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Abstract

This paper deals with the problem of estimating the probability of

causation, that is, the probability that one event was the real cause

of another, in a given scenario. Starting from structural-semantical

de�nitions of the probabilities of necessary or su�cient causation (or

both), we show how to bound these quantities from data obtained

in experimental and observational studies, under general assumptions

concerning the data-generating process. In particular, we strengthen

the results of Pearl (1999) by presenting sharp bounds based on com-

bined experimental and nonexperimental data under no process as-

sumptions, as well as under the mild assumptions of exogeneity (no
confounding) and monotonicity (no prevention). These results delin-

eate more precisely the basic assumptions that must be made before

statistical measures such as the excess-risk-ratio could be used for as-

sessing attributional quantities such as the probability of causation.

1 Introduction

Assessing the likelihood that one event was the cause of another guides much
of what we understand about (and how we act in) the world. For example,
few of us would take aspirin to combat headache if it were not for the belief
that, with high probability, aspirin was \the actual cause of relief" in pre-
vious headache episodes. Likewise, according to common judicial standard,
judgment in favor of plainti� should be made if and only if it is \more proba-
ble than not" that the defendant's action was a cause for the plainti�'s injury
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(or death). This paper deals with the question of estimating the probability
of causation from statistical data.

Causation has two faces, necessary and su�cient. The most common
conception of causation { that the e�ect E would not have occurred in the
absence of the cause C { captures the notion of \necessary causation". Com-
peting notions such as \su�cient cause" and \necessary-and-su�cient cause"
are also of interest in a number of applications, and this paper analyzes the
relationships among the three notions. Although the distinction between
necessary and su�cient causes goes back to J.S. Mill (1843), it has received
semi-formal explications only in the 1960s { via conditional probabilities
[Good, 1961] and logical implications [Mackie, 1965]. These explications suf-
fer from basic semantical di�culties [Kim, 1971] [Pearl, 2000, pp. 249-256,
313-316], and they do not yield e�ective procedures for computing probabil-
ities of causes. This paper de�nes probabilities of causes in a language of
counterfactuals that is based on a simple model-theoretic semantics (to be
formulated in Section 2).

[Robins and Greenland, 1989] gave a counterfactual de�nition for the prob-
ability of necessary causation taking counterfactuals as unde�ned primitives,
and assuming that one is in possession of a consistent joint probability func-
tion on both ordinary and counterfactual events. [Pearl, 1999] gave counter-
factual de�nitions for the probabilities of necessary or su�cient causation (or
both) based on structural model semantics, which de�nes counterfactuals as
quantities derived from modi�able sets of functions [Galles and Pearl, 1997,
Galles and Pearl, 1998, Halpern, 1998, Pearl, 2000]. The structural models
semantics, as we shall see in Section 2, leads to e�ective procedures for com-
puting probabilities of counterfactual expressions from a given causal theory
[Balke and Pearl, 1994, 1995]. Additionally, this semantics can be charac-
terized by a complete set of axioms [Galles and Pearl, 1998, Halpern, 1998],
which we will use as inference rules in our analysis.

The central aim of this paper is to estimate probabilities of causation
from frequency data, as obtained in experimental and observational statisti-
cal studies. In general, such probabilities are non-identi�able, that is, non-
estimable from frequency data alone. One factor that hinders identi�ability
is confounding { the cause and the e�ect may both be in
uenced by a third
factor. Moreover, even in the absence of confounding, probabilities of cau-
sation are sensitive to the data-generating process, namely, the functional
relationships that connect causes and e�ects [Robins and Greenland, 1989,
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Balke and Pearl, 1994]. Nonetheless, useful information in the form of bounds
on the probabilities of causation can be extracted from empirical data with-
out actually knowing the data-generating process. These bounds improve
when data from observational and experimental studies are combined. Addi-
tionally, under certain assumptions about the data-generating process (such
as exogeneity and monotonicity), the bounds may collapse to point estimates,
which means that the probabilities of causation are identi�able { they can be
expressed in terms of probabilities of observed quantities. These estimates
will be recognized as familiar expressions that often appear in the literature as
measures of attribution. Our analysis thus explicates the assumptions about
the data-generating process that must be ascertained before those measures
can legitimately be interpreted as probabilities of causation.

The analysis of this paper leans heavily on results reported in [Pearl, 1999]
[Pearl, 2000, pp. 283-308]. Pearl derived bounds and identi�cation condi-
tions under certain assumptions of exogeneity and monotonicity, and this
paper improves on Pearl's results by narrowing his bounds and weakening
his assumptions. In particular, we show that for most of Pearl's results, the
assumption of strong exogeneity can be replaced by weak exogeneity (to be
de�ned in Section 4.3). Additionally, we show that the point estimates that
Pearl obtained under the assumption of monotonicity (De�nition 13) con-
stitute valid lower bounds when monotonicity is not assumed. Finally, we
prove that the bounds derived by Pearl, as well as those provided in this
paper are sharp, that is, they cannot be improved without strengthening the
assumptions.

The rest of the paper is organized as follows. Section 2 gives a review
of the structural model semantics of actions, counterfactuals and probability
of counterfactuals. In Section 3 we present formal de�nitions for the prob-
abilities of causation and brie
y discuss their applicability in epidemiology,
arti�cial intelligence, and legal reasoning. In Section 4 we systematically
investigate the maximal information (about the probabilities of causation)
that can be obtained under various assumptions and from various types of
data. Section 5 illustrates, by example, how the results presented in this pa-
per can be applied to resolve issues of attribution in legal settings. Section 6
concludes the paper.
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2 Structural Model Semantics

This section presents a brief summary of the structural-equation semantics
of counterfactuals as de�ned in Balke and Pearl (1995), Galles and Pearl
(1997, 1998), and Halpern (1998). Related approaches have been proposed
in Simon and Rescher (1966) (see footnote 4) and Robins (1986). For detailed
exposition of the structural account and its applications see [Pearl, 2000].

Structural models are generalizations of the structural equations used
in engineering, biology, economics and social science.1 World knowledge is
represented as a collection of stable and autonomous relationships called
\mechanisms," each represented as an equation, and changes due to inter-
ventions or hypothetical eventualities are treated as local modi�cations of
those equations.

A causal model is a mathematical object that assigns truth values to
sentences involving causal relationships, actions, and counterfactuals. We
will �rst de�ne causal models, then discuss how causal sentences are evaluated
in such models.

De�nition 1 (Causal model)
A causal model is a triple

M = < U; V; F >

where

(i) U is a set of variables, called exogenous, that are determined by factors
outside the model.

(ii) V is a set fV1; V2; : : : ; Vng of variables, called endogenous, that are de-
termined by variables in the model, namely, variables in U [ V .

(iii) F is a set of functions ff1; f2; : : : ; fng where each fi is a mapping from
U � (V n Vi) to Vi. In other words, each fi tells us the value of Vi
given the values of all other variables in U [ V . Symbolically, the set
of equations F can be represented by writing

vi = fi(pai; ui) i = 1; : : : ; n

1Similar models, called \neuron diagrams" [Lewis, 1986, p. 200; Hall, 1998] are used
informally by philosophers to illustrate chains of causal processes.
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where pai is any realization of the unique minimal set of variables PAi

in V=Vi (connoting parents) that renders fi nontrivial. Likewise, Ui �
U stands for the unique minimal set of variables in U that renders fi
nontrivial.

(iv) The set F of functions de�nes a mapping from (the respective domains
of) U to V . Likewise, every subset F 0 of F de�nes a mapping from the
exogenous to the endogenous variables of that subset. 2

Every causal model M can be associated with a directed graph, G(M),
in which each node corresponds to a variable in V and the directed edges
point from members of PAi toward Vi. We call such a graph the causal graph
associated with M . This graph merely identi�es the endogenous variables
PAi that have direct in
uence on each Vi but it does not specify the functional
form of fi.

Basic of our analysis are sentences involving actions or external inter-
ventions, such as, \p will be true if we do q" where q is any elementary
proposition. To evaluate such sentences we need the notion of \submodel."

De�nition 2 (Submodel)
Let M be a causal model, X be a set of variables in V , and x be a particular
realization of X. A submodel Mx of M is the causal model

Mx = < U; V; Fx >

where
Fx = ffi : Vi 62 Xg [ fX = xg (1)

In words, Fx is formed by deleting from F all functions fi corresponding
to members of set X and replacing them with the set of constant functions
X = x.

Submodels represent the e�ect of actions and hypothetical changes, in-
cluding those dictated by counterfactual antecedents. If we interpret each
function fi in F as an independent physical mechanism and de�ne the action

2This requirement, which ensures a unique solution for every subset of F , is satis�ed
whenever F is recursive (feedback free). The requirement was relaxed by Halpern (1998).
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do(X = x) as the minimal change in M required to make X = x hold true
under any u, then Mx represents the model that results from such a minimal
change, since it di�ers from M by only those mechanisms that directly de-
termine the variables in X. The transformation from M to Mx modi�es the
algebraic content of F , which is the reason for the name modi�able structural
equations used in [Galles and Pearl, 1998].3

De�nition 3 (E�ect of action)
Let M be a causal model, X be a set of variables in V , and x be a particular
realization of X. The e�ect of action do(X = x) on M is given by the
submodel Mx.

De�nition 4 (Potential response)
Let Y be a variable in V , and let X be a subset of V . The potential response
of Y to action do(X = x), denoted Yx(u), is the solution for Y of the set of
equations Fx.

We will con�ne our attention to actions in the form of do(X = x). Con-
ditional actions, of the form \do(X = x) if Z = z" can be formalized us-
ing the replacement of equations by functions of Z, rather than by con-
stants [Pearl, 1994]. We will not consider disjunctive actions, of the form
\do(X = x or X = x0)", since these complicate the probabilistic treatment
of counterfactuals.

De�nition 5 (Counterfactual)
Let Y be a variable in V , and let X a subset of V . The counterfactual
sentence \The value that Y would have obtained, had X been x" is interpreted
as denoting the potential response Yx(u).

De�nition 5 thus interprets the counterfactual phrase \had X been x" in
terms of a hypothetical external action that modi�es the actual course of his-
tory and enforces the condition \X = x" with minimal change of mechanisms.
This is a crucial step in the semantics of counterfactuals [Balke and Pearl, 1994],

3Structural modi�cations date back to Marschak (1950) and Simon (1953). An ex-
plicit translation of interventions into \wiping out" equations from the model was �rst
proposed by Strotz and Wold (1960) and later used in Fisher (1970), Sobel (1990), Spirtes
et al. (1993), and Pearl (1995). A similar notion of sub-model is introduced in Fine (1985),
though not speci�cally for representing actions and counterfactuals.
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as it permits x to di�er from the current value of X(u) without creating log-
ical contradiction; it also suppresses abductive inferences (or backtracking)
from the counterfactual antecedent X = x.4

It can easily be shown [Galles and Pearl, 1997] that the counterfactual
relationship just de�ned, Yx(u), satis�es the following two properties:
E�ectiveness:
For all variables Y and W ,

Yyw(u) = y: (2)

Composition:
For any two singleton variables Y and W , and any set of variables X,

Wx(u) = w =) Yxw(u) = Yx(u): (3)

Furthermore, e�ectiveness and composition are complete whenever M is re-
cursive (i.e., G(M) is acyclic) [Galles and Pearl, 1998, Halpern, 1998].

A corollary of composition is a property called consistency by [Robins, 1987]:

(X = x) =) (Yx = Y ) (4)

Consistency states that if we intervene and set the experimental conditions
X = x equal to those prevailing before the intervention, we should not expect
any change in the response variable Y . This property will be used in several
derivations of Section 3 and 4.

The structural formulation generalizes naturally to probabilistic systems,
as is seen below.

De�nition 6 (Probabilistic causal model)
A probabilistic causal model is a pair

< M;P (u) >

where M is a causal model and P (u) is a probability function de�ned over
the domain of U .

4Simon and Rescher (1966, p. 339) did not include this step in their account of coun-
terfactuals and noted that backward inferences triggered by the antecedents can lead to
ambiguous interpretations.
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P (u), together with the fact that each endogenous variable is a function
of U , de�nes a probability distribution over the endogenous variables. That
is, for every set of variables Y � V , we have

P (y)
�
= P (Y = y) =

X
fu j Y (u)=yg

P (u) (5)

The probability of counterfactual statements is de�ned in the same manner,
through the function Yx(u) induced by the submodel Mx. For example, the
causal e�ect of x on y is de�ned as:

P (Yx = y) =
X

fu j Yx(u)=yg

P (u) (6)

Likewise, a probabilistic causal model de�nes a joint distribution on coun-
terfactual statements, i.e., P (Yx = y; Zw = z) is de�ned for any sets of vari-
ables Y;X; Z;W , not necessarily disjoint. In particular, P (Yx = y;X = x0)
and P (Yx = y; Yx0 = y0) are well de�ned for x 6= x0, and are given by

P (Yx = y;X = x0) =
X

fujYx(u)=y & X(u)=x0g

P (u) (7)

and
P (Yx = y; Yx0 = y0) =

X
fu j Yx(u)=y & Y

x0(u)=y0g

P (u): (8)

When x and x0 are incompatible, Yx and Yx0 cannot be measured simul-
taneously, and it may seem meaningless to attribute probability to the joint
statement \Y would be y if X = x and Y would be y0 if X = x0." Such
concerns have been a source of recent objections to treating counterfactuals
as jointly distributed random variables [Dawid, 1997]. The de�nition of Yx
and Yx0 in terms of two distinct submodels, driven by a standard probability
space over U , explains away these objections and further illustrates that joint
probabilities of counterfactuals can be encoded rather parsimoniously using
P (u) and F .

In particular, the probabilities of causation analyzed in this paper (see
Eqs. (10)-(12)) require the evaluation of expressions of the form P (Yx0 =
y0jX = x; Y = y) with x and y incompatible with x0 and y0, respectively.
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Eq. (7) allows the evaluation of this quantity as follows:

P (Yx0 = y0jX = x; Y = y) =
P (Yx0 = y0; X = x; Y = y)

P (X = x; Y = y)

=
X
u

P (Yx0(u) = y0)P (ujx; y) (9)

In other words, we �rst update P (u) to obtain P (ujx; y), then we use the up-
dated distribution P (ujx; y) to compute the expectation of the index function
Yx0(u) = y0.

3 Probabilities of Causation: De�nitions

In this section, we present the de�nitions for the three aspects of causation
as de�ned in [Pearl, 1999]. We use the counterfactual language and the
structural model semantics introduced in Section 2.

De�nition 7 (Probability of necessity (PN))
Let X and Y be two binary variables in a causal model M , let x and y stand
for the propositions X = true and Y = true, respectively, and x0 and y0 for
their complements. The probability of necessity is de�ned as the expression

PN
�
= P (Yx0 = false j X = true; Y = true)
�
= P (y0x0jx; y) (10)

In other words, PN stands for the probability that event y would not have
occurred in the absence of event x, (y0x0), given that x and y did in fact occur.5

This quantity has applications in epidemiology, legal reasoning, and ar-
ti�cial intelligence (AI). Epidemiologists have long been concerned with es-
timating the probability that a certain case of disease is attributable to a

5Note a slight change in notation relative to that used Section 2. Lower case letters (e.g.,
x; y) denoted arbitrary values of variables in Section 2, and now stand for propositions
(or events). Note also the abbreviations yx for Yx = true and y0

x for Yx = false. Readers
accustomed to writing \A > B" for the counterfactual \B if it were A" can translate Eq.

(10) to read PN
�
= P (x0 > y0jx; y).
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particular exposure, which is normally interpreted counterfactually as \the
probability that disease would not have occurred in the absence of expo-
sure, given that disease and exposure did in fact occur." This counterfactual
notion, which Robins and Greenland (1989) called the \probability of causa-
tion", measures how necessary the cause is for the production of the e�ect.
It is used frequently in lawsuits, where legal responsibility is at the center of
contention (see Section 5).

De�nition 8 (Probability of su�ciency (PS))

PS
�
= P (yxjy

0; x0) (11)

PS measures the capacity of x to produce y and, since \production" implies
a transition from the absence to the presence of x and y, we condition the
probability P (yx) on situations where x and y are both absent. Thus, mir-
roring the necessity of x (as measured by PN), PS gives the probability that
setting x would produce y in a situation where x and y are in fact absent.

PS �nds applications in policy analysis, AI, and psychology. A policy
maker may well be interested in the dangers that a certain exposure may
present to the healthy population [Khoury , 1989]. Counterfactually, this
notion is expressed as the \probability that a healthy unexposed individual
would have gotten the disease had he/she been exposed." In psychology, PS
serves as the basis for Cheng's (1997) causal power theory, which attempts
to explain how humans judge causal strength among events. In AI, PS plays
a major role in the generation of explanations [Pearl, 2000, pp. 221-223].

De�nition 9 (Probability of necessity and su�ciency (PNS))

PNS
�
= P (yx; y

0
x0) (12)

PNS stands for the probability that y would respond to x both ways, and
therefore measures both the su�ciency and necessity of x to produce y.

As illustrated above, PS assesses the presence of an active causal process
capable of producing the e�ect, while PN emphasizes the absence of alterna-
tive processes, not involving the cause in question, that are still capable of
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explaining the e�ect. In legal settings, where the occurrence of the cause (x)
and the e�ect (y) are fairly well established, PN is the measure that draws
most attention, and the plainti� must prove that y would not have occurred
but for x [Robertson, 1997]. Still, lack of su�ciency may weaken arguments
based on PN [Good, 1993, Michie, 2000].

Although none of these quantities is su�cient for determining the others,
they are not entirely independent, as shown in the following lemma.

Lemma 1 The probabilities of causation satisfy the following relationship:

PNS = P (x; y)PN + P (x0; y0)PS (13)

Proof of Lemma 1
Using the consistency condition of Eq. (4),

x) (yx = y); x0 ) (yx0 = y); (14)

we can write

yx ^ y
0
x0 = (yx ^ y0x0) ^ (x _ x0)

= (yx ^ x ^ y0x0) _ (yx ^ y0x0 ^ x0)

= (y ^ x ^ y0x0) _ (yx ^ y
0 ^ x0)

Taking probabilities on both sides, and using the disjointness of x and x0, we
obtain:

P (yx; y
0
x0) = P (y0x0; x; y) + P (yx; x

0; y0)

= P (y0x0jx; y)P (x; y) + P (yxjx
0; y0)P (x0; y0)

which proves Lemma 1. 2

De�nition 10 (Identi�ability)
Let Q(M) be any quantity de�ned on a causal model M . Q is identi�able
in a class M of models i� any two models M1 and M2 from M that satisfy
PM1

(v) = PM2
(v) also satisfy Q(M1) = Q(M2). In other words, Q is identi-

�able if it can be determined uniquely from the probability distribution P (v)
of the endogenous variables V .
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The class M that we will consider when discussing identi�ability will
be determined by assumptions that one is willing to make about the model
under study. For example, if our assumptions consist of the structure of a
causal graph G0, M will consist of all models M for which G(M) = G0.
If, in addition to G0, we are also willing to make assumptions about the
functional form of some mechanisms in M , M will consist of all models M
that incorporate those mechanisms, and so on.

Since all the causal measures de�ned above invoke conditionalization on y,
and since y is presumed a�ected by x, the antecedent of the the counterfactual
yx, we know that none of these quantities is identi�able from knowledge of
the structure G(M) and the data P (v) alone, even under condition of no
confounding. However, useful information in the form of bounds may be
derived for these quantities from P (v), especially when knowledge about
causal e�ects P (yx) and P (yx0) is also available6. Moreover, under some
general assumptions about the data-generating process, these quantities may
even be identi�ed.

4 Bounds and Conditions of Identi�cation

In this section we estimate the three probabilities of causation de�ned in Sec-
tion 3 when given experimental or nonexperimental data (or both) and addi-
tional assumptions about the data-generating process. We will assume that
experimental data will be summarized in the form of the causal e�ects P (yx)
and P (yx0), and nonexperimental data will be summarized in the form of the
joint probability function: PXY = fP (x; y); P (x0; y); P (x; y0); P (x0; y0)g.7

6The causal e�ects P (yx) and P (yx0) can be estimated reliably from controlled ex-
perimental studies, and from certain observational (i.e., nonexperimental) studies which
permit the control of confounding through adjustment of covariates [Pearl, 1995].

7By \experimental data" we mean data gathered under controlled randomized study
on a large, randomly selected sample from a population characterizing events x and y.
Likewise, by \nonexperimental data" we mean frequency counts obtained in uncontrolled
study conducted on large, randomly selected sample from the population characterizing
events x and y, and under the conditions prevailing during the occurrence of x and y.
For example, if x represents a speci�c exposure and y represents the outcome of a speci�c
individual I , then PXY is estimated from sampled frequency counts in the population
which is deemed to be governed by the same causal model M that governed the behavior
of I .
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4.1 Linear programming formulation

In principle, in order to compute the probability of any counterfactual sen-
tence involving variablesX and Y we need to specify a causal model, namely,
the functional relation between X and Y and the probability distribution on
U . However, since every such model induces a joint probability distribution
on the four binary variables: X, Y , Yx and Yx0, specifying the sixteen param-
eters of this distribution would su�ce. Moreover , since Y is a deterministic
function of the other three variables, the problem is fully speci�ed by the
following set of eight parameters:

p111 = P (yx; yx0; x) = P (x; y; yx0)

p110 = P (yx; yx0; x0) = P (x0; y; yx)

p101 = P (yx; y
0
x0; x) = P (x; y; y0x0)

p100 = P (yx; y
0
x0; x0) = P (x0; y0; yx)

p011 = P (y0x; yx0; x) = P (x; y0; yx0)

p010 = P (y0x; yx0; x0) = P (x0; y; y0x)

p001 = P (y0x; y
0
x0; x) = P (x; y0; y0x0)

p000 = P (y0x; y
0
x0; x0) = P (x0; y0; y0x)

where we have used the consistency condition Eq. (14). These parameters
are constrained by the probabilistic constraints

1X
i=0

1X
j=0

1X
k=0

pijk = 1

pijk � 0 for i; j; k 2 f0; 1g (15)

In addition, the nonexperimental probabilities PXY impose the constraints:

p111 + p101 = P (x; y)

p011 + p001 = P (x; y0) (16)

p110 + p010 = P (x0; y)

and the causal e�ects, P (yx) and P (yx0), impose the constraints:

P (yx) = p111 + p110 + p101 + p100

P (yx0) = p111 + p110 + p011 + p010 (17)
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The quantities we wish to bound are:

PNS = p101 + p100 (18)

PN = p101=P (x; y) (19)

PS = p100=P (x
0; y0) (20)

In the following sections we obtain bounds for these quantities by solving
various linear programming problems. For example, given both experimen-
tal and nonexperimental data, the lower (and upper) bounds for PNS are
obtained by minimizing (or maximizing, respectively) p101 + p100 subject to
the constraints (15), (16) and (17). The bounds obtained are guaranteed to
be sharp because the optimization is global.

Optimizing the functions in (18){(20), subject to equality constraints,
de�nes a linear programming (LP) problem that lends itself to closed-form
solution. Balke (1995, Appendix B) describes a computer program that takes
symbolic description of LP problems and returns symbolic expressions for
the desired bounds. The program works by systematically enumerating the
vertices of the constraint polygon of the dual problem. The bounds reported
in this paper were produced (or tested) using Balke's program, and will be
stated here without proofs; their correctness can be veri�ed by manually
enumerating the vertices as described in [Balke, 1995, Appendix B].

4.2 Bounds with no assumptions

4.2.1 Given nonexperimental data

Given PXY , constraints (15) and (16) induce the following upper bound on
PNS:

0 � PNS � P (x; y) + P (x0; y0): (21)

However, PN and PS are not constrained by PXY .
These constraints also induce bounds on the causal e�ects P (yx) and

P (yx0):

P (x; y) � P (yx) � 1� P (x; y0)

P (x0; y) � P (yx0) � 1� P (x0; y0) (22)
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4.2.2 Given causal e�ects

Given constraints (15) and (17), the bounds induced on PNS are:

max[0; P (yx)� P (yx0)] � PNS � min[P (yx); P (y
0
x0)] (23)

with no constraints on PN and PS.

4.2.3 Given both nonexperimental data and causal e�ects

Given the constraints (15), (16) and (17), the following bounds are induced
on the three probabilities of causation:

max

8>>><
>>>:

0
P (yx)� P (yx0)
P (y)� P (yx0)
P (yx)� P (y)

9>>>=
>>>; � PNS � min

8>>><
>>>:

P (yx)
P (y0x0)

P (x; y) + P (x0; y0)
P (yx)� P (yx0) + P (x; y0) + P (x0; y)

9>>>=
>>>;

(24)

max

(
0

P (y)�P (y
x0)

P (x;y)

)
� PN � min

8<
:

1
P (y0

x0
)�P (x0;y0)

P (x;y)

9=
; (25)

max

(
0

P (yx)�P (y)
P (x0;y0)

)
� PS � min

(
1

P (yx)�P (x;y)
P (x0;y0)

)
(26)

Thus we see that some information about PN and PS can be extracted with-
out making any assumptions about the data-generating process. Further-
more, combined data from both experimental and nonexperimental studies
yield information that neither study alone can provide.

4.3 Bounds under exogeneity

De�nition 11 (Exogeneity)
A variable X is said to be exogenous for Y in model M i�

P (yx) = P (yjx)

P (yx0) = P (yjx0) (27)

or, equivalently,
Yx??X and Yx0??X: (28)

In words, the way Y would potentially respond to experimental conditions x
or x0 is independent of the actual value of X.

15



Eq. (27) has been given a variety of (equivalent) de�nitions and in-
terpretations. Epidemiologists refer to this condition as \no-confounding"
[Robins and Greenland, 1989], statisticians call it \as if randomized," and
Rosenbaum and Rubin (1983) call it \weak ignorability." A graphical crite-
rion ensuring exogeneity is the absence of a common ancestor of X and Y in
G(M) (including latent ancestors which represent dependencies among vari-
ables in U). The classical econometric criterion for exogeneity (e.g., Dhrymes
1970, p. 169) states that X be independent of the error term (u) in the equa-
tion for Y .8 We will use the term \exogeneity", since it was under this
term that the relations given in (27) �rst received their precise de�nition (by
economists).

Combining Eq. (27) with the constraints of (15){(17), the linear program-
ming optimization (Section 4.1) yields the following results:

Theorem 1 Under condition of exogeneity, the three probabilities of causa-
tion are bounded as follows:

max[0; P (yjx)� P (yjx0)] � PNS � min[P (yjx); P (y0jx0)] (29)

max[0; P (yjx)� P (yjx0)]

P (yjx)
� PN �

min[P (yjx); P (y0jx0)]

P (yjx)
(30)

max[0; P (yjx)� P (yjx0)]

P (y0jx0)
� PS �

min[P (yjx); P (y0jx0)]

P (y0jx0)
(31)

The bounds expressed in Eq. (30) were �rst derived by Robins and Green-
land (1989) ; a more elaborate proof can be found in [Freedman and Stark, 1999].
[Pearl, 1999] derived Eqs. (29)-(31) under a stronger condition of exogeneity
(see De�nition 12). We see that under the condition of no-confounding the
lower bound for PN can be expressed as

PN � 1�
1

P (yjx)=P (yjx0)
�
= 1�

1

RR
(32)

where RR = P (yjx)=P (yjx0) is called relative risk in epidemiology. Courts
have often used the condition RR > 2 as a criterion for legal responsibility
[Bailey , 1994]. Eq. (32) shows that this practice represents a conservative

8This criterion has been the subject of relentless objections by modern econometricians
[Engle et al., 1983; Hendry, 1995; Imbens, 1997], but see Aldrich (1993) and Pearl (2000,
pp. 169-170; 245-247) for a reconciliatory perspective on this controversy.
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interpretation of the \more probable than not" standard (assuming no con-
founding); PN must be higher than 0.5 if RR exceeds 2. Freedman and Stark
(1999) argue that, in general, epidemiological evidence may not be applica-
ble as proof for speci�c causation [Freedman and Stark, 1999] because such
evidence cannot account for all characteristics speci�c to the plainti�. This
argument represents an overly narrow interpretation of the concept \prob-
ability of causation," for it insists on characterizing the plainti� to minute
detail and reduces to zero or one when all relevant details are accounted for.
We doubt that this interpretation underlies the intent of judicial standards.
By using the probabilistic wording \more probable than not" law makers
have instructed us to ignore speci�c features for which data is not available,
and to base our determination on the most speci�c features for which reli-
able data is available. PN further ensures us that two obvious features of the
plainti� will not be ignored: the exposure (x) and the injury (y); these two
features are ignored in the causal e�ect measure P (yx) which is a quantity
averaged over the entire population, including unexposed and uninjured.

4.3.1 Bounds under strong exogeneity

The condition of exogeneity, as de�ned in Eq. (27) is testable by comparing
experimental and nonexperimental data. A stronger version of exogeneity can
be de�ned as the joint independence fYx; Yx0g??X which was called \strong
ignorability" by Rosenbaum and Rubin (1983). Though untestable, such
joint independence is assumed to hold when we assert the absence of factors
that simultaneously a�ect exposure and outcome.

De�nition 12 (Strong Exogeneity)
A variableX is said to be strongly exogenous for Y in modelM i� fYx; Yx0g??X,
that is,

P (yx; yx0jx) = P (yx; yx0)

P (yx; y
0
x0jx) = P (yx; y

0
x0)

P (y0x; yx0jx) = P (y0x; yx0) (33)

P (y0x; y
0
x0jx) = P (y0x; y

0
x0)

The four conditions in (33) are su�cient to represent fYx; Yx0g??X, because
for every event E we have

P (Ejx) = P (E) =) P (Ejx0) = P (E): (34)
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Remarkably, the added constraints introduced by strong exogeneity do
not alter the bounds of Eqs. (29){(31):

Theorem 2 Under condition of strong exogeneity, the probabilities PN, PS,
and PNS are constrained by the bounds of Eqs. (29){(31). Moreover, PN,
PS, and PNS are related to each other as follows [Pearl, 1999] :

PN =
PNS

P (yjx)
(35)

PS =
PNS

1� P (yjx0)
(36)

4.4 Identi�ability under monotonicity

De�nition 13 (Monotonicity)
A variable Y is said to be monotonic relative to variable X in a causal model
M i�

y0x ^ yx0 = false (37)

Monotonicity expresses the assumption that a change from X = false to
X = true cannot, under any circumstance make Y change from true to false.
In epidemiology, this assumption is often expressed as \no prevention," that
is, no individual in the population can be helped by exposure to the risk
factor. [Balke and Pearl, 1997] used this assumption to tighten bounds of
treatment e�ects from studies involving non-compliance. Glymour (1998)
and Cheng (1997) resort to this assumption in using disjunctive or conjunc-
tive relationships between causes and e�ects, excluding functions such as
exclusive-or, or parity.

In the linear programming formulation of Section 4.1, monotonicity nar-
rows the feasible space to the manifold:

p011 = 0

p010 = 0 (38)
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4.4.1 Given nonexperimental data

Under the constraints (15), (16), and (38), we �nd the same bounds for PNS
as the ones obtained under no assumptions (Eq. (21)). Moreover, there are
still no constraints on PN and PS. Thus, with nonexperimental data alone,
the monotonicity assumption does not provide new information.

However, the monotonicity assumption induces sharper bounds on the
causal e�ects P (yx) and P (yx0):

P (y) � P (yx) � 1� P (x; y0)

P (x0; y) � P (yx0) � P (y) (39)

Compared with Eq. (22), the lower bound for P (yx) and the upper bound
for P (yx0) are tightened. The importance of Eq. (39) lies in providing a
simple necessary test for the assumption of monotonicity. These inequalities
are sharp, in the sense that every combination of experimental and non-
experimental data that satisfy these inequalities can be generated from some
causal model in which Y is monotonic in X.

That the commonly made assumption of \no-prevention" is not entirely
exempt from empirical scrutiny should come as a relief to many epidemiolo-
gists. Alternatively, if the no-prevention assumption is theoretically unassail-
able, the inequalities of Eq. (39) can be used for testing the compatibility of
the experimental and non-experimental data, namely, whether subjects used
in clinical trials are representative of the target population, characterized by
the joint distribution PXY .

4.4.2 Given causal e�ects

Constraints (15), (17), and (38) induce no constraints on PN and PS, while
the value of PNS is fully determined:

PNS = P (yx; y
0
x0) = P (yx)� P (yx0)

That is, under the assumption of monotonicity, PNS can be determined by
experimental data alone, despite the fact that the joint event yx ^ y0x0 can
never be observed.
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4.4.3 Given both nonexperimental data and causal e�ects

Under the constraints (15){(17) and (38), the values of PN, PS, and PNS
are all determined precisely.

Theorem 3 If Y is monotonic relative to X, then PNS, PN, and PS are
identi�able whenever the causal e�ects P (yx) and P (yx0) are identi�able, and
are given by

PNS = P (yx; y
0
x0) = P (yx)� P (yx0) (40)

PN = P (y0x0jx; y) =
P (y)� P (yx0)

P (x; y)
(41)

PS = P (yxjx
0; y0) =

P (yx)� P (y)

P (x0; y0)
(42)

Eqs. (40){(42) are applicable to situations where, in addition to observa-
tional probabilities, we also have information about the causal e�ects P (yx)
and P (yx0). Such information may be obtained either directly, through sepa-
rate experimental studies, or indirectly, from observational studies in which
certain identifying assumptions are deemed plausible (e.g., assumptions that
permits identi�cation through adjustment of covariates). Note that the iden-
ti�cation of PN requires only P (yx0) while that of PS requires P (yx). In
practice, however, any method that yields the former also yields the latter.

One common class of models which permits the identi�cation of P (yx) is
called Markovian.

De�nition 14 (Markovian models)
A causal model M is said to be Markovian if the graph G(M) associated with
M is acyclic, and if the exogenous factors ui are mutually independent. A
model is semi-Markovian i� G(M) is acyclic and the exogenous variables are
not necessarily independent. A causal model is said to be positive-Markovian
if it is Markovian and P (v) > 0 for every v.

It is shown in Pearl (1993, 1995) that for every two variables, X and Y ,
in a positive-Markovian model M , the causal e�ects P (yx) and P (yx0) are
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identi�able and are given by

P (yx) =
X
paX

P (yjpaX; x)P (paX)

P (yx0) =
X
paX

P (yjpaX; x
0)P (paX) (43)

where paX are (realizations of) the parents of X in the causal graph asso-
ciate with M (see also Spirtes et al. (1993), Robins (1986), and Pearl (2000,
p. 73)). Thus, we can combine Eq. (43) with Theorem 3 and obtain a concrete
condition for the identi�cation of the probability of causation.

Corollary 1 If in a positive-Markovian model M , the function Yx(u) is
monotonic, then the probabilities of causation PNS, PS and PN are iden-
ti�able and are given by Eqs. (40){(42), with P (yx) given in Eq. (43). If
monotonicity cannot be ascertained, then PNS, PN and PS are bounded by
Eqs. (24){(26), with P (yx) given in Eq. (43).

A broader identi�cation condition can be obtained through the use of
the back-door and front-door criteria [Pearl, 1995], which are applicable to
semi-Markovian models. These were further generalized in Galles and Pearl
(1995)9 and lead to the following corollary:

Corollary 2 Let GP be the class of semi-Markovian models that satisfy the
graphical criterion of Galles and Pearl (1995). If Yx(u) is monotonic, then
the probabilities of causation PNS, PS and PN are identi�able in GP and
are given by Eqs. (40){(42), with P (yx) determined by the topology of G(M)
through the GP criterion.

4.5 Identi�ability under monotonicity and exogeneity

Under the assumption of monotonicity, if we further assume exogeneity, then
P (yx) and P (yx0) are identi�ed through Eq. (27), and from theorem 3 we
conclude that PNS, PN, and PS are all identi�able.

9Galles and Pearl (1995) provide an e�cient method of deciding from the graph G(M)
whether P (yx) is identi�able and, if the answer is a�rmative, deriving the expression for
P (yx). See also [Pearl, 2000, pp. 114-118].
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Theorem 4 (Identi�ability under exogeneity and monotonicity)
If X is exogenous and Y is monotonic relative to X, then the probabilities
PN, PS, and PNS are all identi�able, and are given by

PNS = P (yjx)� P (yjx0) (44)

PN =
P (y)� P (yjx0)

P (x; y)
=
P (yjx)� P (yjx0)

P (yjx)
(45)

PS =
P (yjx)� P (y)

P (x0; y0)
=
P (yjx)� P (yjx0)

P (y0jx0)
(46)

These expressions are to be recognized as familiar measures of attribution
that often appear in the literature. The r.h.s. of (44) is called \risk-di�erence"
in epidemiology, and is also misnomered \attributable risk" [Hennekens and Buring, 1987,
p. 87]. The probability of necessity, PN, is given by the excess-risk-ratio
(ERR)

PN = [P (yjx)� P (yjx0)]=P (yjx) (47)

often misnomered as the attributable fraction [Schlesselman, 1982], attributable-
rate percent [Hennekens and Buring, 1987, p. 88], attributed fraction for the
exposed [Kelsey , 1996, p. 38], or attributable proportion [Cole, 1997]. The
reason we consider these labels to be misnomers is that ERR invokes purely
statistical relationships, hence it cannot in itself serve to measure attribution,
unless forti�ed with some causal assumptions. Exogeneity and monotonicity
are the causal assumptions which endow ERR with attributional interpre-
tation, and these assumptions are rarely made explicit in the literature on
attribution.

The expression for PS is likewise quite revealing

PS = [P (yjx)� P (yjx0)]=[1� P (yjx0)]; (48)

as it coincides with what epidemiologists call the \relative di�erence" [Shep, 1958],
which is used to measure the susceptibility of a population to a risk factor x.
It also coincides with what Cheng calls \causal power" (1997), namely, the
e�ect of x on y after suppressing \all other causes of y." See Pearl (1999)
for additional discussions of these expressions.
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To appreciate the di�erence between Eqs. (41) and (47) we can rewrite
Eq. (41) as

PN =
P (yjx)P (x) + P (yjx0)P (x0)� P (yx0)

P (yjx)P (x)

=
P (yjx)� P (yjx0)

P (yjx)
+
P (yjx0)� P (yx0)

P (x; y)
(49)

The �rst term on the r.h.s. of (49) is the familiar ERR as in (47), and
represents the value of PN under exogeneity. The second term represents the
correction needed to account for X's non-exogeneity, i.e. P (yx0) 6= P (yjx0).
We will call the r.h.s. of (49) by corrected excess-risk-ratio (CERR).

>From Eqs. (44){(46) we see that the three notions of causation satisfy
the simple relationships given by Eqs. (35) and (36) which we obtained under
the strong exogeneity condition. In fact, we have the following theorem.

Theorem 5 Monotonicity (37) and exogeneity (27) together imply strong
exogeneity (33).

Proof of Theorem 5:
>From monotonicity condition, we have

yx0 = yx0 ^ (yx _ y
0
x) = (yx0 ^ yx) _ (yx0 _ y0x) = yx0 ^ yx: (50)

Thus we can write
P (yx0) = P (yx; yx0); (51)

and
P (yjx0) = P (yx0jx0) = P (yx; yx0jx0) (52)

where consistency condition (14) is used. The exogeneity condition (27)
allows us to equate (51) and (52), and we obtain

P (yx; yx0jx0) = P (yx; yx0); (53)

which implies the �rst of the four conditions in (33):

P (yx; yx0jx) = P (yx; yx0): (54)

Combining Eq. (54) with

P (yx) = P (yx; yx0) + P (yx; y
0
x0); (55)

P (yjx) = P (yxjx) = P (yx; yx0jx) + P (yx; y
0
x0jx); (56)
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Table 1: PN (the probability of necessary causation) as a function of
assumptions and available data. ERR stands of the excess-risk-ratio
1� P (yjx0)=P (yjx) and CERR is given in Eq. (49). The non-entries (|)
represent vacuous bounds, that is, 0 � PN � 1.

Assumptions Data Available
Exogeneity Monotonicity Experimental Nonexperimental Combined

+ + ERR ERR ERR
+ � bounds bounds bounds
� + | | CERR
� � | | bounds

and the exogeneity condition (27), we obtain the second equation in (33):

P (yx; y
0
x0jx) = P (yx; y

0
x0): (57)

Both sides of the third equation in (33) are equal to zero from monotonicity
condition and the last equation in (33) follows because the four quantities
sum up to 1 on both sides of the four equations. 2

4.6 Summary of results

We now summarize the results from Section 4 that should be of value to
practicing epidemiologists and policy makers. These results are shown in
Table 1, which lists the best estimand of PN under various assumptions and
various types of data|the stronger the assumptions, the more informative
the estimates.

We see that the excess-risk-ratio (ERR), which epidemiologists commonly
identify with the probability of causation, is a valid measure of PN only when
two assumptions can be ascertained: exogeneity (i.e., no confounding) and
monotonicity (i.e., no prevention). When monotonicity does not hold, ERR
provides merely a lower bound for PN, as shown in Eq. (30). (The upper
bound is usually unity.) In the presence of confounding, ERR must be cor-
rected by the additive term [P (yjx0)� P (yx0)]=P (x; y), as stated in (49). In
other words, when confounding bias (of the causal e�ect) is positive, PN is
higher than ERR by the amount of this additive term. Clearly, owing to the
division by P (x; y), the PN bias can be many times higher than the causal ef-
fect bias P (yjx0)�P (yx0). However, confounding results only from association
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between exposure and other factors that a�ect the outcome; one need not be
concerned with associations between such factors and susceptibility to expo-
sure, as is often assumed in the literature [Khoury , 1989, Glymour, 1998].

The last two rows in Table 1 correspond to no assumptions about exo-
geneity, and they yield vacuous bounds for PN when data come from either
experimental or observational study. In contrast, informative bounds (25)
or point estimates (49) are obtained when data from experimental and ob-
servational studies are combined. Concrete use of such combination will be
illustrated in Section 5.

5 An Example: Legal Responsibility from Ex-

perimental and Nonexperimental Data

A lawsuit is �led against the manufacturer of drug x, charging that the drug
is likely to have caused the death of Mr. A, who took the drug to relieve
symptom S associated with disease D.

The manufacturer claims that experimental data on patients with symp-
tom S show conclusively that drug x may cause only negligible increase in
death rates. The plainti� argues, however, that the experimental study is
of little relevance to this case, because it represents the e�ect of the drug
on all patients, not on patients like Mr. A who actually died while using
drug x. Moreover, argues the plainti�, Mr. A is unique in that he used the
drug on his own volition, unlike subjects in the experimental study who took
the drug to comply with experimental protocols. To support this argument,
the plainti� furnishes nonexperimental data indicating that most patients
who chose drug x would have been alive if it were not for the drug. The
manufacturer counter-argues by stating that: (1) counterfactual speculations
regarding whether patients would or would not have died are purely meta-
physical and should be avoided [Dawid, 1997], and (2) nonexperimental data
should be dismissed a priori, on the ground that such data may be highly
biased; for example, incurable terminal patients might be more inclined to
use drug x if it provides them greater symptomatic relief. The court must
now decide, based on both the experimental and non-experimental studies,
what the probability is that drug x was in fact the cause of Mr. A's death.

The (hypothetical) data associated with the two studies are shown in
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Table 2: Frequency data (hypothetical) obtained in experimental and nonex-
perimental studies, comparing deaths (in thousands) among drug users (x)
and non-users (x0).

Experimental Nonexperimental
x x0 x x0

Deaths(y) 16 14 2 28
Survivals(y0) 984 986 998 972

Table 2. The experimental data provide the estimates

P (yx) = 16=1000 = 0:016

P (yx0) = 14=1000 = 0:014

P (y0x0) = 1� P (yx0) = 0:986

The non-experimental data provide the estimates

P (y) = 30=2000 = 0:015

P (x; y) = 2=2000 = 0:001

P (x0; y0) = 972=2000 = 0:486

Since both the experimental and nonexperimental data are available, we
can obtain bounds on all three probabilities of causation through Eqs. (24){
(26) without making any assumptions about the underlying mechanisms.
The data in Table 2 imply the following numerical results:

0:002 � PNS � 0:016 (58)

1:0 � PN � 1:0 (59)

0:002 � PS � 0:031 (60)

These �gures show that although surviving patients who didn't take drug
x have only less than 3:1% chance to die had they taken the drug, there is
100% assurance (barring sample errors) that those who took the drug and
died would have survived had they not taken the drug. Thus the plainti�
was correct; drug x was in fact responsible for the death of Mr. A.

If we assume that drug x can only cause, but never prevent, death, The-
orem 3 is applicable and Eqs. (40){(42) yield

PNS = 0:002 (61)
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PN = 1:0 (62)

PS = 0:002 (63)

Thus, we conclude that drug x was responsible for the death of Mr. A, with
or without the no-prevention assumption.

Note that a straightforward use of the experimental excess-risk-ratio would
yield a much lower (and incorrect) result:

P (yx)� P (yx0)

P (yx)
=

0:016� 0:014

0:016
= 0:125 (64)

Evidently, what the experimental study does not reveal is that, given a choice,
terminal patients stay away from drug x. Indeed, if there were any terminal
patients who would choose x (given the choice), then the control group (x0)
would have included some such patients (due to randomization) and so the
proportion of deaths among the control group P (yx0) would have been higher
than P (x0; y), the population proportion of terminal patients avoiding x.
However, the equality P (yx0) = P (y; x0) tells us that no such patients were
included in the control group, hence (by randomization) no such patients
exist in the population at large and therefore none of the patients who freely
chose drug x was a terminal case; all were susceptible to x.

The numbers in Table 2 were obviously contrived to show the usefulness
of bounds Eqs. (24)-(26). Nevertheless, it is instructive to note that a com-
bination of experimental and non-experimental studies may unravel what
experimental studies alone will not reveal. In addition, such combination
may provide a test for the assumption of no-prevention, as outlined in Sec-
tion 4.4.1. For example, if the frequencies in Table 2 were slightly di�erent,
they could easily violate the inequalities of Eq. (39). Such violation may be
due either to nonmonotonicity or to incompatibility of the experimental and
nonexperimental groups.

This last point may warrant a word of explanation, lest the reader won-
ders why two data sets, taken from two separate groups under di�erent ex-
perimental conditions, should constrain one another. The explanation is that
certain quantities in the two subpopulations are expected to remain invariant
to all these di�erences, provided that the two subpopulations were sampled
properly from the population at large. The invariant quantities are simply
the causal e�ects probabilities, P (yx0) and P (yx). Although these counter-
factual probabilities were not measured in the nonexperimental group, they
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must (by de�nition) nevertheless be the same as those measured in the ex-
perimental group. The invariance of these quantities is the basic axiom of
controlled experimentation, without which no inference would be possible
from experimental studies to general behavior of the population. The invari-
ance of these quantities, together with monotonicity, imply the inequalities
of (39).

6 Conclusion

This paper shows how useful information about probabilities of causation
can be obtained from experimental and observational studies, with weak or
no assumptions about the data-generating process. We have shown that, in
general, bounds for the probabilities of causation can be obtained from com-
bined experimental and nonexperimental data. These bounds were proven
to be sharp and, therefore, they represent the ultimate information that can
be extracted from statistical methods. We clarify the two basic assumptions
{ exogeneity and monotonicity { that must be ascertained before statistical
measures such as excess-risk-ratio could represent attributional quantities
such as probability of causation. We further illustrate the applicability of
these results to problems in epidemiology and legal reasoning.

The main application of this analysis to arti�cial intelligence lies in the
automatic generation of verbal explanations, where the distinction between
necessary and su�cient causes has important rami�cations. As can be seen
from the de�nitions and examples discussed in this paper, necessary causa-
tion is a concept tailored to a speci�c event under consideration (singular
causation), whereas su�cient causation is based on the general tendency of
certain event types to produce other event types. Adequate explanations
should respect both aspects. If we base explanations solely on generic ten-
dencies (i.e., su�cient causation) then we lose important scenario-speci�c
information. For instance, aiming a gun at and shooting a person from 1,000
meters away will not qualify as an explanation for that person's death, ow-
ing to the very low tendency of shots �red from such long distances to hit
their marks. This stands contrary to common sense, for when the shot does
hit its mark on that singular day, regardless of the reason, the shooter is
an obvious culprit for the consequence. If, on the other hand, we base ex-
planations solely on singular-event considerations (i.e., necessary causation),
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then various background factors that are normally present in the world would
awkwardly qualify as explanations. For example, the presence of oxygen in
the room would qualify as an explanation for the �re that broke out, simply
because the �re would not have occurred were it not for the oxygen. That we
judge the match struck, not the oxygen, to be the more adequate explanation
of the �re indicates that we go beyond the singular event at hand (where each
factor alone is both necessary and su�cient) and consider situations of the
same general type { where oxygen alone is obviously insu�cient to start a
�re.

Recasting the question in the language of PN and PS, we note that, since
both explanations are necessary for the �re, each will command a PN of unity.
(In fact, the PN is actually higher for the oxygen if we allow for alternative
ways of igniting a spark). Thus, it must be the su�ciency component that
endows the match with greater explanatory power than the oxygen. If the
probabilities associated with striking a match and the presence of oxygen are
denoted pm and po, respectively, then the PS measures associated with these
explanations evaluate to PS(match) = po and PS(oxygen) = pm, clearly
favoring the match when po >> pm. Thus, a robot instructed to explain
why a �re broke out has no choice but to consider both PN and PS in its
deliberations.

Clearly, some balance must be made between the necessary and the suf-
�cient components of causal explanation, and the present paper illuminates
this balance by formally explicating the basic relationships between the two
components. In Pearl (2000, chapter 10) it is further shown that PN and PS
are too crude for capturing probabilities of causation in multi-stage scenarios,
and that the structure of the intermediate process leading from cause to e�ect
must enter the de�nitions of causation and explanation. Such considerations
will be the subject of future investigation.
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