (9)

PN = p101=P (x; y) (10)

PS = p100=P (x
0; y0) (11)

Optimizing the functions in (9){(11), subject to equal-
ity constraints, de�nes a linear programming (LP)
problem that lends itself to closed-form solution. Balke
(1995, Appendix B) describes a computer program
that takes symbolic descriptions of LP problems and
returns symbolic expressions for the desired bounds.
The program works by systematically enumerating the
vertices of the constraint polygon of the dual prob-
lem. The bounds reported in this paper were produced
(or tested) using Balke's program, and will be stated
here without proofs; their correctness can be veri�ed
by manually enumerating the vertices as described in
[Balke, 1995, Appendix B]. These bounds are guaran-
teed to be sharp because the optimization is global.

3.2 Bounds with no assumptions

3.2.1 Given nonexperimental data

Given PXY , constraints (6) and (7) induce the follow-
ing upper bound on PNS:

0 � PNS � P (x; y) + P (x0; y0): (12)

However, PN and PS are not constrained by PXY .

These constraints also induce bounds on the causal
e�ects P (yx) and P (yx0):

P (x; y) � P (yx) � 1� P (x; y0)

P (x0; y) � P (yx0) � 1� P (x0; y0) (13)

3.2.2 Given causal e�ects

Given constraints (6) and (8), the bounds induced on
PNS are:

max[0; P (yx)� P (yx0)] � PNS � min[P (yx); P (y
0

x0)]
(14)

with no constraints on PN and PS.

3.2.3 Given both nonexperimental data and
causal e�ects

Given the constraints (6), (7) and (8), the following
bounds are induced on the three probabilities of cau-



sation:

max

8>><
>>:

0
P (yx)� P (yx0)
P (y)� P (yx0)
P (yx)� P (y)

9>>=
>>; � PNS (15)

PNS � min

8>><
>>:

P (yx)
P (y0x0)

P (x; y) + P (x0; y0)
P (yx)� P (yx0) + P (x; y0) + P (x0; y)

9>>=
>>;

(16)

max

(
0

P (y)�P (y
x
0 )

P (x;y)

)
� PN � min

(
1

P (y0

x
0
)�P (x0;y0)

P (x;y)

)

(17)

max

(
0

P (yx)�P (y)
P (x0;y0)

)
� PS � min

(
1

P (yx)�P (x;y)
P (x0;y0)

)

(18)
Thus we see that some information about PN and
PS can be extracted without making any assumptions
about the data-generating process. Furthermore, com-
bined data from both experimental and nonexperimen-
tal studies yield information that neither study alone
can provide.

3.3 Bounds under exogeneity (no
confounding)

De�nition 4 (Exogeneity)
A variable X is said to be exogenous for Y in model
M i�

P (yx) = P (yjx) and P (yx0) = P (yjx0): (19)

In words, the way Y would potentially respond to ex-
perimental conditions x or x0 is independent of the ac-
tual value of X.

Eq. (19) is also known as \no-confounding"
[Robins and Greenland, 1989], \as if randomized," or
\weak ignorability" [Rosenbaum and Rubin, 1983].

Combining Eq. (19) with the constraints of (6){(8), the
linear programming optimization (Section 3.1) yields
the following results:

Theorem 1 Under condition of exogeneity, the three
probabilities of causation are bounded as follows:

max[0; P (yjx)� P (yjx0)] � PNS � min[P (yjx); P (y0jx0)] (20)

max[0; P (yjx)� P (yjx0)]

P (yjx)
� PN �

min[P (yjx); P (y0jx0)]

P (yjx)
(21)

max[0; P (yjx)� P (yjx0)]

P (y0jx0)
� PS �

min[P (yjx); P (y0jx0)]

P (y0jx0)
(22)

[Pearl, 1999] derived Eqs. (20)-(22) under a stronger
condition of exogeneity (see De�nition 5). We see that

under the condition of no-confounding the lower bound
for PN can be expressed as

PN � 1�
1

P (yjx)=P (yjx0)

�
= 1�

1

RR
(23)

where RR
�
= P (yjx)=P (yjx0) is called relative risk

in epidemiology. Courts have often used the condi-
tion RR > 2 as a criterion for legal responsibility
[Bailey et al., 1994]. Eq. (23) shows that this practice
represents a conservative interpretation of the \more
probable than not" standard (assuming no confound-
ing); PN must indeed be higher than 0.5 if RR exceeds
2.

3.3.1 Bounds under strong exogeneity

The condition of exogeneity, as de�ned in Eq. (19)
is testable by comparing experimental and nonexperi-
mental data. A stronger version of exogeneity can be
de�ned as the joint independence fYx; Yx0g??X which
was called \strong ignorability" by Rosenbaum and
Rubin (1983). Though untestable, such joint indepen-
dence is implied when we assert the absence of factors
that simultaneously a�ect exposure and outcome.

De�nition 5 (Strong Exogeneity)
A variable X is said to be strongly exogenous for Y in
model M i� fYx; Yx0g??X, that is,

P (yx; yx0 jx) = P (yx; yx0)

P (yx; y
0

x0 jx) = P (yx; y
0

x0)

P (y0x; yx0 jx) = P (y0x; yx0) (24)

P (y0x; y
0

x0 jx) = P (y0x; y
0

x0)

Remarkably, the added constraints introduced by
strong exogeneity do not alter the bounds of Eqs. (20){
(22). They do, however, strengthen Lemma 1:

Theorem 2 If strong exogeneity holds, the probabili-
ties PN, PS, and PNS are constrained by the bounds
of Eqs. (20){(22), and, moreover, PN, PS, and PNS
are related to each other as follows [Pearl, 1999]:

PN =
PNS

P (yjx)
(25)

PS =
PNS

P (y0jx0)
(26)

3.4 Identi�ability under monotonicity

De�nition 6 (Monotonicity)
A variable Y is said to be monotonic relative to vari-
able X in a causal model M i�

y0x ^ yx0 = false (27)



Monotonicity expresses the assumption that a change
from X = false to X = true cannot, under any cir-
cumstance make Y change from true to false. In epi-
demiology, this assumption is often expressed as \no
prevention," that is, no individual in the population
can be helped by exposure to the risk factor.

In the linear programming formulation of Section 3.1,
monotonicity narrows the feasible space to the mani-
fold:

p011 = 0

p010 = 0 (28)

3.4.1 Given nonexperimental data

Under the constraints (6), (7), and (28), we �nd the
same bounds for PNS as the ones obtained under no
assumptions (Eq. (12)). Moreover, there are still no
constraints on PN and PS. Thus, with nonexperimen-
tal data alone, the monotonicity assumption does not
provide new information.

However, the monotonicity assumption induces
sharper bounds on the causal e�ects P (yx) and P (yx0):

P (y) � P (yx) � 1� P (x; y0)

P (x0; y) � P (yx0) � P (y) (29)

Compared with Eq. (13), the lower bound for P (yx)
and the upper bound for P (yx0) are tightened. The
importance of Eq. (29) lies in providing a simple nec-
essary test for the commonly made assumption of
\no-prevention." These inequalities are sharp, in the
sense that every combination of experimental and non-
experimental data that satisfy these inequalities can
be generated from some causal model in which Y is
monotonic inX . Alternatively, if the no-prevention as-
sumption is theoretically unassailable, the inequalities
of Eq. (29) can be used for testing the compatibility of
the experimental and non-experimental data, namely,
whether subjects used in clinical trials were sampled
from the same target population, characterized by the
joint distribution PXY .

3.4.2 Given causal e�ects

Constraints (6), (8), and (28) induce no constraints on
PN and PS, while the value of PNS is fully determined:

PNS = P (yx; y
0

x0) = P (yx)� P (yx0)

That is, under the assumption of monotonicity, PNS
can be determined by experimental data alone, al-
though the joint event yx ^ y

0

x0 can never be observed.

3.4.3 Given both nonexperimental data and
causal e�ects

Under the constraints (6){(8) and (28), the values of
PN, PS, and PNS are all determined precisely.

Theorem 3 If Y is monotonic relative to X, then
PNS, PN, and PS are given by

PNS = P (yx; y
0

x0) = P (yx)� P (yx0) (30)

PN = P (y0x0 jx; y) =
P (y)� P (yx0)

P (x; y)
(31)

PS = P (yxjx
0; y0) =

P (yx)� P (y)

P (x0; y0)
(32)

Eqs. (30){(32) are applicable to situations where, in
addition to observational probabilities, we also have
information about the causal e�ects P (yx) and P (yx0).
Such information may be obtained either directly,
through separate experimental studies, or indirectly,
from observational studies in which certain identifying
assumptions are deemed plausible (e.g., assumptions
that permits identi�cation through adjustment of co-
variates) [Pearl, 1995].

3.5 Identi�ability under monotonicity and
exogeneity

Under the assumption of monotonicity, if we further
assume exogeneity, then P (yx) and P (yx0) are identi-
�ed through Eq. (19), and from theorem 3 we conclude
that PNS, PN, and PS are all identi�able.

Theorem 4 (Identi�ability under exogeneity and
monotonicity)
If X is exogenous and Y is monotonic relative to X,
then the probabilities PN, PS, and PNS are all identi-
�able, and are given by

PNS = P (yjx)� P (yjx0) (33)

PN =
P (y)� P (yjx0)

P (x; y)
=

P (yjx)� P (yjx0)

P (yjx)
(34)

PS =
P (yjx)� P (y)

P (x0; y0)
=

P (yjx)� P (yjx0)

P (y0jx0)
(35)

These expressions are to be recognized as familiar mea-
sures of attribution that often appear in the literature.
The r.h.s. of (33) is called \risk-di�erence" in epi-
demiology, and is also misnamed \attributable risk"
[Hennekens and Buring, 1987, p. 87]. The probabil-
ity of necessity, PN, is given by the excess-risk-ratio
(ERR)

PN =
P (yjx)� P (yjx0)

P (yjx)
= 1�

1

RR
(36)



often misnamed as the attributable fraction,
attributable-rate percent, attributed fraction for the ex-
posed [Kelsey et al., 1996, p. 38], or attributable pro-
portion [Cole, 1997]. The reason we consider these la-
bels to be misnomers is that ERR invokes purely sta-
tistical relationships, hence it cannot in itself serve to
measure attribution, unless forti�ed with some causal
assumptions. Exogeneity and monotonicity are the
causal assumptions that endow ERR with attribu-
tional interpretation, and these assumptions are rarely
made explicit in the literature on attribution.

The expression for PS is likewise quite revealing

PS = [P (yjx) � P (yjx0)]=[1� P (yjx0)]; (37)

as it coincides with what epidemiologists call the \rela-
tive di�erence" [Shep, 1958], which is used to measure
the susceptibility of a population to a risk factor x. It
also coincides with what Cheng calls \causal power"
(1997), namely, the e�ect of x on y after suppressing
\all other causes of y." See Pearl (1999) for additional
discussions of these expressions.

To appreciate the di�erence between Eqs. (31) and
(36) we can rewrite Eq. (31) as

PN =
P (yjx)P (x) + P (yjx0)P (x0)� P (yx0)

P (yjx)P (x)

=
P (yjx)� P (yjx0)

P (yjx)
+
P (yjx0)� P (yx0)

P (x; y)
(38)

The �rst term on the r.h.s. of (38) is the familiar
ERR as in (36), and represents the value of PN un-
der exogeneity. The second term represents the cor-
rection needed to account for X 's non-exogeneity, i.e.
P (yx0) 6= P (yjx0). We will call the r.h.s. of (38) by
corrected excess-risk-ratio (CERR).

>From Eqs. (33){(35) we see that the three notions
of causation satisfy the simple relationships given by
Eqs. (25) and (26) which we obtained under the strong
exogeneity condition. In fact, we have the following
theorem.

Theorem 5 Monotonicity (27) and exogeneity (19)
together imply strong exogeneity (24).

3.6 Summary of results

Table 1 lists the best estimate of PN under various
assumptions and various types of data|the stronger
the assumptions, the more informative the estimates.
We see that the excess-risk-ratio (ERR), which epi-
demiologists commonly identify with the probability
of causation, is a valid measure of PN only when
two assumptions can be ascertained: exogeneity (i.e.,
no confounding) and monotonicity (i.e., no preven-

Table 1: PN as a function of assumptions (exogene-
ity or monotonicity) and available data (experimen-
tal or nonexperimental or both). ERR stands of the
excess-risk-ratio and CERR is given in Eq. (38). The
non-entries (|) represent vacuous bounds, that is,
0 � PN � 1.
Assumptions Data Available
Exo. Mono. Exp. Non-exp. Combined
+ + ERR ERR ERR
+ � bounds bounds bounds
� + | | CERR
� � | | bounds

tion). When monotonicity does not hold, ERR pro-
vides merely a lower bound for PN, as shown in
Eq. (21). (The upper bound is usually unity.) In
the presence of confounding, ERR must be corrected
by the additive term [P (yjx0) � P (yx0)]=P (x; y), as
stated in (38). In other words, when confounding bias
(of the causal e�ect) is positive, PN is higher than
ERR by the amount of this additive term. Clearly,
owing to the division by P (x; y), the PN bias can
be many times higher than the causal e�ect bias
P (yjx0) � P (yx0). However, confounding results only
from association between exposure and other factors
that a�ect the outcome; one need not be concerned
with associations between such factors and suscepti-
bility to exposure, as is often assumed in the literature
[Khoury et al., 1989, Glymour, 1998].

The last two rows in Table 1 correspond to no as-
sumptions about exogeneity, and they yield vacuous
bounds for PN when data come from either experi-
mental or observational study. In contrast, informa-
tive bounds (17) or point estimates (38) are obtained
when data from experimental and observational stud-
ies are combined. Concrete use of such combination
will be illustrated in Section 4.

4 Example 1: Legal Responsibility

A lawsuit is �led against the manufacturer of drug x,
charging that the drug is likely to have caused the
death of Mr. A, who took the drug to relieve symptom
S associated with disease D.

The manufacturer claims that experimental data on
patients with symptom S show conclusively that drug
x may cause only minor increase in death rates. The
plainti� argues, however, that the experimental study
is of little relevance to this case, because it repre-
sents the e�ect of the drug on all patients, not on
patients like Mr. A who actually died while using
drug x. Moreover, argues the plainti�, Mr. A is
unique in that he used the drug on his own voli-



Table 2: Frequency data (hypothetical) obtained in
experimental and nonexperimental studies, comparing
deaths (in thousands) among drug users (x) and non-
users (x0).

Experimental Nonexperimental
x x0 x x0

Deaths(y) 16 14 2 28
Survivals(y0) 984 986 998 972

tion, unlike subjects in the experimental study who
took the drug to comply with experimental protocols.
To support this argument, the plainti� furnishes non-
experimental data indicating that most patients who
chose drug x would have been alive if it were not for
the drug. The manufacturer counter-argues by stat-
ing that: (1) counterfactual speculations regarding
whether patients would or would not have died are
purely metaphysical and should be avoided, and (2)
nonexperimental data should be dismissed a priori, on
the ground that such data may be highly biased; for
example, incurable terminal patients might be more
inclined to use drug x if it provides them greater symp-
tomatic relief. The court must now decide, based on
both the experimental and non-experimental studies,
what the probability is that drug x was in fact the
cause of Mr. A's death.

The (hypothetical) data associated with the two stud-
ies are shown in Table 2. The experimental data pro-
vide the estimates

P (yx) = 16=1000 = 0:016

P (yx0) = 14=1000 = 0:014

P (y0x0) = 1� P (yx0) = 0:986

The non-experimental data provide the estimates

P (y) = 30=2000 = 0:015

P (x; y) = 2=2000 = 0:001

P (x0; y0) = 972=2000 = 0:486

Since both the experimental and nonexperimental data
are available, we can obtain bounds on all three prob-
abilities of causation through Eqs. (15){(18) without
making any assumptions about the underlying mech-
anisms. The data in Table 2 imply the following nu-
merical results:

0:002 � PNS � 0:016 (39)

1:0 � PN � 1:0 (40)

0:002 � PS � 0:031 (41)

These �gures show that although surviving patients
who didn't take drug x have only less than 3:1% chance

to die had they taken the drug, there is 100% assurance
(barring sample errors) that those who took the drug
and died would have survived had they not taken the
drug. Thus the plainti� was correct; drug x was in
fact responsible for the death of Mr. A.

If we assume that drug x can only cause, but never
prevent, death, Theorem 3 is applicable and Eqs. (30){
(32) yield

PNS = 0:002 (42)

PN = 1:0 (43)

PS = 0:002 (44)

Thus, we conclude that drug x was responsible for the
death of Mr. A, with or without the no-prevention as-
sumption.

Note that a straightforward use of the experimental
excess-risk-ratio would yield a much lower (and incor-
rect) result:

P (yx)� P (yx0)

P (yx)
=

0:016� 0:014

0:016
= 0:125 (45)

Evidently, what the experimental study does not re-
veal is that, given a choice, terminal patients stay away
from drug x. Indeed, if there were any terminal pa-
tients who would choose x (given the choice), then the
control group (x0) would have included some such pa-
tients (due to randomization) and so the proportion
of deaths among the control group P (yx0) would have
been higher than P (x0; y), the population proportion
of terminal patients avoiding x. However, the equality
P (yx0) = P (y; x0) tells us that no such patients were
present in the control group, hence (by randomization)
no such patients exist in the population at large and
therefore none of the patients who freely chose drug x
was a terminal case; all were susceptible to x.

The numbers in Table 2 were obviously contrived to
show the usefulness of the bounds in Eqs. (15)-(18).
Nevertheless, it is instructive to note that a combi-
nation of experimental and non-experimental studies
may unravel what experimental studies alone will not
reveal.

5 Example 2: Personal Decision

Making

Consider the case of Mr. B, who is one of the surviving
patients in the observational study of Table 2. Mr. B
wonders how safe it would be for him to take drug
x, given that he has refrained thus far from taking
the drug and that he managed to survive the disease.
His argument for switching to the drug rests on the
observation that only 2 out of 1000 drug users died in



the observational study, which he considers a rather
small risk to take, given the e�ectiveness of the drug
as a pain killer.

Conventional wisdom instructs us to warn Mr. B
against consulting a nonexperimental study in matters
of decisions, since such studies are marred with un-
controlled factors, which tend to bias e�ect estimates.
Speci�cally, the death rate of 0.002 among drug users
may be indicative of low tolerance to discomfort, or
of membership in a medically-informed socio-economic
group. Such factors do not apply to Mr. B, who did not
use the drug in the past (be it by choice, instinct or ig-
norance), and who is now considering switching to the
drug by rational deliberation. Conventional wisdom
urges us to refer Mr. B to the randomized experimen-
tal study of Table 2, from which the death rate under
controlled administration of the drug was evaluated to
be P (yx) = 0:016, eight times higher than 0.002.

What would his risk of death be, if Mr. B decides to
start taking the drug? 0.2 percent or 1.6 percent?

The answer is that neither number is correct. Mr. B
cannot be treated as a random patient in either study,
because his history of not using the drug and his sur-
vival thus far puts him in a unique category of patients,
for which the e�ect of the drug was not studied.2

These two attributes provide extra evidence about
Mr. B's sensitivity to the drug. This became clear
already in Example 1, where we discovered de�nite re-
lationships among these attributes { for some obscure
reasons, terminal patients chose not to use the drug.

To properly account for this additional evidence, the
risk should be measured through the counterfactual
expression PS = P (yxjx

0; y0); the probability that a
patient who survived with no drug would have died
had he/she taken the drug. The appropriate bound
for this probability is given in Eq. (41):

0:002 � PS � 0:031

Thus, Mr. B's risk of death (upon switching to drug
usage) can be as high as 3.1 percent; more than 15
times his intuitive estimate of 0.2 percent, and almost
twice the naive estimate obtained from the experimen-
tal study.

However, if the drug can safely be assumed to have
no death-preventing e�ects, then monotonicity applies,
and the appropriate bound is given by Eq. (44), PS =
0:002, which coincides with Mr. B's intuition.

2The appropriate experimental design for measuring the
risk of interest is to conduct a randomized clinical trial on
patients in the category of Mr. B, that is, to subject a
random sample of non-users to a period of drug treatment
and measure their rate of survival.

6 Conclusion

This paper shows how useful information about proba-
bilities of causation can be obtained from experimental
and observational studies, with weak or no assump-
tions about the data-generating process. We have
shown that, in general, bounds for the probabilities
of causation can be obtained from combined experi-
mental and nonexperimental data. These bounds were
proven to be sharp and, therefore, they represent the
ultimate information that can be extracted from sta-
tistical methods. We clarify the two basic assumptions
{ exogeneity and monotonicity { that must be ascer-
tained before statistical measures such as excess-risk-
ratio could represent attributional quantities such as
probability of causation.

One application of this analysis lies in the automatic
generation of verbal explanations, where the distinc-
tion between necessary and su�cient causes has impor-
tant rami�cations. As can be seen from the de�nitions
and examples discussed in this paper, necessary cau-
sation is a concept tailored to a speci�c event under
consideration (singular causation), whereas su�cient
causation is based on the general tendency of certain
event types to produce other event types. Adequate
explanations should respect both aspects. Clearly,
some balance must be made between the necessary
and the su�cient components of causal explanation,
and the present paper illuminates this balance by for-
mally explicating the basic relationships between the
two components. In Pearl (2000, chapter 10) it is fur-
ther shown that PN and PS are too crude for cap-
turing probabilities of causation in multi-stage scenar-
ios, and that the structure of the intermediate pro-
cess leading from cause to e�ect must enter the de�-
nitions of causation and explanation. Such consider-
ations will be the subject of future investigation (See
[Halpern and Pearl, 2000]).

Another important application of probabilities of cau-
sation is found in decision making problems. As was
pointed out in Pearl (2000, pp. 217-219) and illustrated
in Section 5, the counterfactual \y would have been
true if x were true" can often be translated into a con-
ditional action claim \given that currently x and y are
false, y will be true if we do x." The evaluation of
such conditional predictions, and the probabilities of
such predictions, are commonplace in decision mak-
ing situations, where actions are brought into focus by
certain eventualities that demand remedial correction.
In troubleshooting, for example, we observe undesir-
able e�ects Y = y that are potentially caused by other
conditions X = x and we wish to predict whether an
action that brings about a change in X would rem-
edy the situation. The information provided by the



evidence y and x is extremely valuable, and it must
be processed before we can predict the e�ect of any
action3. Thus, the expressions developed in this pa-
per constitute bounds on the e�ectiveness of pending
policies, when full knowledge of the state of a�airs is
not available, yet the pre-action states of the decision
variable (X) and the outcome variable (Y ) are known.

For these bounds to be valid in policy making, the
data generating model must be time-invariant, that is,
all probabilities associated with the model should rep-
resent epistemic uncertainty about static, albeit un-
known boundary conditions U = u. The constancy of
U is well justi�ed in the control and diagnosis of phys-
ical systems, where U represents �xed, but unknown
physical characteristics of devices or subsystems. The
constancy approximation is also justi�ed in the health
sciences where patients' genetic attributes and physi-
cal characteristics can be assumed relatively constant
between observation and treatment. For instance, if a
patient in the example of Section 5 wishes to assess the
risk of switching from no drug to drug, it is reasonable
to assume that this patient's susceptibility to the drug
remains constant through the interim period of anal-
ysis. Therefore, the risk associated with this patient's
decision will be well represented by the counterfactual
expression PS = P (yxjx

0; y0), and should be assessed
by the bounds in Eq. (41).

The constancy assumption is less justi�ed in economic
systems, where agents are bombarded by rapidly 
uc-
tuating streams of external forces (\shocks" in econo-
metric terminology) and inter-agents stimuli. These
forces and stimuli may vary substantially during the
policy making interval and they require, therefore, de-
tailed time-dependent analysis. The canonical viola-
tion of the constancy assumption occurs, of course,
in quantum mechanical systems, where the indeter-
minism is \intrinsic" and memory-less, and where the
existence of a deterministic relationship between the
boundary conditions and measured quantities is no
longer a good approximation. A method of incorpo-
rating such intrinsic indeterminism into counterfactual
analysis is outlined in Pearl (2000, p. 220).
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