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1 Introduction

In a recent report [Pearl, 1998] I have proposed a definition of “actual cause” and of the
probability that an event C' was an actual cause of event E in a given scenario. I have
since come to realize that the standard counterfactual definition of causation® (i.e., that

E would not have occurred if it were not for C), captures only the notion of “necessary

3

cause.” Competing notions such as “sufficient cause” and “necessary-and-sufficient cause”

may be of great interest in a number of application,?

and these, too, can be given concise
counterfactual definitions. One advantage of casting aspects of causation in the language of

counterfactuals is that the latter enjoys natural and formal semantics in terms of structural

!This definition dates back to Hume (1748, p. 115) and Mill (1843) and has been advocated in both the

philosophical work of D. Lewis (1973) and the statistical analyses of J. Neyman (1923) and D. Rubin (1974).
2The importance of the distinction between between necessary and sufficient causes goes back to J.S. Mill

(1843), and has received semi-formal explications in the 1960s using the syntax of conditional probabilities
[Good, 1961] and logical implications [Mackie, 1965]. The basic limitations of the logical and probabilis-
tic accounts are discussed in Pearl (1996, 1998) and stem primarily from lacking syntactic distinction be-
tween formulae that represent stable mechanisms and those that represent transitory logical or probabilistic

relationships.



models [Galles and Pearl, 1997, 1998; Halpern, 1998], as well as effective procedures for
computing probabilities of counterfactual expressions from a given causal theory [Balke and
Pearl, 1994, 1995].

The purpose of this paper is to explore the counterfactual interpretation of necessary and
sufficient causes, to illustrate the application of structural-model semantics (of counterfactu-
als) to the problem of identifying probabilities of causes, and to present, by way of examples,
new ways of estimating probabilities of causes from statistical data.

The results have applications in epidemiology, legal reasoning, artificial intelligence (AI),
and psychology. Epidemiologists have long been concerned with estimating the probability
that a certain case of disease is attributable to a particular exposure, which is normally
interpreted counterfactually as “the probability that disease would not have occurred in the
absence of exposure, given that disease and exposure did in fact occur.” This counterfactual
notion, which Robins and Greenland (1989) called the “probability of causation” measures
how necessary the cause is for the production of the effect.® It is used frequently in law suits,
where legal responsibility is at the center of contention. We shall denote this notion by the
symbol PN, an acronym for Probability of Necessity.

A parallel notion of causation, capturing how sufficient a cause is for the production of
the effect, finds applications in policy analysis, Al, and psychology. A policy maker may well
be interested in the dangers that a certain exposure may present to the healthy population
[Khoury et al., 1989]. Counterfactually, this notion is expressed as the “probability that a
healthy unexposed individual would have gotten the disease had he/she been exposed,” and
will be denoted by PS (Probability of Sufficiency). A natural extension would be to inquire
for the probability PNS of necessary-and-sufficient causation, namely, how likely a given
individual is to be affected both ways.

To summarize, PS assesses the presence of an active causal process capable of producing

the effect, while PN emphasizes the absence of alternative processes, not involving the cause

3Greenland and Robins (1988) further distinguish between two ways of measuring probabilities of causa-
tion: the first (called “excess fraction”) concerns only whether the effect (e.g., disease) occurs by a particular
time, while the second, (called “etiological fraction”) requires consideration of when the effect occurs. We
will confine our discussion here to binary events occurring within a specified time period, hence, will not be

concerned with the temporal aspects of etiological fractions.



in question, still capable of sustaining the effect. In legal settings, where the occurrence of
the cause (z) and the effect (y) are fairly well established, PN is the measure that draws
most attention, and the plaintiff must prove that y would not have occurred but for x
[Robertson, 1997]. Still, lack of sufficiency may weaken arguments based on PN [Good,
1993; Michie, 1997].

It is known that PN is in general non-identifiable, namely, non-estimatable from fre-
quency data involving exposures and disease cases [Greenland and Robins, 1988; Robins and

Greenland, 1989]. The identification is hindered by two factors:

1. Confounding: exposed and unexposed subjects may differ in several relevant factors
or, more generally, the cause and the effect may both be influenced by a third factor.

In this case we say that the cause is not exogenous relative to the effect.

2. Sensitivity to the generative process: Even in the absence of confounding, prob-
abilities of certain counterfactual relationships cannot be identified from probabilistic
information unless we specify the functional relationships that connect causes and
effects. Functional specification is needed whenever the evidence at hand involves vari-
ables that might be affected by the counterfactual antecedent [Balke and Pearl, 1994b].
In evaluating PN and PS, for example, identifiability is threatened because the evi-
dence at hand consists of the current status of the outcome (e.g., disease), and that

status is affected by the counterfactual antecedent (e.g., exposure).

Although PN is not identifiable in the general case, several formulas have nevertheless
been proposed to estimate PN in terms of frequencies obtained in epidemiological studies
[Bresslow and Day, 1980; Hennekens and Buring, 1987; Cole, 1997]. Naturally, any such
formula must be predicated upon certain implicit assumptions about the data-generating
process. This paper explicates some of those assumptions and explores conditions under
which they can be relaxed.* It offers new formulas for PN and PS in cases where causes

are confounded (with outcomes) but their effect can nevertheless be estimated (e.g., from

1A set of sufficient conditions for the identification of etiological fractions are given in Robins and Green-
land (1989). These conditions, however, are too restrictive for the identification of PN, which is oblivious to

the temporal aspects associated with etiological fractions.



clinical trials or from auxiliary measurements). We further provide a general condition for
the identifiability of PN and PS when functional relationships are not known.

Clark Glymour (1998) has raised a number of issues concerning the identifiability of
causal relationships when the functional relationships among the variables are known, but
some variables are unobserved. These issues surfaced in connection with Cheng’s model,
according to which people assess the “causal power” between two events by estimating,
using both frequency data and functional relationships, the probability that the effect will
take place in a certain hypothetical model of the world [Cheng, 1997]. In the examples
provided, Cheng’s “causal power” coincides with PS and hence lends itself to counterfactual
analysis. Accordingly we shall see that many of the issues raised by Glymour can be resolved
and generalized using the counterfactual analysis of Balke and Pearl (1994).

The distinction between necessary and sufficient causes has important implications in Al,
especially in systems that generate verbal explanations automatically. As can be seen from
the epidemiological examples above, necessary causation is a concept tailored to a specific
event under consideration, while sufficient causation is based on the general tendency of
certain event types to produce other event types. Adequate explanations should respect
both aspects. If we base explanations solely on generic tendencies (i.e., sufficient causation),
we lose important specific information. For instance, aiming and shooting a person from
1000 meters away will not qualify as an explanation for that person’s death, due to the
very low tendency of typical shots fired from such long distances to hit their marks. If, on
the other hand, we base explanations solely on singular-event considerations (i.e., necessary
causation), then various background factors which are normally present in the world would
awkwardly qualify as explanations. For example, the presence of oxygen in the room would
qualify as an explanation for the fire that broke out, simply because the fire would not have
occurred if it were not for the oxygen and, given that the fire did in fact occur, there is
no question that a match has been struck. Clearly, some balance must be made between
the necessary and the sufficient components of causal explanation, and the present paper
illuminates this balance by formally explicating some of the basic relationships between the

two components.



2 Necessary and Sufficient Causes: Conditions of Iden-

tification

2.1 Definitions, Notation, and Basic Relationships

The reader is assumed to be familiar with the counterfactual notation of Neyman-Rubin’s
model [Rubin 1990; Robins 1986] and with the structural-equation semantics of counter-
factuals as defined in Balke and Pearl (1995), Galles and Pearl (1997, 1998), and Halpern
(1998). A brief summary is presented in the Appendix to this paper. Using this notation
and semantics, we give the following definitions for the three aspects of causation discussed

in the introduction.

Definition 1 (probability of necessity (PN))
Let X andY be two binary variables in a causal model M, let x and y stand for the propo-
sitions X = true and Y = true, respectively, and x' and 1y’ for their complements. The

probability of necessity is defined as the expression

(>

PN P(Y, = false | X = true,Y = true)

P(yy|z,y) (1)

>

In words, PN stands for the probability that event y would not have occurred in the absence

of event x, (y’,), given that z and y did in fact occur.’

Definition 2 (Probability of sufficiency (PS))

PS 2 P(y,|y,2") (2)

5Note the abbreviation y, for Y, = true and y/, for Y, = false. These were proposed by Peyman Meshkat

in class homework, and substantially simplify the derivations.



PS measures the capacity of x to produce y and, since “production” implies a transition from
the absence to the presence of x and y, we condition the probability P(y,) on situations where

x and y are both absent. It is a mirror image of the necessity of =, as measured by PN.

Definition 3 (Probability of Necessity and Sufficiency (PNS))

PNS £ P(ys, yy) 3)

PNS stands for the probability that ¥ would respond to x both ways, and therefore measures
both the sufficiency and necessity of x to produce .

Associated with these three basic notions, there are other counterfactual quantities that
have attracted either practical or conceptual interest. We will mention two such quantities,

but will not dwell on their analyses, since these can be easily inferred from our treatment of

PN, PS, and PNS.

Definition 4 (Probability of disablement (PD))

PD £ P(yyly) (4)

PD measures the probability that y would have been prevented if it were not for z; it is
therefore of interest to policy makers who wish to assess the social effectiveness of various

prevention programs.

Definition 5 (Probability of enablement (PE))

A
PE = P(y.|y)

PE is similar to PS, save for the fact that we do not condition on z’. It is applicable, for
example, when we wish to assess the danger of an exposure on the entire population of

healthy individuals, including those that were already exposed.



Although none of these quantities is sufficient for determining the others, they are not

entirely independent, as shown in the next lemma.

Lemma 1 The probabilities of causation, PNS, PN and PS satisfy the following relationship:

PNS = P(z,y)PN + P(z',y)PS (5)

Proof of Lemma 1

Using the consistency conditions [Robins, 1986]

we expand P(y.,y.) and obtain:

P, yy) = P(Ys,yo|z)P(z) + P(ys, yy|2") P(2)
= P(yy,ylz)P(x) + P(ys, y'|2") P(2')

= Plyply,2)P(yle) P(z) + P(yly', 2") Py, 2')

which proves Lemma 1. O

Definition 6 (Identifiability)

Let Q(M) be any quantity defined on a causal model M. @ is identifiable in a class M of
models if any two models My and My from M that satisfy Py, (v) = Pa,(v) also satisfy
QM) = Q(Msy). In words, Q is identifiable if it can be determined uniquely from the
probability distribution P(v) of the endogenous variables V.

The class M that we will consider when discussing identifiability will be determined by
assumptions that one is willing to make about the model under study. For example, if our
assumptions consist of the structure of a causal graph Gy, M will consist of all models M for
which G(M) = Gy. If, in addition to Gy, we are also willing to make assumptions about the
functional form of some mechanisms in M, M will consist of all models M that incorporate

those mechanisms, and so on.



Since all the causal measures defined above invoke conditionalization on y, and since y
is presumed affected by z, the antecedent of the the counterfactual y,, we know that none
of these quantities is identifiable from knowledge of the structure G(M) and the data P(v)
alone, even under condition of no confounding. Moreover, none of these quantities determines
the others in the most general case. However, simple interrelationships and useful bounds
can be derived for these quantities under the assumption of no-confounding, an assumption

that we call exogeneity.

2.2 Bounds and basic relationships under exogeneity

Definition 7 (Ezogeneity)

A wvariable X is said to be exogenous relative to Y in model M iff

P(yzca y$/|$) = P(yza yzc’) (6)

namely, the way Y would potentially respond to conditions x or x' is independent of the

actual value of X.

Eq. (6) has been given a variety of (equivalent) definitions and interpretations. Epidemi-
ologists refer to this condition as “no-confounding” [Robins and Greenland, 1989], statisti-
cians call it “as if randomized,” and Rosenbaum and Rubin (1983) call it “ignorability.” A
graphical criterion ensuring exogeneity is the absence of a common ancestor of X and Y
in G(M). The classical econometric criterion for exogeneity (e.g., Dhrymes (1970, p. 169)
states that X be independent of the error term in the equation for ¥ .6

The importance of exogeneity lies in permitting the identification of P(y,), the causal

effect of X on Y, since (using z = (y, = y))

P(ys) = P(ys|z) = P(y|z) (7)

with similar reduction for P(y,).

6This criterion has been the subject of relentless objections by modern econometricians [Engle et al.,
1983; Hendry, 1995; Imbens, 1997)], but see Aldrich (1993) and Galles and Pearl (1998), for a reconciliatory

perspective on this controversy.



Theorem 1 Under condition of exogeneity, PNS is bounded as follows:
max[0, P(y|z) + P(y|2") — 1] < PNS < min[P(y|z), P(y'|z")] (8)

Both bounds are tight in the sense that for every joint distribution P(x,y) there exists a
model y = f(x,u), with u independent of x, that realizes any value of PNS permitted by the

bounds.

Proof of Theorem 1:

For any two events A and B we have the tight bounds:
max[0, P(A) + P(B) — 1] < P(A, B) < min[P(A), P(B)] 9)
Eq. (8) follows from (9) using A = y,, B = y./, P(y.) = P(y|z) and P(y.) = P(y'|z") O
Clearly, if exogeneity cannot be ascertained, then PNS is bound by inequalities similar
to those of Eq. (8), with P(y,) and P(y./) replacing P(y|z) and P(y'|z'), respectively.

Theorem 2 Under condition of exogeneity, the probabilities PN, PS, and PNS are related

to each other as follows:

PNS

PN = Plyl) (10)
PNS

PSS TPy "

Thus, the bounds for PNS in Eq. (8) provide corresponding bounds for PN and PS.

The resulting bounds for PN

max|[0, P(y|z) + P(y'|z") — 1] min[P(y|z), P(y'|z')]
P(y|z) P(y|z)

were established by Robins and Greenland (1989) using a stochastic model of Y (u). Theo-

< PN <

(12)

rem 1 reaffirms the validity of these bounds for deterministic Y;(u), provided the functional

relationships in the model, z; = f;(pa;,u), are not known.



Proof of Theorem 2:

Using = (y, = y), we can write £ A y, = Ay, and obtain

PN = P(yyle,y) = Py, = y)/P(z,y) (13)
= P(y;,,:v,yz)/P(:r,y) (14)
= Py 4a) P(x)/P(z,y) (15)
PNS
= 16
Pyl 1o
which establishes Eq. (10). Eq. (11) follows by identical steps. O

For completion, we note the relationship between PNS and the probabilities of enablement

and disablement:
P(z) PNS PE - P(z") PNS

rp= Ply) P(y")

(17)

2.3 Identifiability under monotonicity and exogeneity

Before attacking the general problem of identifying the counterfactual quantities in Eqgs. (1)-
(3) it is instructive to treat a special condition, called monotonicity, which is often assumed in
practice, and which renders these quantities identifiable. The resulting probabilistic expres-

sions will be recognized as familiar measures of causation that often appear in the literature.

Definition 8 (Monotonicity)
A wvariable Y is said to be monotonic relative to variable X in a causal model M iff the

function Yy(u) is monotonic in x for all u. Equivalently, Y is monotonic relative to X iff
yh A\ yg = false (18)

Monotonicity expresses the assumption that a change from X = false to X = true
cannot, under any circumstance make Y change from true to false.” In epidemiology, this

assumption is often expressed as “no prevention,” that is, no individual in the population

“Our analysis remains invariant to complementing  or y (or both), hence, the general condition of
monotonicity should read: either y!, Ay, = false or y,, Ay, = false. For simplicity, however, we will adhere

to the definition in Eq. (18).

10



can be helped by the exposure. Angrist, Imbens, and Rubin (1996) used this assumption to
identify treatment effects from studies involving non-compliance (see also Balke and Pearl
(1997)). Glymour (1998) and Cheng (1997) resort to this assumption in using disjunctive or
conjunctive relationships between causes and effects, excluding functions such as exclusive-or,

or parity.

Theorem 3 (Identifiability under exogeneity and monotonicity)
If X is exogenous and Y is monotonic relative to X, then the probabilities PN, PS, and PNS
are all identifiable, and are given by Eqs. (10)-(11) with

PNS = P(ylz) — P(ylz') (19)

The r.h.s. of (19) is called “risk-difference” in epidemiology, also misnomered “attributable
risk” [Hennekens and Buring, 1987, p. 87].

From (10) we see that the probability of necessity, PN, is identifiable and given by the
excess-risk-ratio

PN =[P(y|z) — P(y|z)]/ P(yl|z) (20)

also misnomered as the attributable fraction [Schlesselman, 1982|, attributable-rate percent
[Hennekens and Buring, 1987, p. 88|, or attributable proportion [Cole, 1997]. Taken literally,
the ratio presented in (20) has nothing to do with attribution, since it is made up of statis-
tical terms and not of causal or counterfactual relationships. However, the assumptions of
exogeneity and monotonicity together enable us to translate the notion of attribution em-
bedded in the definition of PN (Eq. (1)) into a ratio of purely statistical associations. This
suggests that exogeneity and monotonicity were tacitly assumed by authors who proposed
or derived Eq. (20) as a measure for the “fraction of exposed cases that are attributable to
the exposure.”

Robins and Greenland (1989) have analyzed the identification of PN under the assump-
tion of stochastic monotonicity (i.e., P(Yz(u) = y) > P(Yy(u) = y)) and have shown that

this assumption is too weak to permit such identification; in fact, it yields the same bounds as

11



in Eq. (12). This indicates that stochastic monotonicity imposes no constraints whatsoever
on the functional mechanisms that mediate between X and Y.

The expression for PS (Eq. (11)), likewise, is quite revealing:
PS = [P(y|z) — P(yl2")]/[L = P(yl2")], (21)

as it coincide with what epidemiologists call the “relative difference” [Shep, 1958], which
is used to measure the susceptibility of a population to a certain risk factor xz. Suscepti-
bility is defined as the proportion of persons who possess “an underlying factor sufficient
to make a person contract a disease following exposure” [Khoury et al., 1989]. PS offers
a formal counterfactual interpretation of susceptibility, which sharpens this definition and
renders susceptibility amenable to systematic analysis. Khoury et al. (1989) have recog-
nized that susceptibility in general is not identifiable, and have derived Eq. (21) by making
three assumptions: no confounding, monotonicity® and independence (i.e., assuming that
susceptibility to exposure is independent of susceptibility to background not involving ex-
posure). This last assumption is often criticized as untenable, and Theorem 3 assures us
that independence is in fact unnecessary; Eq. (21) attains its validity through exogeneity
and monotonicity alone.

Eq. (21) also coincides with what Cheng calls “causal power” (1997), namely, the ef-
fect of z on y after suppressing “all other causes of y.” The counterfactual definition of
PS, P(yg|z',y"), suggests another interpretation of this quantity. It measures the prob-
ability that setting x would produce y in a situation where x and y are in fact absent.
Conditioning on y' amounts to selecting (or hypothesizing) only those worlds in which “all
other causes of y” are indeed suppressed.

It is important to note, however, that the simple relationships among the three notions of
causation (Egs. 10-11) only hold under the assumption of exogeneity; the weaker relationship
of Eq. (5) prevails in the more general, non-exogenous case. Additionally, all these notions
of causation are defined in terms of the global relationships Y, (u) and Y,.(u) which, as it

is argued in Pearl (1998), is too crude to fully characterize the many nuances of causation;

8Monotonicity is not mentioned in [Khoury et al., 1989], but it must have been assumed implicitly to

make their derivations valid.

12



the detailed structure of the causal model leading from X to Y is often needed to explicate
more refined notions, such as “actual cause.”

Proof of Theorem 3:

Writing y, V ., = true, we have

Yo =Ya N W V) = Wa Awr) V (Y A Ypr) (22)
and
Yo = Yo N Wa VUy) = Wor AYa) V (U AYy) = Yoo AN Yo (23)
since monotonicity entails y,» A y. = false. Substituting (23) into (22) yields

Yz = Yz V (yw A y;’z’) (24)

Taking the probability of (24), and using the disjointness of y,» and y.,, we obtain:

P(yz) = P(yw) + P(Yz, Ys)
P(Ye, Yy) = P(y2) — P(ya) (25)

Eq. (25) together with the assumption of exogeneity (Eq. (7)) establish Eq. (19). O

2.4 Identifiability under monotonicity and non-exogeneity

The relations established in Theorems 1-3 were based on the assumption of exogeneity. In
this section, we relax this assumption and consider cases where the effect of X on Y is
confounded, i.e., P(y;) # P(y|z). In such cases P(y,) may still be estimated by auxiliary
means (e.g., through adjustment of certain covariates, or through experimental studies)
and the question is whether this added estimate can render the probability of causation

identifiable. The answer is affirmative.

Theorem 4 IfY is monotonic relative to X, then PNS, PN, PS are identifiable whenever

the causal effect P(y,) is identifiable and are given by:
PNS = P(ys,yy) = P(ys) = Plyw) (26)

13



PN = P(y;,u,y):”y]l(;l; gy””’) (27)
PS = Plulet) = P =00 (28)

To appreciate the difference between Egs. (27) and (20) we can expand P(y) and write
P(ylz)P(z) + P(y|z')P(«') — P(yx)
P(y|z)P(z)

Ply|z) — P(ylz") Plyla’) - Plyx)
P(y|z) P(z,y)

The first term on the r.h.s. of (29) is the familiar excess-risk-ratio as in (20), and represents

PN =

(29)

the value of PN under exogeneity. The second term represents the correction needed to
account for X’s non-exogeneity, i.e. P(y,) # P(y|x').

Eqgs. (26)—(28) thus provide more refined measures of causation, which can be used in situ-
ations where the causal effect P(y,) can be identified through auxiliary means (see Example-
4, Section 3.4). Note however that these measures are no longer governed by the simple
relationships given in Egs. (10)—(11). Instead, the governing relation is Eq. (5).

Remarkably, since PS and PN must be non-negative, Eqgs. (27)-(28) provide a simple test

for the assumption of monotonicity:

P(yz) < P(y) < P(yw) (30)

to which one should join the standard inequalities

P(yw) 2 P(.’L’,y), P(yw’) 2 P(.’L”,y)

It can be shown that these inequalities are in fact tight, that is, every combination of experi-
mental and nonexperimental data that satisfy these inequalities can be generated from some
causal model in which Y is monotonic in X. That the commonly made assumption of “no-
prevention” is not entirely exempt from empirical scrutiny should come as a relief to many
epidemiologists. Alternatively, if the no-prevention assumption is theoretically unassailable,

the inequalities of Eq. (30) can be used for testing the compatibility of the experimental and

14



non-experimental data, namely, whether subjects used in clinical trials are representative of
the target population, characterized by the joint distribution P(z,y).
Proof of Theorem 4:

Eq. (26) was established in (25). To prove (28), we write

P(ye,2",y') Py, ', Yp)
P . ! ! — ) bl — ) bl X 1
(y ‘x ’y ) P(./,EI, y/) P(ml, y,) (3 )

because ' Ay’ = ' Ayl (by consistency). To calculate the numerator of (31), we conjoin
(24) with 2’
Ay = (@ ANyw) V (ys Ayl A 2')

and take the probability on both sides, which gives (since y,» and y., are disjoint):

PWYa: Yo, 2') = P, ys) — P2, yr)
(@', y2) = P(a',y)
= P(ys) — P(z,y.) — P(2',y)
(
(

yw) - P(x,y) - P(xlﬁy)

Substituting in (31), we finally obtain

P Py = e T 2 )
(yCE|-/L‘ )y) P(./I,'I’yl)
which establishes (28). Eq. (27) follows through identical steps. O

One common class of models which permits the identification of P(y,) under conditions

of non-exogeneity is called Markovian.

Definition 9 (Markovian models)

A causal model M is said to be Markovian if the graph G(M) associated with M is acyclic,
and if the exogenous factors u; are mutually independent. A model is semi-Markovian if
G(M) is acyclic and the erogenous variables are not necessarily independent. A causal

model is said to be positive-Markovian if it is Markovian and P(v) > 0 for every v.

15



It is shown in Pearl (1993, 1995) that for every two variables, X and Y, in a positive-
Markovian model M, the causal effect P(y,) is identifiable and is given by
P(ys) = 3_ P(ylpax, z) P(pax) (32)
pax
where pax are (realizations of) the parents of X in the causal graph associate with M (see
also Spirtes et al. (1993) and Robins (1986)). Thus, we can combine Eq. (32) with Theorem

4 and obtain a concrete condition for the identification of the probability of causation:

Corollary 1 If in a positive-Markovian model M, the function Yy (u) is monotonic, then the
probabilities of causation PNS, PS and PN are identifiable and are given by Eqs. (26)-(28),
with P(y,) given in Eq. (32).

A broader identification condition can be obtained through the use of the back-door and
front-door criteria [Pearl, 1995], which are applicable to semi-Markovian models. These were

further generalized in Galles and Pearl (1995)° and lead to the following corollary:

Corollary 2 Let GP be the class of semi-Markovian models that satisfy the graphical cri-
terion of Galles and Pearl (1995). If Y, (u) is monotonic, then the probabilities of causation
PNS, PS and PN are identifiable in GP and are given by Eqs. (26)-(28), with P(y,) deter-
mined by the topology of G(M) through the GP criterion.

3 Examples and Applications

3.1 Example-1: Betting against a Fair Coin

We must bet heads or tails on the outcome of a fair coin toss; we win a dollar if we guess
correctly, lose if we don’t. Suppose we bet heads and we win a dollar, without glancing
at the outcome of the coin, was our bet a necessary cause (respectively, sufficient cause, or

both) for winning?

9Galles and Pearl (1995) provide an efficient method of deciding, from the graph G(M), whether P(y.)

is identifiable and, if the answer is affirmative, deriving the expression for P(y,).

16



Let z stand for “we bet on heads,” y for “we win a dollar” and u for “the coin turned up

head.” The functional relationship between y, z and u is
y=(zxAu)V (' Au) (33)

which is not monotonic but, nevertheless, permits us to compute the probabilities of causa-

tion from the basic definitions of Egs. (1)—(3). To exemplify,
PN = P(yy|z,y) = P(yy|u) =1

because © Ay = u, and Yy (u) = false. In words, knowing the current bet (z) and current
win (y) permits us to infer that the coin outcome must have been a head (u), from which
we can further deduce that betting tails (z') instead of heads, would have resulted in a loss.
Similarly,

PS = P(y.|z",y) = P(y.|u) =1

because =’ Ay’ = u, and

= P(Yy, Y |u) P(u) + Py, yu|u') P(u')
- 11 + 01 _ !
92 2 2

We see that betting heads has 50% chance of being a necessary-and-sufficient cause of win-
ning. Still, once we win, we can be 100% sure that our bet was necessary for our win, and
once we lose (say on betting tails) we can be 100% sure that betting head would have been
sufficient for producing a win.

Note that these counterfactual quantities cannot be computed from the joint probability
of X and Y without knowledge of the functional relationship in Eq. (33) which tells us
the policy by which a win or a loss is determined. This can be seen from the conditional
probabilities and causal effects associated with this example

Plyls) = P(yla) = P(s:) = Plu) = P(y) =
and noting that identical probabilities would be generated by a random policy in which y is

functionally independent of z, say by a bookie who hands us a dollar at random, without
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even looking at our bet. In such a random policy, the probabilities of causation PN, PS and
PNS are all zero. Indeed, the bounds delineated in Theorem 1 (Eq. (8)) read 0 < PNS < £,
meaning that the three probabilities of causation cannot be determined from statistical
data on X and Y alone, not even in a randomized experiment; knowledge of the functional
mechanism is required, as in Eq. (33).

It is interesting to note that whether the coin is tossed before or after the bet has no
bearing on the probabilities of causation as defined above. This stands in contrast with
some theories of probabilistic causality which attempt to avoid deterministic mechanisms
by conditioning all probabilities on “the state of the world just before” the occurrence of
the cause in question (z) (e.g., [Good, 1961]). In the betting story above, the intention is to
condition all probabilities on the state of the coin (u) which is not fulfilled if the coin is tossed
after the bet is placed. Attempts to enrich the conditioning set with events occurring after
the cause in question have led back to deterministic relationships involving counterfactual
variables (see [Cartwright, 1989; Eells, 1991]).

One may argue, of course, that if the coin is tossed after the bet, then it is not at all clear
what my winning would be had I bet differently; merely uttering my bet could conceivably
affect the trajectory of the coin [Dawid, 1997]. This objection can be diffused by placing z
and v in two remote locations and tossing the coin a split second after the bet is placed,
but before any light ray could arrive from the betting room to the coin-tossing room. In
such hypothetical situation the counterfactual statement: “my winning would be different
had I bet differently” is rather compelling, even though the conditioning event (u) occurs
after the cause in question (x). We conclude that temporal descriptions such as “the state
of the world just before x” cannot be used to properly identify the appropriate conditioning
events (u) in a problem; a deterministic model of the mechanisms involved is needed for such

identification.

3.2 Example-2: The Firing Squad

Consider a 2-man firing squad (see Figure 1) in which A and B are riflemen, C' is the squad’s
Captain who is waiting for the court order, U, and T is a condemned prisoner. Let u be

the proposition that the court has ordered an execution, x the proposition stating that A
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U (Court order)
C (Captain)

x: Ashoots A < > B (Riflemen)

T (Prisoner)
y: T dies
Figure 1:

pulled the trigger and y that 7" is dead. Assume that P(u) = %, that A and B are expert
marksmen who are alert, sober and law abiding, and that 7 is not likely to die from fright
or other extraneous causes. We wish to compute the probability that z was a necessary (or
sufficient, or both) cause for y (i.e., PN, PS and PNS).

Definitions (1)—(3) permit us to compute these probabilities directly from the given causal
model, since all functions and all probabilities are specified, with the truth value of each

variable following that of U. Accordingly, we can write'®

P(y;) = P(Yy(u) = true)P(u) + P(Yy(u') = true)P(u')

1
= §(1+1):1 (34)
Similarly, we have,

P(yy) = P(Yp(u) = true)P(u) + P(Yy(u') = true)P(u')

_ %(1-!—0) :% (35)

To compute PNS, we need to evaluate the probability of the joint event y,» A y,. Con-

sidering that these two events are jointly true only when U = true, we have:

0Recall that P(Y,(u') = true) involves the submodel M,, in which X is set to true independently of
U. Thus, although under condition ' the captain has not given a signal, the potential outcome Y, (u') is

evaluated by hypothesizing rifleman- A pulling the trigger (z) despite a court order to stay the execution.
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PNS = P(yg Yx)
= P(Yz, Yo [u) P(u) + P(ya, Yo |[v') P(u)

= J(+0)= (36)

DN | —

The calculation of PS and PN, likewise, are simplified by the fact that the conditioning
events, © Ay for PN and z’' A y' for PS, are true in only one state of U. We thus have:

PN = P(yyl|z,y) = P(yy|u) =0

reflecting the fact that, once the court orders an execution (u), T will die (y) from the shot
of rifleman B, even if A refrains from shooting (z'). Indeed, upon learning of 7”’s death, we
can categorically state that rifleman-A’s shot was not a necessary cause of the death.

Similarly,

PS = P(y,|2',y') = P(y,|u') = 1

matching our intuition that the a shot fired by an expert rifleman would be sufficient for
causing the death of T, regardless of the court decision.

Note that Theorems 1 and 2 are not applicable to this example, because x is not ex-
ogenous; events x and y have a common cause (the Captain’s signal C') which renders
P(ylz) = 1 # P(y;) = i. However, the monotonicity of ¥ (in z) permits us to com-

pute PNS, PS and PN from the joint distribution P(z,y) (using Eq. (26)—(28)), instead of

consulting the basic model. Indeed, writing

Plzy) = Py) =3 (37)
P(z,y") = P(',y) = (38)
we obtain
_Py)—Plyr) -3
PN = =5 = = 0 (39)
_ P(y,)—Ply) 1-35
Ps === (40)

as expected.



3.3 Example-3: The Effect of Radiation on Leukemia

Consider the following data (adapted from Finkelstein and Levin!!

(1990)) comparing
leukemia deaths in children in Southern Utah with high and low exposure to radiation from

fallout from nuclear tests in Nevada: Given these data, we wish to estimate the probabilities

Exposure
High Low
x x'
Deaths y 30 16

Non-deaths | ' 69,130 59,010

Table 1:

that high exposure to radiation was a necessary (or sufficient or both) cause of death due to
leukemia.

Assuming that exposure to nuclear radiation had no remedial effect on any individual in
the study (i.e., monotonicity), the process can be modeled by a simple disjunctive mechanism

represented by the equation

y=f(z,u,q) = (xAqg)Vu (41)

where u represents “all other causes” of y, and ¢ represents all “enabling” mechanisms that
must be present for x to trigger y. Assuming ¢ and u are both unobserved, the question we
ask is under what conditions we can identify the probability of causation, PNS, PN and PS,
from the joint distribution of X and Y.

Since Eq. (41) is monotonic in x, Theorem 3 states that all three quantities would be
identifiable provided X is exogenous, namely, z should be independent of ¢ and u. Under

this assumption, Eqs. (19)—(21) further permit us to compute the probabilities of causation

"The data in Finkelstein and Levin (1990) are given in person-year units. For the purpose of illustration
we have converted the data to absolute numbers (of deaths and non-deaths) assuming a 10-year observation

period.
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from frequency data. Taking fractions to represent probabilities, the data in Table 1 imply

the following numerical results:

30 16
PNS = P(y|z) - P(yla') = — — 000162 42
S = P(y|lr) — P(y|r') 30469130~ 16 759,010 0001625 (42)
PNS PNS
PN = = = 37535 43
P(ylz) ~ 30/(30 + 69, 130) (43)
PNS PNS
PS — .0001625 (44)

T 1-P(ylz')  1-16/(16 + 59, 010)
Statistically, these figures mean: There is a 1.625 in ten-thousand chance that a randomly
chosen child would both die of leukemia if exposed and survive if not exposed. There is a
37.544% chance that a child who died from leukemia after exposure would have survived
had he/she not been exposed. There is a 1.625 in ten-thousand chance that any unexposed
surviving child would have died of leukemia had he/she been exposed.

Glymour (1998) analyzes this example with the aim of identifying the probability P(q)
(Cheng’s “causal power”) which coincides with PS. Glymour concludes that P(g) is identifi-
able and is given by Eq. (21), provided z, u, and g are mutually independent. Our analysis
shows that Glymour’s result can be generalized in several ways. First, since Y is monotonic
in X, the validity of Eq. (21) is assured even when ¢ and u are dependent, because exogeneity
requires merely independence between z and {u,q} jointly. This is important in epidemi-
ological settings, because an individual’s susceptibility to nuclear radiation is likely to be
associated with his/her susceptibility to other potential causes of leukemia (e.g., natural
kinds of radiation).

Second, Theorem 2 assures us that the relationships between PN, PS and PNS (Egs. (10)-
(11)), which Glymour derives for independent ¢ and u, should remain valid even when u and
q are dependent.

Finally, Theorem 4 assures us that PN and PS are identifiable even when z is not indepen-
dent of {u, ¢}, provided only that the mechanism of Eq. (41) is embedded in a larger causal
structure which permits the identification of P(y,). For example, assume that exposure to
nuclear radiation (z) is suspect of being associated with terrain and altitude, which are also
factors in determining exposure to cosmic radiation. A model reflecting such consideration

is depicted in Figure 2, where W represents factors affecting both X and U. A natural way
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%/
U

Y
Figure 2:

to correct for possible confounding bias in the causal effect of X on Y would be to adjust

for W, that is, to calculate P(y,) using the adjustment formula

P(ys) =Y P(ylz, w)P(w) (45)

(instead of P(y|z)) where the summation runs over levels of W. This adjustment formula,
which follows from Eq. (32), is correct regardless of the mechanisms mediating X and Y,
provided only that W represents all common factors affecting X and Y [Pearl, 1995]. The-
orem 4 instructs us to evaluate PN and PS by substituting (45) into Eqgs. (27) and (28),
respectively, and it assures us that the resulting expressions constitute consistent estimates
of PN and PS. This consistency is guaranteed jointly by the assumption of monotonicity and
by the (assumed) topology of the causal graph.

Note that monotonicity as defined in Eq. (18) is a global property of all pathways be-
tween x and y. The causal model may include several nonmonotonic mechanisms along these
pathways without affecting the validity of (18). Arguments for the validity of monotonicity,

however, must be based on substantive information, as it is not testable in general. For
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example, Robins and Greenland (1989) argue that, exposure to nuclear radiation may con-
ceivably be of benefit to some individuals, since such radiation is routinely used clinically in

treating cancer patients.

3.4 Example-4: Legal Responsibility from Experimental and Non-

experimental Data

A lawsuit is filed against the manufacturer of drug x, charging that the drug is likely to have
caused the death of Mr. A, who took the drug to relieve symptom S associated with disease
D. The manufacturer claims that experimental data on patients with symptom S show con-
clusively that drug x may cause only negligible increase in death rates. The plaintiff argues,
however, that the experimental study is of little relevance to this case, because it represents
the effect of the drug on all patients, not on patients like Mr. A who actually died while
using drug x. Moreover, argues the plaintiff, Mr. A is unique in that he used the drug on his
own volition, unlike subjects in the experimental study who took the drug to comply with
experimental protocols. To support this argument, the plaintiff furnishes nonexperimental
data indicating that most patients who chose drug x would have been alive if it were not
for the drug. The manufacturer counter argues by stating that: (1) counterfactual specu-
lations regarding whether patients would or would not have died, are purely metaphysical
and should be avoided [Dawid, 1997], and (2) nonexperimental data should be dismissed a
priori, on the ground that such data may be highly biased; for example, incurable terminal
patients might be more inclined to use drug x if it provides them greater symptomatic relief.
The court must now decide, based on both the experimental and nonexperimental studies,

what the probability is that drug x was in fact the cause of Mr. A’s death.

The data associated with the two studies are shown in Table 2 below.

The experimental data provide the estimates

P(y,) =16/1000 = 0.016 (46)
P(yy) = 14/1000 = 0.014 (47)
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Experimental Non-Experimental

! !

x x x x

Deaths y 16 14 Deaths y 2 28

non-deaths | 4/ 984 986 non-deaths | 4/ 998 972
Table 2:

The nonexperimental data provide the estimates

P(y) =30/2000 = 0.015 (48)

P(y,z) =2/2000 =0.001 (49)

Assuming that drug x can only cause, never prevent death, Theorem 4 is applicable and

Eq. (27) gives

P(y) — P(y») _ 0.015—0.014
P(y,z) 0.001

Thus, the plaintiff was correct; barring sampling errors, the data provide us with 100% assur-

PN = =1.00 (50)

ance that drug « was in fact responsible for the death of Mr. A. Note that a straightforward

use of the experimental excess-risk-ratio would yield a much lower (and incorrect) result:

P(y:) — P(y») _ 0.016 — 0.014
P(y,) ~0.016

=0.125 (51)

Evidently, what the experimental study does not reveal is that, given a choice, terminal
patients stay away from drug . Indeed, if there were any terminal patients who would choose
x (given the choice) then the control group (z') would have included some such patients (due
to randomization) and then the proportion of deaths among the control group P(y,s) should
have been higher than P(z',y), the population proportion of terminal patients avoiding x.
However, the equality P(y,») = P(y, ') tells us that no such patients were included in the
control group, hence, (by randomization) no such patients exist in the population at large
and, therefore, none of the patients who freely chose drug z was a terminal case; all were
susceptible to x.

The numbers in Table 2 were obviously chosen to represent an extreme case, so as to

facilitate a qualitative explanation of the validity of Eq. (27). Nevertheless, it is instructive
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to note that a combination of experimental and nonexperimental studies may unravel what
experimental studies alone will not reveal and, in addition, that such combination may

provide a test for the assumption of no-prevention, as outlined in Section 2.4 (Eq. (30)).

4 Identification in Non-monotonic Models

In this section we discuss the identification of probabilities of causation without making the
monotonicity assumption. We will assume that we are given a causal model M in which all
functional relationships are known, but since the exogenous variables U are not observed,
their distributions are not known.

A straightforward way to identify any causal or counterfactual quantity (including PN,
PS and PNS) would be to infer the probability distribution of the exogenous variables —
that would amount to inferring the entire model, from which all quantities can be computed.
Thus, our first step would be to study under what conditions the function P(u) can be
identified.

If M is Markovian, the problem can be analyzed by considering each parents-child family

separately. Consider any arbitrary equation in M:

y = f(pay,uy)
= f(xlax%"'amkaul,'"7um) (52)

where Uy = {Uy,...,Upn,} is the set of exogenous, possibly dependent variables that appear
in the equation for Y. In general, the domain of Uy can be arbitrary, discrete, or continuous,
since these variables represent unobserved factors that were omitted from the model. How-
ever, since the observed variables are binary, there is only a finite number (Q(Qk)) of functions
from PAy to Y and, for any point Uy = u, only one of those function is realized. This defines
a partition of the domain of Uy into a set S of equivalence classes, where each equivalence
class s € S induces the same function f®) from PAy to Y. Thus, as u varies over its domain,
a set S of such functions is realized, and we can regard S as a new exogenous variable, whose
values are the set {f(*) : s € S} of functions from PAy to Y that are realizable in Uy. The

number of such functions will usually be smaller than 2(2") 12

12Balke and Pearl (1994) called these S variables “response variables,” and Heckerman and Shachter (1995)
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For example, consider the model described in Figure 2. As the exogenous variables
(g,u) vary over their respective domains, the relation between X and Y spans three distinct
functions:

Y = true, Y = false, and Y =X
The fourth possible function, Y = not-X, is never realized because fy(-) is monotonic. The
cells (¢,u) and (¢',u) induce the same function between X and Y, hence they belong to the
same equivalence class.
If we are given the distribution P(uy), we can compute the distribution P(s) and this will
determine the conditional probabilities P(y|pay) by summing P(s) over all those functions
f) that map pay into the value true,

P(ylpay) = > P(s) (53)

s:f(8)(pay) = true

To insure model identifiability it is sufficient that we can invert the process and determine
P(s) from P(y|pay). If we let the set of conditional probabilities P(y|pay) be represented
by a vector p (of dimensionality 2¥), and P(s) by a vector g, then the relation between q is

p is linear and can be represented as a matrix multiplication [Balke and Pearl, 1994b)]

p=Rq (54)

where R is a 0-1 matrix, with dimension 2¥x |S|. Thus, a sufficient condition for identification
is simply that R, together with the normalizing equation }; g; = 1, be invertible.

In general, R will not be invertible because the dimensionality of ¢ can be much larger
than that of p. However, in many cases, such as the Noisy-OR mechanism

Y=U \ (XiAUDy), (55)
=1,k

symmetry permits g to be identified from P(y|pay) even when the exogenous variables
Uy, Uy, ..., U are not independent. This can be seen by noting that every point v for which
Uy = false defines a unique function f() because, if T is the set of indices i for which U; is
true, the relationship between PAy and Y becomes

Y =0\ X (56)

€T

called them “mapping variables.”
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and, for Uy = false, this equation defines a distinct function for each 7. The number of
induced functions is 2¥ + 1, which (subtracting 1 for normalization) is exactly the number
of distinct realizations of PAy. Moreover, it is easy to show that the matrix connecting p
and q is invertible. We thus conclude that the probability of every counterfactual sentence
can be identified in any Markovian model composed of Noisy-OR mechanisms, regardless
of whether the exogenous variables in each family are mutually independent. The same
holds of course for Noisy-AND mechanisms or any combination thereof, including negating
mechanisms, provided that each family consists of one type of mechanism.

To generalize this results to mechanisms other than Noisy-OR and Noisy-AND, we note
that although fy(-) in this example was monotonic (in each X;), it was the redundancy of
fr(+), not its monotonicity, that ensured identifiability. The following is an example of a

monotonic function for which the R matrix is not invertible
Y=(X1AU)V (XoAUp) V(X1 A X AUs)

It represents a Noisy-OR gate for Us = false, and becomes a Noisy-AND gate for
Us = true,U; = Uy = false. The number of equivalence-classes induced is six, which
would require five independent equations to determine their probabilities; the data P(y|pay)
provide only four such equations.

In contrast, the mechanism governed by the equation below, although non-monotonic, is

invertible:
Y = XOR(X1,XOR(Uy,...,XOR(Ux_1, XOR(Xy,Uy))))),
where XOR(*) stands for Exclusive-OR. This equation induces only two functions from
PAy to Y,
XOR(Xy, ..., Xk) if XOR(Uy,...,U) = false
- XOR(X1,...,Xy) if XOR(Uy,...,Ug) = true
A single conditional probability, say P(y|z1,...,xx), would suffice therefore for computing

the one parameter needed for identification: P[XOR(Uy,...,Uy) = truel.

We summarize these considerations with a theorem.

Definition 10 (Local invertability)
A model M is said to be locally invertible if for every variable V; € V the set of 2F 4+ 1
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equations

P(ylpa;) = > als) (57)

s:f()(pa;)= true

doa(s) =1 (58)

has a unique solution for q;(s), where each fi(s) (pa;) corresponds to the function f;(pa;,u;)

induced by u; in equivalence-class s.

Theorem 5 Given a Markovian model M =< U, V,{f;} > in which the functions {f;} are
known and the erogenous variables U are unobserved, if M s locally invertible, then the

probability of every counterfactual sentence is identifiable from the joint probability P(v).

Proof:
If Eq. (57) has a unique solution for ¢;(s), we can replace U with S and obtain an equivalent

model

M' =< S,V,{f]} > where f| = £ (pa,).

M’ together with ¢;(s) completely specifies a probabilistic model < M’, P(s) > (due to the

Markov property) from which probabilities of counterfactuals are derivable by definition. O

Theorem 5 provides a sufficient condition for identifying probabilities of causation, but
of course does not exhaust the spectrum of assumptions that are helpful in achieving iden-
tification. In many cases we might be justified in hypothesizing additional structure on the
model, for example, that the U variables entering each family are themselves independent.
In such cases, additional constraints are imposed on the probabilities P(s) and Eq. (57) may

be solved even when the cardinality of S far exceeds the number of conditional probabilities

P(ylpay).

5 Conclusion

The paper explicates and analyzes the necessary and sufficient components of causation. Us-
ing counterfactual interpretations that rest on structural-model semantics, the paper demon-

strates how simple techniques of computing probabilities of counterfactuals can be used in
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computing probabilities of causes, deciding questions of identification, defining conditions
under which probabilities of causes can be estimated from statistical data, and uncovering
tests for assumptions that are routinely made (often unknowingly) by analysts and investi-
gators.

On the practical side, the paper offers several useful tools to epidemiologists and health
scientists. It formulates and calls attention to basic assumptions that must be ascertained
before statistical measures such as excess-risk-ratio could represent causal quantities such as
attributable-risk or probability of causes. It shows how data from both experimental and
non-experimental studies can be combined to yield information that neither study alone can
reveal. Finally, it provides tests for the commonly made assumption of “no prevention,”
and for the often asked question of whether a clinical study is representative of its target
population.

On the conceptual side, we have seen that both the probability of necessity (PN) and
probability of sufficiency (PS) play a role in our understanding of causation, and that both
components have their logics and computational rules. Although the counterfactual concept
of necessary cause (i.e., that an outcome would not have occurred ‘but for’ the action) is pre-
dominant in legal settings [Robertson, 1997] and ordinary discourse, the sufficient component
has a definite influence on causal thoughts.

The sufficiency component of causation plays a major role in scientific and legal expla-
nations, as can be seen from examples where the necessary component is dormant. Why
do we consider striking a match to be a more adequate explanation (of a fire) than the
presence of oxygen? Recasting the question in the language of PN and PS, we note that,
since both explanations are necessary for the fire, each will command a PN of unity. (In fact
PN is higher for the oxygen, if we allow for alternative ways of igniting a spark). It is the
sufficiency component alone that endows the match with greater explanatory power than
the oxygen. If the probabilities associated with striking a match and the presence of oxygen
are p,, and p,, respectively, the PS measures associated with these explanations evaluate to
PS(match) = p, and PS(ozygen) = pp, clearly favoring the match when p, >> pp,. Thus,
a robot instructed to explain why a fire broke out has no choice but to consider both PN

and PS in its deliberations.
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Should PS enter legal considerations in criminal and tort law? I believe (as does I.J. Good
(1993)) that it should, because attention to sufficiency implies attention to the consequences
of one’s action. The person who lighted the match ought to have anticipated the presence
of oxygen, while the person who supplied (or failed to remove) the oxygen is not generally
expected to have anticipated match-striking episodes.

However, what weight should the law assign to the necessary vis-a-vis the sufficient
component of causation? This question obviously lies beyond the scope of this investigation,
and it is not at all clear who would be qualified to tackle the question or whether our legal
system would be prepared to implement the recommendation. I am hopeful, however, that
whoever undertakes to consider such questions will find the analysis of this paper to be of

some use.
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A APPENDIX: Structural Model Semantics

This appendix presents a brief review of the basic definitions and assumptions behind struc-

tural model semantics, as formulated in [Galles and Pearl, 1998].

A.1 Definitions: Causal models, actions and counterfactuals

A causal model is a mathematical object that assigns truth values to sentences involving
causal and counterfactual relationships. Basic of our analysis are sentences involving actions
or external interventions, such as, “p will be true if we do ¢” where ¢ is any elementary propo-
sition. Structural models are generalizations of the structural equations used in engineering,
biology, economics and social science.'> World knowledge is represented as a collection of

)

stable and autonomous relationships called “mechanisms,” each represented as an equation,

and changes due to interventions or hypothetical novel eventualities are treated as local

modifications of those equations.

Definition 11 (causal model) A causal model is a triple
M= <UV,F >

where

(i) U is a set of variables, called ezogenous, that are determined by factors outside the

model.

(ii) V is a set {V4,V4,...,V,} of variables, called endogenous, that are determined by vari-

ables in the model, namely, variables in U U V.

(iii) F is a set of functions {f1, fo, ..., fn} where each f; is a mapping from U U (V' \ V;) to
V;. In other words, each f; tells us the value of V; given the values of all other variables

in U U V. Symbolically, the set of equations F' can be represented by writing

v; = filpas,u) i=1,...,n

13Gimilar models, called “neuron diagrams” [Lewis, 1973; Hall, 1998] are used informally by philosophers

to illustrate chains of causal processors.
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where pa; is any realization of the minimal set of variables PA; in V/V; (connoting

parents) that renders f; nontrivial.

Every causal model M can be associated with a directed graph, G(M), in which each node
corresponds to a variable in V' and the directed edges point from members of PA; toward
V;. We call such a graph the causal graph associated with M. This graph merely identifies
the endogenous variables PA; that have direct influence on each V; but it does not specify

the functional form of f;.

Definition 12 (submodel) Let M be a causal model, X be a set of variables in V, and z

be a particular realization of X. A submodel M, of M is the causal model
M, = <UV, F, >

where

Fo={fi:Vi¢ X} U{X ==} (59)

In words, F) is formed by deleting from F' all functions f; corresponding to members of set
X and replacing them with the set of constant functions X = x.

Submodels are useful for representing the effect of local actions and hypothetical changes.
If we interpret each function f; in F' as an independent physical mechanism and define the
action do(X = z) as the minimal change in M required to make X = z hold true under
any u, then M, represents the model that results from such a minimal change, since it
differs from M by only those mechanisms that directly determine the variables in X. The
transformation from M to M, modifies the algebraic content of F', which is the reason for

the name modifiable structural equations used in [Galles and Pearl, 1998].

Definition 13 (effect of action) Let M be a causal model, X be a set of variables in V,
and = be a particular realization of X. The effect of action do(X = z) on M is given by the
submodel M.

14 An explicit translation of interventions into “wiping out” equations from the model was first proposed
by Strotz and Wold (1960) and later used in Fisher (1970), Sobel (1990), Spirtes et al. (1993), and Pearl
(1995).

38



Definition 14 (potential response) Let Y be a variable in V, and let X be a subset of V.
The potential response of Y to action do(X = z), denoted Y, (u), is the solution for YV of the

set of equations Fj.!°

We will confine our attention to actions in the form of do(X = z). Conditional actions, of the
form “do(X = z)if Z = 2” can be formalized using the replacement of equations by functions
of Z, rather than by constants [Pearl, 1994]. We will not consider disjunctive actions, of
the form “do(X = z or X = z')”, since these complicate the probabilistic treatment of

counterfactuals.

Definition 15 (counterfactual) Let Y be a variable in V, and let X a subset of V. The
counterfactual sentence “The value that Y would have obtained, had X been z” is interpreted

as denoting the potential response Y (u).'®

This formulation generalizes naturally to probabilistic systems, as is seen below.
Definition 16 (probabilistic causal model) A probabilistic causal model is a pair
< M, P(u) >
where M is a causal model and P(u) is a probability function defined over the domain of U.

P(u), together with the fact that each endogenous variable is a function of U, defines
a probability distribution over the endogenous variables. That is, for every set of variables

Y CV, we have

P()2PY =y = Y P (60)
{v | Y(u)=y}

The probability of counterfactual statements is defined in the same manner, through the

function Y, (u) induced by the submodel M,:

P(Y,=y)= > Pl (61)

{u | Ya(u)=y}

15Galles and Pearl (1998) required that F, has a unique solution, a requirement later relaxed by Halpern
(1998). In this paper we are dealing with recursive systems (i.e., G(M) is a cyclic) where uniqueness of

solution is ensured.
16The connection between counterfactuals and local actions (sometimes resembling “miracles”) is made in

Lewis (1973) and is further elaborated in Balke and Pearl (1994) and Heckerman and Shachter (1995).
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Likewise a causal model defines a joint distribution on counterfactual statements, i.e.,
P(Y, =y, Z, = z) is defined for any sets of variables Y, X, Z, W, not necessarily disjoint. In
particular, P(Y; = y, X = 2') and P(Y, = y,Y, = y') are well defined for z # 2, and are
given by

PY,=y,X=2a)= > P(u) (62)

{ulYa(u)=y & X(u)=z'}

and

P(Y,=y,Yy=19)= Z P(u). (63)
{u | Yo(u)=y & Y, (u)=y'}

When z and z’ are incompatible, Y, and Y, cannot be measured simultaneously, and it
may seem meaningless to attribute probability to the joint statement “Y would be y if X =«
and Y would be y' if X = 2’.” Such concerns have been a source of recent objections to
treating counterfactuals as jointly distributed random variables [Dawid, 1997]. The definition
of Y, and Y] in terms of two distinct submodels, driven by a standard probability space
over U, explains away these objections and further illustrates that joint probabilities of
counterfactuals can be encoded rather parsimoniously using P(u) and F.

In particular, the probabilities of causation analyzed in this paper (see Eqs. (1)-(3))
require the evaluation of expressions of the form P(Yy = ¢'|X = z,Y = y) with z and y
incompatible with 2’ and ¥/, respectively. Eq. (62) allows the evaluation of this quantity as

follows:
P(Yz’ :ylaX =z,Y = y)
P(X =z,Y =y)
= Y P(Yu(u) =y)P(ulz,y) (64)

PYy=y|X=2,Y=y) =

In other words, we first update P(u) to obtain P(u|x,y), then we use the updated distribution

P(ul|z,y) to compute the expectation of the index function Y/ (u) = ¥/

A.2 Examples

Figure A-1 describes the causal relationships among the season of the year (X;), whether
rain falls (X5) during the season, whether the sprinkler is on (X3) during the season, whether
the pavement is wet (X,), and whether the pavement is slippery (X5). All variables in this

graph except the root variable X; take a value of either “True” or “False” (encoded “1”
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Figure A-1: Causal graph illustrating causal relationships among five variables.

and “0” for convenience.) X; takes one of four values: “Spring,” “Summer,” “Fall,” or
“Winter.” Here, the absence of a direct link between, for example, X; and X5, captures
our understanding that the influence of the season on the slipperiness of the pavement is
mediated by other conditions (e.g., the wetness of the pavement). The corresponding model

consists of five functions, each representing an autonomous mechanism:

T = U

Ty = fa(z1,u2)

z3 = f3(z1,u3)

Ty = [fu(T3, T2, Us)

5 = [f5(24,us) (65)
The exogenous variables Uy, ..., Us, represent factors omitted from the analysis. For exam-

ple, U, may stand for (unspecified) events that would cause the pavement to get wet (z4 = 1)
when the sprinkler is off (z2 = 0) and it does not rain (z3 = 0) (e.g., a leaking water pipe).
These factors are not shown explicitly in Figure A-1 to communicate, by convention, that
the U’s are assumed independent of one another. When some of these factors are judged to

be dependent, it is customary to encode such dependencies by augmenting the graph with
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double-headed arrows [Pearl, 1995].

To represent the action “turning the sprinkler ON,” or do(X3 = ON), we replace the
equation z3 = f3(x1,u3) in the model of Eq. (65) with the equation z3 = 1. The resulting
submodel, Mx,—on, contains all the information needed for computing the effect of the action
on the other variables. Note that the operation do(X3; = ON) stands in marked contrast to
that of finding the sprinkler ON; the latter involves making the substitution without removing
the equation for X3, and therefore may potentially influence (the belief in) every variable
in the network. In contrast, the only variables affected by the action do(X3 = ON) are X,
and X5, that is, the descendants of the manipulated variable X3. This mirrors the difference
between seeing and doing: after observing that the sprinkler is ON, we wish to infer that the
season is dry, that it probably did not rain, and so on; no such inferences should be drawn in
evaluating the effects of the action “turning the sprinkler ON” that a person may consider
taking.

This distinction obtains a vivid symbolic representation in cases where the U;’s are as-
sumed independent, because the joint distribution of the endogenous variables then admits

the product decomposition
P(x1, 22,23, 24, 75) = P (1) P(22|21) P(23]21) P (24|72, 73) P (5] 74) (66)

Similarly, the joint distribution associated with the submodel M, representing the action
do(X3 = ON) is obtained from the product above by deleting the factor P(z3|z1) and

substituting z3 = 1.
P(x1, 29,14, 75|do(X3 = ON)) = P(z1) P(x3|z1) P(z4]xe, 23 =1) P(x5|24) (67)

The difference between the action do(X3 = ON) and the observation X3 = ON is thus
seen from the corresponding distributions. The former is represented by Eq. (67), while the
latter by conditioning Eq. (66) on the observation, i.e.,

P(z1) P(z3]x1) P(xs = 1|z1) P(24]20, 23 = 1) P(25|74)
P(z3=1)

P(-’£1,J)2,.T4,JI5‘X3 = ON) =

Note that the conditional probabilities on the r.h.s. of Eq. (67) are the same as those

in Eq. (66), and can therefore be estimated from pre-action observations, provided G(M) is
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available. However, the pre-action distribution P together with the causal graph G(M) is
generally not sufficient for evaluating all counterfactuals sentences. For example, the prob-
ability that “the pavement would be slippery if the sprinkler were off, given that currently

’ cannot be evaluated from the conditional probabilities P(x;|pa;)

the pavement is slippery,’
alone; the functional forms of the f;’s (Eq. 65) are necessary for evaluating such queries
[Balke and Pearl 1994; Pearl 1996].

To illustrate the evaluation of counterfactuals, consider a deterministic version of the
model given by Eq. (7) assuming that the only uncertainty in the model lies in the identity
of the season, summarized by a probability distribution P(u1) (or P(z;).) We observe the
ground slippery and the sprinkler on and we wish to assess the probability that the ground

would be slippery had the sprinkler been off. Formally, the quantity desired is given by
P(X5w3=0 = 1|X5 = 1,X3 = ].)

According to Eq. (64), the expression above is evaluated by summing over all states of U
that are compatible with the information at hand. In our example, the only state compatible
with the evidence X5 = 1 and X3 = 1 is that which yields X; = Summer V Spring, and in

this state X = no-rain, hence X5, _, = 0. Thus, matching intuition, we obtain
P(X5m3:0 == 1|X5 - 1,X3 == 1) = 0

In general, the conditional probability of a counterfactual sentence “If it were A then B”,

given evidence e, can be computed in three steps:
1. Abduction — update P(u) by the evidence e, to obtain P(ule).

2. Action — Modify M by the action do(A), where A is the antecedent of the counter-
factual, to obtain the submodel M.

3. Deduction — Use the updated probability P(ul|e) in conjunction with M4 to compute

the probability of the counterfactual consequence B.

Effective methods of computing probabilities of counterfactuals are presented in Balke and

Pearl (1994, 1995).
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A.3 Relation to Neyman-Rubin model

Many of the concepts defined in this appendix bear similarity to parallel concepts in the
potential-outcome model used by Neyman (1923) and Rubin (1974) in the analysis treatment
effects. In that model, Y;(u) stands for the outcome of experimental unit u (e.g., a subject,
or an agricultural lot) under experimental condition X = z, and is taken as a primitive, that
is, an undefined starting point. In the structural model framework, the quantity Y, (u) is
not a primitive, but is derived mathematically from a set of equations that is defined by the
operator do(X = z). The variable U represents any set of exogenous factors relevant to the
analysis, not necessarily the identity of a specific individual in the population. Using this
semantics, it is possible to derive a complete axiomatic characterization of the constraints
that govern the potential response function Y, (u) vis-a-vis those that govern directly observed
variables, such as X (u) and Y (u) [Galles and Pearl, 1998; Halpern, 1998]. Among these basic

axioms, we find the consistency condition [Robins, 1986]:
X=z)=Y,=Y)

stating that if we intervene and enforce an experimental condition X = x that equals precisely
to the one prevailing before the intervention, we should not expect to see any difference in
the response variable Y. (For example, a subject who selected treatment X = x by choice
and responded with Y = y would respond in exactly the same way to treatment X = zx

under controlled experiment.) This axiom is used in several of the derivations of Section 2.
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