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1 Background

This note proposes a formal explication of the notion of “actual cause” as in, for example,
“Socrates drinking hemlock was the actual cause of Socrates death.” The philosophical
literature has been struggling with this notion at least since Mackie (1965) put forward
his famous INUS condition and, as we shall outline shortly, no satisfactory solution has
emerged from either the logical, probabilistic, or counterfactual approaches to causality
[Sosa and Tooley, 1993].

My interest in this topic has been kindled by a recent paper of Michie (1998) where
Good’s probabilistic measures of causal tendency (Good, 1961-62) are extended to individual
events. Michie argues persuasively that in many legal settings, what need be established (for
determining responsibility) is not a counterfactual kind of causation, but “cause in fact.” A
typical example (introduced by Wright (1988)) considers two fires advancing toward a house.
If fire A burned the house before fire B, we (and many juries nationwide) would consider
fire A “the actual cause” for the damage, even supposing the house would have definitely
burned down by fire B, if it were not for A.

The fact that the standard counterfactual test fails in such examples has prompted me to
seek an explication for “actual cause” using the Structural Logic (SL) described in Galles and
Pearl (1997, 1998) and Halpern (1988) which is also known as Modifiable Structural Equation
Model. This logic has been very successful in explicating a number of causal concepts, for ex-
ample, unit-potential-response [Rubin, 1974; Robins, 1986], truth and probabilities of coun-
terfactuals, effect of action, direct and indirect effects, confounding [Greenland et al., 1998],
exogeneity, causal relevance, and instrumental variables. (The reader is referred to Pearl
(1995) and Galles and Pearl (1997, 1998) for explication of these concepts.) SL was proposed
as a general language for causal reasoning, capable of representing any concept connected
with causation. The notion of “actual cause” has somehow escaped the attention of our



research team, probably due to preoccupation with counterfactuals, and this note represents
a first attempt at formulating “actual causes” in SL. I would value comments from readers.

This report is based on lecture notes written for CS 262C, Spring 1998, and is organized as
follows. Following a review of the SL framework (Section 2) Section 3 provides a comparison
to other approaches to causation and suggests an explanation of why the notion of actual
cause has encountered difficulties in those approaches. Section 3 defines “actual cause” and
illustrates, through examples, how the “probability that event X = x actually caused event
Y = y” can be computed from a given SL model. Section 4 provides a concise summary of the
SL approach and demonstrates, through examples, how effects of actions and probabilities
of counterfactuals are defined and computed in SL.

2 The SL Framework (a review)

This section provides a brief review of the basic definitions and assumptions behind the
structural logic approach as formulated in [Galles and Pearl, 1998]. Readers familiar with
SL can skip directly to section 3.

2.1 Definitions

A causal model is a mathematical object that provides an interpretation (and effective com-
putation) of every causal query about the domain. The causal models used in SL are gener-
alizations of the structural equations used in engineering, biology, and economics.'

Definition 1 (causal model) A causal model is a triple
M= <UVF >
where

(i) U is a set of variables, called ezogenous, that are determined by factors outside the
model.

(ii) V is a set {V4,V4,...,V,} of variables, called endogenous, that are determined by vari-
ables in the model.

(iii) F is a set of functions {fi, fo, ..., fn} where each f; is a mapping from U U (V' \ V;) to
V; such that F' defines a mapping from U to V. (i.e., F' has a unique solution for each
state v in the domain of U). Symbolically, F' can be represented by writing

v; = filpas,u) i=1,...,n

where pa; is any realization of the (unique) set of variables PA; in V/V; (connoting
parents) that renders f; nontrivial.

1Similar models, called “neuron diagrams” [Lewis, 1973; Hall, 1998] are used informally by philosophers
to illustrate chains of causal processors.



Every causal model M can be associated with a directed graph, G(M), in which each node
corresponds to a variable in V' and the directed edges point from members of PA; toward
V;. We call such a graph the causal graph associated with M. This graph merely identifies
the endogenous variables PA; that have direct influence on each V; but it does not specify
the functional form of f;.

Definition 2 (submodel) Let M be a causal model, X be a set of variables in V', and x be
a particular realization of X. A submodel M, of M is the causal model

M,= <UV,F;>

where
F,={fi:Vi¢g X} U{X =z} (1)

In words, F} is formed by deleting from F' all functions f; corresponding to members of set X
and replacing them with the set of functions X = z. Implicit in the definition of submodels
is the assumption that F, possesses a unique solution for every u.

Submodels are useful for representing the effect of local actions and changes. If we
interpret each function f; in F' as an independent physical mechanism and define the action
do(X = x) as the minimal change in M required to make X = x hold true under any u, then
M, represents the model that results from such a minimal change, since it differs from M by
only those mechanisms that directly determine the variables in X. The transformation from
M to M, modifies the algebraic content of F', which is the reason for choosing the name
modifiable structural equations.

Definition 3 (effect of action) Let M be a causal model, X be a set of variables in V', and
x be a particular realization of X. The effect of action do(X = x) on M is given by the
submodel M,.?

Definition 4 (potential response) Let Y be a variable in V, and let X be a subset of V.
The potential response of Y to action do(X = z), denoted Y, (u), is the solution for Y of the
set of equations Fj.

We will confine our attention to actions in the form of do(X = z). Conditional actions,
of the form “do(X = z) if Z = 2” can be formalized using the replacement of equations,
rather than their deletion [Pearl, 1994]. We will not consider disjunctive actions, of the form
“do(X =z or X = 1')”, since these complicate the probabilistic treatment of counterfactuals.

Definition 5 (counterfactual) Let Y be a variable in V, and let X a subset of V. The
counterfactual sentence “The value that Y would have obtained, had X been z” is interpreted
as denoting the potential response Y (u).3

2Readers who are disturbed by the impracticality of some local actions (e.g., creating a world where
kangaroos have no tails) are invited to replace the word “action” with the word “modification” (see Leamer,
1985). The advantages of using hypothetical external interventions to convey the notion of “local change”
are emphasized in Pearl (1995, p. 706).

3The connection between counterfactuals and local actions (sometimes invoking “miracles”) is made in
Lewis (1973) and is further elaborated in Balke and Pearl (1994) and Heckerman and Shachter (1995).



Two special cases are worth noting. First, if Y = V; and X = V' \Y, then Y, (u) =
fi(pa;, u) where pa; is the projection of X = z on PA;. Thus, each function f; in M may
be given a counterfactual or interventional interpretation; it specifies the potential response
of V; to a hypothetical manipulation of all other variables in V. Second, if Y is included in
X and X =2 = Y = y, then Y (u) = y. This means that the potential response of a
manipulated variable coincides with the values set by the manipulation.

The formulation above shares many features with that of Simon and Rescher (1966).
Both are based on an assembly of autonomous physical mechanisms, represented as a set of
equations, and both assume a one-to-one correspondence between equations and variables.
Simon and Rescher, however, do not treat counterfactual antecedents as actions and they
therefore encounter difficulties handling counterfactuals whose antecedents involve endoge-
nous variables. The SL formulation overcomes these difficulties by representing actions in
terms of equation-deletion operators,* and defining counterfactuals as solutions to reduced
sets of equations. This formulation generalizes naturally to probabilistic systems, as is seen
below.

Definition 6 (probabilistic causal model) A probabilistic causal model is a pair
< M,P(u) >
where M is a causal model and P(u) is a probability function defined over the domain of U.

P(u), together with the fact that each endogenous variable is a function of U, defines
a probability distribution over the endogenous variables. That is, for every set of variables

Y CV, we have
Plyy= ) P (2)
{u | Y(u)=y}
The probability of counterfactual statements is defined in the same manner, through the
function Y, (u) induced by the submodel M,:

P(Y,=y)= > Pl (3)

{u | Ya(u)=y}

Likewise a causal model defines a joint distribution on counterfactual statements, i.e.,
P(Y, =y, Z, = z) is defined for any sets of variables Y, X, Z, W, not necessarily disjoint. In
particular, P(Y; = y, X = 2') and P(Y, = y,Y, = y') are well defined for = # 2, and are
given by

PY,=y.X=2)= Y P (4)
{ulYe(u)=y & X(u)=a'}

and
P(Y,=yYy=19)= > P(u). (5)

{u | Ya(u)=y & Yy (u)=y'}

4An explicit translation of interventions into “wiping out” equations from the model was first proposed
by Strotz and Wold (1960) and later used in Fisher (1970), Sobel (1990), Spirtes et al. (1993), and Pearl
(1995).



When z and z' are incompatible, Y, and Y, cannot be measured simultaneously, and it
may seem meaningless to attribute probability to the joint statement “Y would be y if X =z
and Y would be ' if X = 2’.” Such concerns have been a source of recent objections to
treating counterfactuals as jointly distributed random variables [Dawid, 1997]. The definition
of Y, and Y] in terms of two distinct submodels explains away these objections and further
illustrates that joint probabilities of counterfactuals can be encoded rather parsimoniously

using P(u) and F.
2.2 Example

Next we demonstrate the use of structural logic in reasoning about actions and counter-
factuals. Additional applications involving the formalization of causal relevance and the
interpretation of causal utterances can be found in Galles and Pearl (1997).

2.2.1 Sprinkler example

SEASON

@ SLIPPERY

Figure 1: Causal graph illustrating causal relationships among five variables.

Figure 1 is a simple yet typical causal graph used in common sense reasoning. It describes
the causal relationships among the season of the year (X;), whether rain falls (X,) during
the season, whether the sprinkler is on (X3) during the season, whether the pavement is wet
(X4), and whether the pavement is slippery (X5). All variables in this graph except the root
variable X; take a value of either “True” or “False.” X; takes one of four values: “Spring,”
“Summer,” “Fall,” or “Winter.” Here, the absence of a direct link between, for example,
X1 and X5, captures our understanding that the influence of the season on the slipperiness
of the pavement is mediated by other conditions (e.g., the wetness of the pavement). The
corresponding model consists of five functions, each representing an autonomous mechanism:

rT = U



Ty = fa(71,u2)

x3 = f3(z1,u3)

Ty = fu(T3, T2, us)

x5 = f5(4,us) (6)
The disturbances Uy, . . ., Us are not shown explicitly in Figure 1 but are understood to govern
the uncertainties associated with the causal relationships. The causal graph coincides with
the Bayesian network [Pearl, 1988| associated with P(zy,...,x5) whenever the disturbances
are assumed to be independent, U; L U\ U;. When some disturbances are judged to

be dependent, it is customary to encode such dependencies by augmenting the graph with
double-headed arrows [Pearl, 1995].

A typical specification of the functions {fi,..., fs} and the disturbance terms is given
by the Boolean model

Ty = [(X; = Winter) V (X; = Fall) V aby] A —ab;,

z3 = [(X; = Summer) V (X; = Spring) V abs] A —abj
zy = (z2V x3V aby) A —ab)
x5 = (x4 V abs) A —aby (7)

where z; stands for X; = true, and ab; and ab} stand, respectively, for triggering and inhibit-
ing abnormalities. For example, ab; stands for (unspecified) events that might cause the
pavement to get wet (z4) when the sprinkler is off (—x3) and it does not rain (—z3) (e.g., a
leaking water pipe), while —ab), stands for (unspecified) events that will keep the pavement
dry in spite of the rain (x3), the sprinkler (z5), and aby (e.g., a pavement covered with a
plastic sheet).

To represent the action “turning the sprinkler ON,” or do(X3 = ON), we replace the
equation z3 = f3(z1,u3) in the model of Eq. (6) with the equation z3 = ON. The resulting
submodel, My,—on, contains all the information needed for computing the effect of the action
on the other variables. Thus, the operation do(X3 = ON) stands in marked contrast to that
of finding the sprinkler ON; the latter involves making the substitution without removing
the equation for X3, and therefore may potentially influence (the belief in) every variable
in the network. In contrast, the only variables affected by the action do(X3 = ON) are X,
and X5, that is, the descendants of the manipulated variable X3. This mirrors the difference
between seeing and doing: after observing that the sprinkler is ON, we wish to infer that the
season is dry, that it probably did not rain, and so on; no such inferences should be drawn in
evaluating the effects of the action “turning the sprinkler ON” that a person may consider
taking.

This distinction obtains a vivid symbolic representation in cases where the U;’s are as-
sumed independent, because the joint distribution of the endogenous variables then admits
the product decomposition

P(z1, 29,23, T4, T5) = P(x1) P(22|21) P(13]|21) P(24]72, 73) P(25|24) (8)

Similarly, the joint distribution associated with the submodel M, representing the action
do(X3 = ON) is obtained from the product above by deleting the factor P(z3|z;) and
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substituting X5 = ON
P(z1, 29,24, z5|do(X3 = ON)) = P(z1) P(z2|z1) P(x4|22, X5 = ON) P(z5|24) 9)

The difference between the action do(X3 = ON) and the observation X3 = ON is thus
seen from the corresponding distributions. The former is represented by Eq. (9), while the
latter by conditioning Eq. (8) on the observation, i.e.,

P(z1) P(xg|z1) P(xzs = ON|z1)P(24|22, X5 = ON)P(25|24)
P(X; = ON)

P($1,$2,I4,{L‘5|X3 = ON) —

Note that the conditional probabilities on the r.h.s. of Eq. (9) are the same as those
in Eq. (8), and can therefore be estimated from pre-action observations, provided G(M)
is available. However, the pre-action distribution P together with the causal graph G(M)
is generally not sufficient for evaluating counterfactuals sentences. For example, the prob-
ability that “the pavement would continue to be slippery once we turn the sprinkler off,”
tacitly presuming that currently the pavement s slippery, cannot be evaluated from the con-
ditional probabilities P(x;|pa;) alone; the functional forms of the f;’s (Eq. 6) are necessary
for evaluating such queries [Balke and Pearl 1994; Pear] 1996].

To illustrate the evaluation of counterfactuals, consider the causal model given by Eq. (7)
and assume that all abnormalities vanish and that the only uncertainty in the model lies in
the identity of the season, summarized by a probability distribution P(u;) or P(z;). We
observe the ground slippery and the sprinkler on and we wish to assess the probability that
the ground will continue to be slippery had the sprinkler been off. Formally, the quantity
desired is given by

P(Xsx,oo =1|X5=1,X3=1)

According to Eq. (4), the expression above is evaluated by summing P(u) over all states of
U that are compatible with the sentence to be evaluated. In our example, the only state
compatible with the evidence X5 = 1 and X5 = 1 is X; = Summer V Spring, and in this
state X, = no rain, hence X5X3:0 = 0. Thus, matching intuition, we obtain

P(X5X3:0 = 1|X5 = 1,X3 = 1) = 0

In general, the probability of a counterfactual sentence (A = B given evidence e) can be
computed in three steps:

1. Abduction — update P(u) by the evidence e available, to obtain P(ule).

2. Action — Modify M by the action do(A), where A is the antecedent of the counter-
factual, to obtain the submodel M.

3. Deduction — Use the updated probability P(ule) in conjunction with M4 to compute
the probability of the counterfactual consequence B.

Practical methods of computing probabilities of counterfactuals are presented in Balke and
Pearl (1994, 1995).



3 Actual Causes: A Structural-Logic Explication

Assume we are given a causal model M =< U, V,{f;} > and we want to decide whether in
a specific state U = u the event X = z was an actual cause of the event Y = y, where X
and Y are any two members of V. The interventional interpretation of the word “cause”
would instruct us to check whether Y would respond to a manipulation that changes = to
some other value z’ # x. This leads to the counterfactual criterion Y,.(u) # Y;(u), which
tests the overall necessity of X = x in sustaining Y (u) = y.

We know, however, that this test is too coarse to detect all cases of causal connections
between X = z and Y = y. Changing X to 2/ may interrupt a genuine causal connection
and still go undetected, because the new condition X = z’ may activate a new mechanism to
sustain Y = y, a mechanism that was dormant under the condition X = z. For example, the
switch that currently activates the lamp in my room may be connected in such a way that
an auxiliary flush light turns on whenever the switch is turned off. This will keep my room
lighted in every switch position; merely testing for the overall effect of the switch on the
room light will not reveal the fact that the current switch position is the “actual” cause for
the light in the room, since it enables the passage of electric current through the lamp and
is in fact the only mechanism currently sustaining light. Likewise, if the room is lighted by
two independent light sources, none is truly essential for sustaining light in the room, hence
none would meet the counterfactual criterion in isolation. However, we still want to regard
each source as a contributory actual cause for the light, because it would become essential,
and would meet the counterfactual test, in the hypothetical event that the other is turned
off.

Thus, to properly explicate the notion of “actual cause” we must devise a formal way of
distinguishing essential from non-essential mechanisms, and keep the latter inactive while
testing for the response of Y to a change in X.

3.1 Causal beams: Definitions and implications

We start by defining essential variables. Recall that the arguments of the functions {f;} in a
causal model were assumed to be essential in some sense, since we have pruned from each f;
all redundant arguments and retained only those called pa; that render f;(pa;, u) nontrivial.
However, while in that definition we were concerned with nontriviality relative to all possible
u’s, further pruning is feasible when we are situated at a particular state U = u.

To illustrate, consider the function f; = axi + bu;zo. Here PA; = {Xi, X5}, because
there is always some value of u; that would make f; sensitive to changes in either x; or xs.
However, given that we are in a state for which u; = 0, we can safely consider X5 a trivial
argument, replace f; with f] = ax;, and consider X; as the only essential argument of f;.
We shall call f] the projection of f; on u, and more generally, we will consider the projection
of the entire model M by replacing every function in {f;} with its projection relative to a
specific u and a specific value of its nonessential part. This leads to a new model which we
call causal beam.

Definition 7 (causal beam) For model M =< U,V,{f;} > and state U = u, a causal
beam of the event X = x is a new model M(z,u) = < u,V,{f!/} >, in which the set of
functions f] is constructed from {f;} as follows:
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1. For each variable V; € V, partition PA; into two subsets, PA; = E'U NFE, where E
(connoting “essential”) is any minimal subset of PA; satisfying®

fi(Ez(u),ne,u) = fi(Ez(u),ne',u) for all ne' (10)
In words, E' is any minimal set of PA; sufficient to entail the actual value of V;(u).

2. For each variable V; € V, replace f;(e, ne,u) by its projection f/(e,u), given by

fl(e,u) = fi(e, NEyy(u),u) (11)
where W is any minimal subset of NE with a value w that renders f] non trivial, i.e.,

fi(e,u) =y for some e of E.

Thus the new parent set of V; becomes PA, = E, and every f’ function is responsive to its
new parent set E.

Definition 8 (natural beam) A causal beam M (x,u) is said to be natural, if condition 2 of
Definition 7 is satisfied with W = {0}, for all V; € V.

In words, a natural beam is formed by “freezing” the nonessential variables at their actual
values, NE,(u), thus yielding the projection f/(e,u) = fi(e, NE,(u), u).

Note that there is always a w (W can be empty) that will satisfy condition 2 of Definition
7 for any non-empty E. Note also that when X = z is a natural event (i.e., X(u) = x),
the subscript = can be removed from E, and N E,,,, because E,(u) = E(u) and NE,,(u) =
NE,(u). However, when X = z is imposed by external intervention, and X (u) # z, variables
must be set to their corresponding values in the submodel M,.

Definition 9 (actual cause) We say that event X = z was an actual cause of Y =y in a
state u (abbreviated “x caused y”) iff there exists a natural beam M (z,u) such that:

My(z,u) =y (12)
My (z,u) Ey' #vy whenever z’' # (13)

Note that Eq. (12) is equivalent to
Yo(u) =y (14)

But Eq. (13) ensures that Y = y is sustained by X = x and not by some other values of X.

Definition 10 (contributory cause) z is a contributory cause of y in a state u iff there exists
a causal beam, but no natural beam, that satisfies Eqs. (12) and (13).

5 As usual, we use lowercase letters (e.g., e, ne) to denote specific realizations of the corresponding variables
(e.g., E,NE), and E,(u) to denote the realization of F under U = u and do(X = z).
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To summarize, the causal beam can be interpreted as a theory that provides a minimally
sufficient and nontrivial explanation for each actual event X; = z;, under a hypothetical
state of the world (W = w) that is minimally removed from the actual state. Using this
new theory, we subject the event X = z to a counterfactual test, and check whether Y
would change if X were not x. If Y change occurs under a hypothetical state that coincides
with the actual state (i.e., W = {0}), we say that “z was an actual cause of y.” If changes
occur only under a hypothetical state that is somewhat removed from the actual state (i.e.,
W # {0}), we say that “z was a contributory cause of y.”

When the state v is uncertain, and the uncertainty is characterized by the probability
P(u) then, if e is the evidence available in the case, the probability that x caused y can
be obtained by summing up the weight of evidence P(ule) over all states u in which the
assertion “z caused y” is true. Formally,

Definition 11 (probability of causes) Let U, be the set of states in which the assertion
“r caused y” is true, and let U, be the set of states compatible with the evidence e. The
probability that = caused y, in light of evidence e, denoted P(caused (z,yle)), is given by
the expression

P(Ugy NU)

P(caused (z,yle)) = PU.)

(15)

3.2 Examples

Example 1 (disjunctive mechanism) Contributory causation is typified in cases where two
actions concur to bring about an event, and either action, operating alone, would have
brought about the event absent the other. For example, two factories pouring chemicals into
a lake during the same period of time would each be considered a contributing cause to the
pollution. In such cases the model consists of just one mechanism which connects the effect
E to the two actions through a simple disjunction: £ = A; V Ay. There exists no natural
beam to qualify either A; or A, as an actual cause of E. If we fix either A; or A, at its
current value (namely, true), E will become a trivial function of the other action. However,
if we deviate minimally from the current state of affairs and let A, be false, £ would then
become responsive to A; and will pass the counterfactual test of Eq. (13).

Example 2 (disjunctive normal form) Considering a single mechanism characterized by the
Boolean function
y=f(z,z,r 8, t,u) =x2VrsVvt

where, for simplicity, variables X, Z, R, S and T are assumed to be causally independent of
each other (i.e., none is a descendant of another in the causal graph G(M)). We next illus-
trate conditions under which x would qualify as a contributory or actual cause, respectively,
for y.

First, consider a state U = u where all variables are true, namely,

X(u)=27Z(u)=R(u)=Su)=T(u) =Y (u) = true

10



In this state every disjunct represents a set of essential variables. In particular, taking F =
{X, Z}, we find that the projection f'(x,z,u) = f(z,z, R(u), S(u),T(u) becomes trivially
true. Thus, there is no natural beam M(z,u), and z could not be an “actual cause” of
y. The feasible causal beams correspond to the two minimal choices of w: w = {r/,t'}, or
w = {s',t'}, where primes denote complementation, i.e., s' = “S = false.” Each of these
two choices yields f’(z,z) = zz which renders E nontrivial. Clearly, M (z,u) meets the
conditions of Egs. (12) and (13), thus certifying = as a contributory cause of y.
Using the same argument, it is easy to see that at a state u for which

X(u) = Z(u) = true and R(u) = T(u) = false

a natural beam exists, i.e., a nontrivial projection f'(z,z) = zz is realized by setting the
nonessential variables R, .S, and T to their actual values in u. Hence, x is qualified as an
actual cause of y.

This example illustrates how Mackie’s intuition for the INUS condition (Insufficient but
Nonredundant part of an Unnecessary but Sufficient condition) can be explicated in the SL
framework. It also illustrates the conditions under which a single literal in a disjunction
normal form would qualify as a cause — the disjunction formula must represent a genuine
mechanism in the sense of Definition 1. The next example illustrates how the INUS con-
dition generalizes to arbitrary Boolean functions, especially those having several minimal
conjunctive normal forms.

Example 3 (single mechanism in general Boolean form) Consider the function
y=f(z,2,s,u) =2z’ Va'z Vs (16)
which has an equivalent form
y=flz,z,s,u) =xz'Va'zVzs (17)

Assume, as before, that we consider a state u in which X, Z, and S are true, and that we
inquire as to whether the event x : X = true caused the event y : Y = false. In this state,
the only essential set is E = {X, Z, R} because no choice of two variables (valued at this u)
would entail Y = false regardless of the third. Since NFE is empty, the choice of beam is
unique, M (z,u) = M, for which y = f'(z, z,s,u) = 22’ Va'z V xs'. This M (z,u) passes the
counterfactual test of Eq. (13), because f'(2',2,s) = true, and we conclude, therefore, that
x was an actual cause of .

Similarly, we can see the event S = false (or s') was an actual cause of Y = false. This
follows directly from the counterfactual test

Ys(u) = false and Yy (u) = true

It is important to note that, because Definitions 9 and 10 rest on semantical considera-
tions, identical conclusions would be obtained from any logically equivalent form of f, as for
example the one in Eq. (17). This stands in marked contrast to Mackie’s INUS condition
which, for want of semantical underpinning, was found to be syntax sensitive [Kim, 1971].
Our explication can therefore be considered the semantical basis behind the INUS intuition.
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Example 4 (The desert traveler — after P. Suppes) A desert traveler 7" has two enemies.
Enemy-1 poisons T’s canteen, and Enemy-2, unaware of Enemy-1’s action, shoots and emp-
ties the canteen. A week later, T is found dead and the two enemies confess to action and
intention. A jury must decide whose action was the actual cause of T’s death.

Let u be the state where the traveler’s first need of drink occurred after the shot was
fired. Let = be the proposition “Enemy-2 shot”.

The original model is characterized by the graph of Figure 2. The causal beam M (z,u)
is natural, as depicted in Figure 3. Remarkably, the causal beam M ((p,u) formed to test
whether p is a cause of y, is identical to M (z,u). Accordingly, we have:

V=1 and Yy =0 in M(z,u).

Y,=1 and Yy =1 in M(p,u). (18)

Thus, Enemy-2 shooting at the container () was an actual cause of T’s death (y), while
Enemy-1 poisoning the water (P) was not an actual cause of y.

v needing drink

shoot after the shot
canteen .
poison
fg\rﬁr P water

\ Z cyanide
dehydratlon intake

death

Figure 2:

Next, consider another state, u’, standing for the event that our traveler reached for drink
before Enemy-2 shot at the canteen. The graph corresponding to M (z,u') is shown in Figure
4:

The causal beam M (p,u') is, again, identical to M (z,u'), giving

Y;=1 and Yy =1 in M(z,u)

Y,=1 and Y,y =0 in M(p,u) (19)

Thus, in this state of affairs we consider Enemy-1’s action to be the actual cause of 7T”s
death, while Enemy-2’s action is not considered the cause of death.

If we do not know which state prevailed, u or v/, we must be satisfied with the probabilistic
answer: “The probability that x caused y is P(u).” Likewise, if we observe some evidence e
reflecting on the probability P(u), such evidence would yield (see Eq. (15):

P(caused(z,yle)) = P(ule)
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Figure 4:

and
P(caused(x',yle)) = P(u'|e)

For example, a forensic report confirming “no cyanide in body” rules out state ' in favor of
state u, and the probability of z being the cause of y becomes 100%.

A natural question arises, whether the probability that a traveler could survive poisoning
or dehydration (perhaps by the unexpected arrival of a rescue team) should enter the calcu-
lations of either P(caused(x,yle)) or P(caused(p,yle)). The details of this consideration are
presented in the appendix. It is shown that, because 17" did not in fact survive, the apriori
probabilities of survival plays only a minor role in the calculation. Since chances for rescue
are higher under dehydration than under poisoning, 7’s death provides a weak evidence in
favor of poisoning (u'), at the expense of dehydration (u).

Example 5 Let x be the state of a 2-position switch. In position-1 (z = 1) the switch turns
on (z = 1) and turns off a flush light (w = 0). In position-2 (z = 0) the switch turns on a
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flush light (w = 1) while the lamp is turned off (z = 0). Let Y = 1 be the proposition that
the room is lighted.

The causal beams M (x,u) associated with the state v in which all equipment is working
properly are shown in the graphs below (Figure 5):

Figure 5:

Here, again, M (z = 1, u) entails Y, = 1 and Yy = 0. Likewise M (z = 0, u) entails Y, =1
and Y, = 0. Thus both “Switch in position 1”7 and “Switch in position 2” are considered
actual causes for “Room is lighted,” although neither is a necessary cause.

4 Comparison to Other Approaches

4.1 The logical approach: INUS, NESS etc.

Attempts to formulate causality in terms of logical sufficiency and necessity encounter in-
surmountable difficulties [Sosa and Tooley, 1993, p.1-8], partly revolving around J.S. Mill’s
observation that, in reality, no cause is truly sufficient or necessary [Mill, 1843, p. 425].
Mackie’s INUS condition appears to be the earliest attempt to offer an explication of “ac-
tual causation” within the logical framework, and it has become quite popular. The basic
intuition behind INUS is shared by researchers from a variety of disciplines. Legal scholars,
for example, have advocated a relation called NESS [Wright, 1988], standing for “necessary
element of sufficient set,” which is a rephrasing of Mackie’s INUS condition in a simpler
mnemonic. In epidemiology, Rothman (1976) has proposed a similar criterion for distin-
guishing cases where disease is attributable to exposure from those where exposure is merely
incidental. These intuitions have all been expressed informally, in a semi-qualitative lan-
guage of “sufficiency and necessity” but have not been cast in a strictly formal setting, and
for a very good reason. Jaegwon Kim (1971), who attempted to provide a careful explication
of the INUS condition, admits that logic is not an adequate language for expressing causal
concepts. Similar observations are made by Cartwright (1989, pp. 25-34), who resorts to
knowledge of mechanisms in order to rule out spurious non-causes from INUS expressions.
The weaknesses of logic fall into three main categories:

1. syntactic sensitivity
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2. temporal symmetry
3. sensitivity to added variables.

The first two are adequately covered in Kim (1971). I will therefore emphasize the third:
causality tests based on logical formulas are not invariant to the addition of fictitious new
variables.

Consider the formula

E=sVp (20)

according to which event p is an INUS-cause of effect E. Defining a new event z = ps’, and
using the identity: sV s'p = sV p, we can rewrite (20) as

E=sVz (21)
Now suppose we know that s is true. That would make z false and we can write (20) as
E=s (22)

Thus, according to (22) p does not appear as part of any “sufficient set” and, therefore, it is
no longer an INUS-cause of E.

What was demonstrated above is merely the phenomenon of preemption in a logical
looking glass. (It may be interpreted as a logical attempt to encode the desert-traveler
story with E standing for 7”s death, s and p representing the actions of the shooter and
poisoner, respectively, and z standing for “cyanide intake.”) This problem does not appear
in the SL formulation, because SL does not permit an arbitrary addition of new variables
to the model, even when truth values are preserved. The addition of Z would be justified
only when there really is an autonomous mechanism involving Z standing on the causal
pathway between S and E (as in Figure 2). Standard logic, however, oblivious of such
notions as autonomy, pathways, and betweenness, cannot distinguish genuine mechanisms
from fictitious definitions.

4.2 The counterfactual approach of Lewis (to be completed)
4.3 Probabilistic causality (to be completed)

Probabilistic causality is a branch of philosophy that attempts to explicate causal relation-
ships in terms of probabilistic relationships. This attempt was motivated by several ideas and
expectations. First and foremost, probabilistic causality promises a solution to the centuries-
old puzzle of causal discovery, that is, how humans discover genuine causal relationships from
bare empirical observations, free of any causal preconceptions. Second, in contrast to deter-
ministic accounts of causation, probabilistic causality offers substantial cognitive economy.
Physical states and physical laws need not be specified in minute detail because instead they
can be summarized in the form of probabilistic relationships among macro-states so as to
match the granularity of natural discourse. Third, probabilistic causality is equipped to deal
with the modern (i.e., quantum theoretical) conception of uncertainty, according to which
determinism is merely an epistemic fiction, and nondeterminism is the fundamental feature
of physical reality.
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The formal program of probabilistic causality owes its inception to H. Reichenbach (1956)
and I.J. Good (1961-62) and has subsequently been pursued by P. Suppes (1970), B. Skyrms
(1980), R. Otte (1981), W. Spohn (1980), and W.C. Salmon (1984). The current state of this
program is rather disappointing considering its original aspirations. Salmon has abandoned
the effort altogether, concluding that “causal relations are not appropriately analyzable in
terms of statistical relevance relations” (1984, page 185); instead, he has proposed an anal-
ysis in which “causal processes” are the basic building blocks. More recent accounts by
Cartwright (1989) and Eells (1991) have resolved some of the difficulties encountered by
Salmon, but at the price of compromising the original goals of the program and invoking de-
terministic counterfactual relationships. A summary of the major difficulties of probabilistic
causality, and a comparison to structural or mechanism-based causality, are given in Pearl
(1996Db).

Much of human intuition concerning causation rests on the Laplacian illusion that our
world is basically deterministic, and that probabilities surface only from our ignorance of the
boundary conditions. Probabilistic causality denies determinism a priori, even as a limiting
case, and thus deprives its methods and syntax from representing this important component
of human cognition. It is not surprising that progress in this approach has been impeded
by conceptual and syntactical difficulties. Most problems that plague the logical approach
find their counterparts (sometimes disguised) in the probabilistic approach. Legal scholars
flatly deny that statistical considerations (e.g., that a certain type of action rarely brings
about the effect considered) should enter into judgment of “cause in fact” [Wright, 1988;
Robertson, 1997]. Good (1993) admits that not much progress has been made in the past 30
years toward the understanding of actual causes or “causes in fact,” and that the parameter
X, which Good has proposed for the degree of actual causation, is still far from adequate
explication.

Recent attempt to extend Good’s ) measure to singular causes [Michie, 1998] leads to
counterintuitive conclusions. In the desert-traveler story, for example, the degree to which
shooting the canteen was a sufficient cause for 7’s death turns out to be a function of the
ratio of two small probabilities:

€, — the probability that a traveler like 7" would survive with a poisoned canteen
€ — the probability that a traveler like T" would survive with an empty canteen.

These probabilities have only minor impact on determining causes in the specific story at
hand. Since T was found dead, what we know about survival rates in general is of little
relevance to events and processes that shaped our story (see the appendix).

Probabilistic methods encounter basic difficulties reconciling evidence (e.g., T’s death)
that conflicts with the effect of hypothetical actions (e.g., not shooting). Balke and Pearl
(1994) have shown that expressions of the type

P(T would have been alive had Enemy-2 not shot | 7" is in fact dead)

can only be computed if one assumes knowledge of some deterministic mechanism.

16



Acknowledgment

I am indebted to Donald Michie for calling my attention to the ubiquity of “sufficient causes”
in legal discourse. Gary Schwartz referred me to the penetrating papers of [Wright, 1988]
and [Robertson, 1997] on causality in the law. Clark Glymour referred me to the paper of
[Kim, 1971] and noted that similar ideas were applied in [Glymour and Cheng, 1998| and
[Glymour, 1998] for extending the causal power theory of [Cheng, 1997].

This paper is based on lecture outlines for a seminar on causal reasoning given at UCLA
(CS 262C, Spring 1998). I thank the seminar participants, Ray Golish, Andrew Lister,
Eitan Mendelowitz, Peyman Meshkat, Igor Roizen, and Jin Tian for knocking down two
earlier attempts, and for stimulating discussions leading to the current proposal.

17



References

[Balke and Pearl, 1994] A. Balke and J. Pearl. Counterfactual probabilities: Computational
methods, bounds, and applications. In R. Lopez de Mantaras and D. Poole, editors,
Uncertainty in Artificial Intelligence 10, pages 46-54. Morgan Kaufmann, San Mateo,

CA, 1994.

[Balke and Pearl, 1995] A. Balke and J. Pearl. Counterfactuals and policy analysis in struc-
tural models. In P. Besnard and S. Hanks, editors, Uncertainty in Artificial Intelligence
11, pages 11-18. Morgan Kaufmann, San Francisco, 1995.

[Cartwright, 1989] N. Cartwright. Nature’s Capacities and Their Measurement. Clarendon
Press, Oxford, 1989.

[Cheng, 1997] P.W. Cheng. From covariation to causation: A causal power theory. Psycho-
logical Review, 104(2):367-405, 1997.

[Dawid, 1997] A.P. Dawid. Causal inference without counterfactuals. Technical report,
Department of Statistical Science, University College London, UK, 1997.

[Eells, 1991] E. Eells. Probabilistic Causality. Cambridge University Press, Cambridge, MA,
1991.

[Fisher, 1970] F.M. Fisher. A correspondence principle for simultaneous equations models.
Econometrica, 38(1):73-92, January 1970.

[Galles and Pearl, 1997] D. Galles and J. Pearl. Axioms of causal relevance. Artificial In-
telligence, 97(1-2):9-43, 1997.

[Galles and Pearl, 1998] D. Galles and J. Pearl. An axiomatic characterization of causal
counterfactuals. Technical Report R-250, Department of Computer Science, University of
California, Los Angeles, 1998. To appear in Foundation of Science, 1998.

[Glymour and Cheng, 1998] C. Glymour and P.W. Cheng. Causal mechanism and proba-
bility: A normative approach. Technical report, UCSD, Carnegie Mellon University, and
UCLA, 1998. Draft of chapter to appear in Y. Oaksford and V. Chater (Eds), Rational
Models of Cognition, Oxford, England: Oxford University Press.

[Glymour, 1998] C. Glymour. Psychological and normative theories of causal power and
probabilities of causes, 1998. To appear in Proceedings of the 1998 Conference on Uncer-
tainty in Artificial Intelligence (UAI-98).

[Good, 1961] 1.J. Good. A causal calculus, I. British Journal for the Philosophy of Science,
11:305-318, 1961.

[Good, 1962] 1.J. Good. A causal calculus, II. British Journal for the Philosophy of Science,
12:43-51; 13:88, 1962.

[Good, 1993] 1.J. Good. A tentative measure of probabilistic causation relevant to the phi-
losophy of the law. J. Statist. Comput. and Sitmulation, 47:99-105, 1993.

18



[Greenland et al., 1998] S. Greenland, J. Pearl, and J.M Robins. Causal diagrams for epi-
demiologic research. Technical Report R-251, University of California, Los Angeles, Jan-
uary 1998. To appear in Epidemiology.

[Hall, 1998] N. Hall. Two concepts of causation. In press, 1998.

[Heckerman and Shachter, 1995] D. Heckerman and R. Shachter. A definition and graphical
representation for causality. In P. Besnard and S. Hanks, editors, Proceedings of the 11th
Conference on Uncertainty in Artificial Intelligence, pages 262-273, San Mateo, CA 1995.
Morgan Kaufmann.

[Kim, 1971] J. Kim. Causes and events: Mackie on causation. Journal of Philosophy, 68:426—
471, 1971. Reprinted in E. Sosa and M. Tooley (Eds.), Causation, Oxford University Press,
1993.

[Leamer, 1985] E.E. Leamer. Vector autoregressions for causal inference? Carnegie-
Rochester Conference Series on Public Policy, 22:255-304, 1985.

[Lewis, 1973] D. Lewis. Causation. The Journal of Philosophy, 70:556-567, 1973. Reprinted
with postscript in D. Lewis, Philosophical Papers, vol. II. New York: Oxford, 1986.

[Mackie, 1965] J.L. Mackie. Causes and conditions. American Philosophical Quarterly,
2/4:261-264, 1965. Reprinted in E. Sosa and M. Tooley (Eds.), Causation, Oxford Uni-
versity Press, 1993.

[Michie, 1998] D. Michie. Adapting Good’s ¢ theory to the causation of individual events.
Technical report, University of Edinburgh, UK, 1998. Submitted for publication in Ma-
chine Intelligence 15.

[Mill, 1843] J.S. Mill. System of Logic, volume 1. John W. Parker, London, 1843.

[Otte, 1981] R. Otte. A critque of suppes’ theory of probabilistic causality. Synthese, 48:167—
189, 1981.

[Pearl, 1988] J. Pearl. Embracing causality in formal reasoning. Artificial Intelligence,
35(2):259-271, 1988.

[Pearl, 1994] J. Pearl. A probabilistic calculus of actions. In R. Lopez de Mantaras and
D. Poole, editors, Uncertainty in Artificial Intelligence 10, pages 454-462. Morgan Kauf-
mann, San Mateo, CA, 1994.

[Pearl, 1995] J. Pearl. Causal diagrams for experimental research. Biometrika, 82:669-710,
December 1995.

[Pearl, 1996a] J. Pearl. Causation, action, and counterfactuals. In Y. Shoham, editor, The-
oretical Aspects of Rationality and Knowledge, Proceedings of the Sixth Conference, pages
51-73. Morgan Kaufmann, San Francisco, CA, 1996.

19



[Pearl, 1996b] J. Pearl. Structural and probabilistic causality. In D.R. Shanks, K.J. Holyoak,
and D.L. Medin, editors, The Psychology of Learning and Motivation, volume 34, pages
393-435. Academic Press, San Diego, CA, 1996.

[Reichenbach, 1956] H. Reichenbach. The Direction of Time. University of California Press,
Berkeley, 1956.

[Robertson, 1997] D.W. Robertson. The common sense of cause in fact. Tezxas Law Review,
75(7):1765-1800, 1997.

[Robins, 1986] J.M. Robins. A new approach to causal inference in mortality studies with a
sustained exposure period — applications to control of the healthy workers survivor effect.
Mathematical Modeling, 7:1393-1512, 1986.

[Rothman, 1976] K.J. Rothman. Causes. American Journal of Epidemiology, 104:587-592,
1976.

[Rubin, 1974] D.B. Rubin. Estimating causal effects of treatments in randomized and non-
randomized studies. Journal of Educational Psychology, 66:688—701, 1974.

[Salmon, 1984] W.C. Salmon. Scientific Explanation and the Causal Structure of the World.
Princeton University Press, Princeton, 1984.

[Simon and Rescher, 1966] H.A. Simon and N. Rescher. Cause and counterfactual. Philos-
ophy and Science, 33:323-340, 1966.

[Skyrms, 1980] B. Skyrms. Causal Necessity. Yale University Press, New Haven, 1980.

[Sobel, 1990] M.E. Sobel. Effect analysis and causation in linear structural equation models.
Psychometrika, 55(3):495-515, 1990.

[Sosa and Tooley, 1993] E. Sosa and M. (Eds.) Tooley. Causation. Oxford readings in Phi-
losophy. Oxford University Press, 1993.

[Spirtes et al., 1993] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and
Search. Springer-Verlag, New York, 1993.

[Spohn, 1980] W. Spohn. Stochastic independence, causal independence, and shieldability.
Journal of Philosophical Logic, 9:73-99, 1980.

[Strotz and Wold, 1960] R.H. Strotz and H.O.A. Wold. Recursive versus nonrecursive sys-
tems: An attempt at synthesis. Econometrica, 28:417-427, 1960.

[Suppes, 1970] P. Suppes. A Probabilistic Theory of Causality. North-Holland Publishing
Co., Amsterdam, 1970.

[Wright, 1988] R.W. Wright. Causation, responsibility, risk, probability, naked statistics,
and proof: Prunning the bramble bush by clarifying the concepts. Jlowa Law Review,
73:1001-1077, 1988.

20



Appendix - I (The rescuable desert traveler)

This appendix analyzes a stochastic version of the desert traveler story (Example 4), as-
suming that travelers, in general, have non-zero probability of surviving infliction such as
poisoning and dehydration. (e.g., by unexpected rescue).
To incorporate such considerations, we introduce another state variable u,. as an argument
of fy,
Y= fY(da <, u'r‘)

and let u, attain three possible values

0, no rescue appears
u, = ¢ 1, rescue appears in time to save T from possible dehydration but not from poison
2, rescue appears very early, in time to save T from either poison or dehydration.

Let the probabilities associated with these three scenarios be pg,p:, and py, respectively.
Assuming we have no forensic analysis, our only evidence is 7’s death, namely, e : ¥ = y.
This evidence categorically rules out u, = 2, and modifies respectively, pg, and p; into pi,

/) Po ! P1
Po Po+P1 and 4 po+p1”

We now need to examine four possible states, as shown in the table below:

State (u,u, =0), (u,u,=1) (v, u,=0), (v, ,u,=1)
Prior prob P(u)p; P(u)p} P(u)pj P(u')p}
State of Y 1 0 1 1
Posterior Prob | kP (u)pj 0 kP(u")pj kP(u'")p}
Cause of y x x P P

Accordingly, we have
P(cause(x,yly)) = kP (u)p

P(cause(p,yly)) = kP (u')(po +p)) = kP(u)

Thus, the ratio of P(cause(x,y|y))/P(cause(p,y|y)) becomes I;(zgf’){’ which is only a fraction

of pj lower than the previous ratio, before considering probabilities of survival. The reason
for the change is that 7”s death provides additional evidence in favor of ', at the expense
of u. However, due to the small probability of rescue, py is close to one, and the correction
seems negligible small.
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