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Abstract

This paper studies the causal interpretation of counterfactual sentences using a mod-
ifiable structural equation model. It is shown that two properties of counterfactuals,
namely, composition and effectiveness, are sound and complete relative to this inter-
pretation, when recursive (i.e., feedback-less) models are considered. Composition and
effectiveness also hold in Lewis’s closest-world semantics, which implies that for recur-
sive models the causal interpretation imposes no restrictions beyond those embodied in
Lewis’s framework. A third property, called reversibility, holds in nonrecursive causal
models but not in Lewis’s closest-world semantics, which implies that Lewis’s axioms
do not capture some properties of systems with feedback. Causal inferences based
on counterfactual analysis are exemplified and compared to those based on graphical
models.

Keywords: Causality, counterfactuals, interventions, structural equations, policy analy-
sis, graphical models.

1 Introduction

How do scientists predict the outcome of one experiment from the results of other experiments
run under totally different conditions? Such predictions require us to envision what the world
would be like under various hypothetical changes, namely to invoke counterfactual inference.
Though basic to scientific thought, counterfactual inference cannot easily be formalized in
the standard languages of logic, algebraic equations, or probability. The formalization of
counterfactual inference requires a language within which changes occurring in the world
are distinguished from changes of one’s beliefs about the world, and such distinction is not
supported by standard algebras, including the algebra of equations, Boolean algebra, and
probability calculus.

Lewis (1973b) has proposed a logic of counterfactuals based on the notion of closest
worlds: A sentence of the form “If A were the case, then B would be the case” is true



in a world w just in case B is true in the closest world to w in which A is true. This
framework presupposes the existence of a measure of distance between worlds that can be
used to identify the closest A-world to w, for any world w and any sentence A in the
language of discourse. Lewis is careful to keep his formalism as general as possible, and, save
for the obvious requirement that every world be closest to itself, he does not impose any
specific structure on the distance measure. However, the fact that people communicate with
counterfactuals suggests that they share a distance measure that is encoded parsimoniously
in the mind. What mental representation is used for encoding those inter-world distances?

Lewis himself provides a clue, the closest worlds that he envisions are causal in nature.
For instance, when Lewis considers as an example a hypothetical world in which kangaroos
have no tails, he argues that not just the state of the tail, but also the tracks that the animal
made, the animal’s balance, and a variety of other factors would also be different. Thus,
Lewis appeals to our common knowledge of cause and effect in laying out which factors are
expected to change in the hypothetical world, and which factors are expected to be unaltered.

If our assessment of inter-world distances comes from causal knowledge, the question
arises whether that knowledge does not impose its own structure on distances, a structure
that is not captured in Lewis’s logic. Phrased differently, by agreeing to measure closest
worlds on the basis of causal relations, do we restrict the set of counterfactual statements we
regard as valid? The question is not merely theoretical. For example, Gibbard and Harper
(1981) characterize decision-making conditionals, namely, sentences of the form “If we do A,
then B,” using Lewis’s general framework, while Pearl (1994, 1995) constructs a calculus of
action based directly on causal semantics, and whether the two formalisms are identical is
uncertain.’

Another application occurs in statistics. Rubin (1974), Holland (1986), and Robins (1986)
all used counterfactual variables to analyze the effectiveness of treatments in clinical studies.
Starting with the primitive notion of potential response Y (z,u) (read: the value that the
response variable Y would have attained in patient u had the treatment been z), which
is treated as a random variable, they ask under what conditions one can infer the average
treatment effect F,[Y (z,u)] from clinical data (Typical conditions require that the treatment
assignment be randomized or semi-randomized.) Although the logic underlying this type of
analysis has not been stated formally, statisticians use the closest-world framework as a
guiding paradigm and have adopted certain rules of inference that plausibly follow from this
framework. For example, among their most commonly employed rules is the implication
(called consistency [Robins, 1987]):

X=2=Y(z,u) =Y (u) (1)

which states that the potential response of patient u to a hypothetical treatment z, Y (z,u),
must coincide with the patient’s observed response, Y (u), whenever the actual treatment X
happened to be z. This rule, as we shall see, is a special case of an axiom of counterfactuals
called composition (see Eq. (17)), an axiom that follows from the requirement that the actual
world be closer to itself than any world that differs from the actual world.

'Winslett (1988) and Ginsberg and Smith (1987) have also advanced theories of actions based on closest-
world semantics, while Katsuno and Mendelzon (1991) have used this semantics to characterize belief up-
dating. None of these assumes a special structure for the distance measure, to reflect causal considerations.



The question remains, however, whether inference rules beyond Lewis’s axioms are nec-
essary for statisticians to fully and accurately capture the causal structure of the clinical
test environment and the causal character of the counterfactuals considered in such an en-
vironment. This paper analyzes this question for both recursive and nonrecursive causal
models, namely, models of systems without and with feedback. We first show that Lewis’s
axioms, together with the assumption of recursiveness, are sound and complete with respect
to the causal interpretation of counterfactual, that is, causality per se imposes no restrictions
beyond those embodied in the closest-world framework together with recursiveness. When
we consider nonrecursive systems, however, Lewis’s axioms are not complete. We show that
a property called reversibility holds in nonrecursive causal models yet it does not follow from
Lewis’s axioms. Thus, Lewis’s framework misses some properties of causality in the general
case of feedback systems in equilibrium.

Section 2 gives a brief overview of causal models employing modifiable structural equa-
tions and illustrates their use in the interpretation of causal and counterfactual utterances.
Section 3 defines the properties of composition, effectiveness, and reversibility, and shows
that composition and effectiveness are sound and complete for recursive causal models, where
reversibility holds trivially. Section 4 compares causal models to Lewis’s framework, and finds
that composition and effectiveness are sound in that formalism as well. Section 5 illustrates
the derivation of probabilistic answers to counterfactual queries using only composition and
effectiveness as rules of inferences. Section 6 concludes with remarks on the role of counter-
factual calculus vis a vis structural equations and graphs.

2 Causal Models

2.1 Definitions

A causal model is a mathematical object that provides an interpretation (and effective com-
putation) of every causal query about the domain. Following [Pearl, 1995a], we adopt here
a construct named modifiable structural equations, that generalizes most causal models used
in engineering, biology, and economics.

Definition 1 (causal model) A causal model is a triple
M= <UV,F>
where
(1) U is a set of variables, called exogenous, that are determined by factors outside the model.

(ii) V is a set {V1,Va,...,V,} of variables, called endogenous, that are determined by vari-
ables in the model.

(iii) F is a set of functions {f1, f2, - -, fu} where each f; is a mapping from U U (V \ V) to
Vi such that F defines a mapping from U to V. (i.e., F' has a unique solution for each
state u in the domain of U). Symbolically, F' can be represented by writing

v; = filpas,u) i=1,...,n
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where pa; is any realization of the (unique) set of variables PA; in V/V; (connoting
parents) that renders f; nontrivial.

Every causal model M can be associated with a directed graph, G(M), in which each node
corresponds to a variable in V' and the directed edges point from members of PA; toward
Vi. We call such a graph, the causal graph associated with M. This graph merely identifies
the endogenous variables PA; that have direct influence on each V; but it does not specify
the functional form of f;.

Definition 2 (submodel) Let M be a causal model, X be a set of variables in V, and x be
a particular realization of X. A submodel M, of M is the causal model

M,= <UV,F, >

where

Fo={fi: Vi g X} U{X =z} (2)

In words, F) is formed by deleting from F' all functions f; corresponding to members of X
and replacing them with the set of functions X = z. Implicit in the definition of submodels
is the assumption that F, possesses a unique solution for every u.

Submodels are useful for representing the effect of local actions and changes. If we
interpret each function f; in F' as an independent physical mechanism and define the action
do(X = z) as the minimal change in M required to make X = x hold true under any u, then
M, represents the model that results from such a minimal change, since it differs from M by
only those mechanisms that directly determine the variables in X. The transformation from
M to M, modifies the algebraic content of F', which is the reason for choosing the name
modifiable structural equations.

Definition 3 (effect of action) Let M be a causal model, X be a set of variables in V , and
x be a particular realization of X. The effect of action do(X = z) on M is given by the
submodel M,.?

Definition 4 (potential response) Let Y be a variable in' V', and let X be a subset of V.. The
potential response of Y to action do(X = x), denoted Y (u), is the solution for Y of the set
of equations Fy.

We will confine our attention to actions in the form of do(X = z). Conditional actions,
of the form “do(X = z) if Z = 2” can be formalized using the replacement of equations,
rather than their deletion [Pearl, 1994]. We will not consider disjunctive actions, of the form
“do(X =z or X =1')”, as these complicate the probabilistic treatment of counterfactuals.

2Readers that are disturbed by the impracticality of some local actions (e.g., creating a world where kanga-
roos have no tails) are invited to replace the word “action” with the word “modification” (see [Leamer, 1985]).
The advantages of using hypothetical external interventions to convey the notion of “local change” are em-
phasized in [Pearl, 1995a, p. 706].



Definition 5 (counterfactual) Let Y be a variable in V, and let X a subset of V. The
counterfactual sentence “The value that' Y would have obtained, had X been x” is interpreted
as denoting the potential response Yy (u).?

Two special cases are worth noting. First, if Y = V; and X = V' \Y, then Y (u) =
fi(pa;,u) where pa; is the projection of X = x on PA;. Thus, each function f; in M
may be given a counterfactual interpretation; it specifies the potential response of V; to a
hypothetical manipulation of all other variables in V. Second, if Y is included in X and
X =12 =Y =y, then Y (u) = y. This means that the potential response of a manipulated
variable coincides with the values set by the manipulation.

The formulation above shares many features with that of Simon and Rescher (1966). Both
are based on an assembly of stable physical mechanisms, represented as a set of equations,
and both assume a one-to-one correspondence between equations and variables. Simon
and Rescher, however, do not treat counterfactual antecedents as actions and, therefore,
they encounter difficulties handling counterfactuals whose antecedents involve endogenous
variables. Our formulation overcomes these difficulties by explicitly representing actions and
counterfactuals in terms of equation-deletion operators® and, furthermore, our formulation
generalizes naturally to probabilistic systems, as is seen below.

Definition 6 (probabilistic causal model) A probabilistic causal model is a pair
< M, P(u) >
where M is a causal model and P(u) is a probability function defined over the domain of U.

P(u), together with the fact that each endogenous variable is a function of U, defines
a probability distribution over the endogenous variables. That is, for every set of variables

Y CV, we have
Ply)= > P (3)
{u | Y(u)=y}
The probability of counterfactual statements is defined in the same manner, through the
function Y, (u) induced by the submodel M,:

P(Yo=y)= > P (4)

{u | Ya(u)=y}

Likewise a causal model defines a joint distribution on all counterfactual statements, i.e.,
P(Y, =y, Z, = z) is defined for any sets of variables Y, X, Z, W, not necessarily disjoint. In
particular, P(Y; = y, X = 2') and P(Y, = y,Yy = y') are well defined for z # 2, and are
given by

P(Y,=yX=2)= Y P (5)

{ulYa(u)=y & X(u)=z'}

3The connection between counterfactuals and local actions is made in [Lewis, 1973a] and is further elab-
orated in [Balke and Pearl, 1994] and [Heckerman and Shachter, 1995].

4An explicit translation of interventions into “wiping out” equations from the model was first proposed
by Strotz and Wold (1960) and later used in Fisher (1970) and Sobel (1990).



and
P(Y, =y, Yy =) = ¥ P(u). (6)
{u | Ya(u)=y & Yy (u)=y'}

When z and z’ are incompatible, Y, and Y, cannot be measured simultaneously, and it
may seem meaningless to attribute probability to the joint statement “Y would be y if X =«
and Y would be y' if X = 2’.” Such concerns have been a source of objections to treating
counterfactuals as jointly distributed random variables [Dawid, 1997]. The definition of Y,
in terms of submodels diffuses such objections and further illustrates that joint probabilities
of counterfactuals can be encoded rather parsimoniously using P(u) and F.

2.2 Examples

Next we demonstrate the generality of the modifiable structural equation model using two
familiar applications: evidential reasoning and policy analysis. Additional applications in-
volving the formalization of causal relevance and the interpretation of causal utterances can
be found in [Galles and Pearl, 1997b].

2.2.1 Sprinkler Example

@ SLIPPERY

Figure 1: Causal graph illustrating causal relationships among five variables.

Figure 1 is a simple yet typical causal graph used in common sense reasoning. It describes
the causal relationships among the season of the year (X;), whether rain falls (X5) during
the season, whether the sprinkler is on (X3) during the season, whether the pavement is wet
(X4), and whether the pavement is slippery (X5). All variables in this graph except the root
variable X; take a value of either “True” or “False.” X; takes one of four values: “Spring,”
“Summer,” “Fall,” or “Winter.” Here, the absence of a direct link between, for example,
X; and X5, captures our understanding that the influence of the season on the slipperiness

6



of the pavement is mediated by other conditions (e.g., the wetness of the pavement). The
corresponding model consists of five functions, each representing an autonomous mechanism:

rT = U
To = f2 331,U2)

(
T3 = f3(w1,u3)
(

Ty = fu(x3,72,u4)

5 = f5(24,us) (7)
The disturbances Uy, . . ., Us are not shown explicitly in Figure 1 but are understood to govern
the uncertainties associated with the causal relationships. The causal graph coincides with
the Bayesian network [Pearl, 1988] associated with P(z1,...,x5) whenever the disturbances
are assumed to be independent, U; | U \ U;. When some disturbances are judged to

be dependent, it is customary to encode such dependencies by augmenting the graph with
double-headed arrows, as shown in Figure 3, Section 5.

A typical specification of the functions {fi,..., fs} and the disturbance terms is given
by the Boolean model below:

zo = [(X; = Winter) V (X, = Fall) V aby| A —ab),

xz3 = [(X; = Summer) V (X; = Spring) V abs] A —abj
zy = (z2V 3V aby) A —ab)
x5 = (z4V abs) A —ab (8)

where z; stands for X; = true, and ab; and ab} stand, respectively, for triggering and in-
hibiting abnormalities. For example, ab; stands for (unspecified) events that might cause
the pavement to get wet (z4) when the sprinkler is off (—x2) and it does not rain (—z3) (e.g.,
pouring a pail of water on the pavement), while —ab} stands for (unspecified) events that
will keep the pavement dry in spite of the rain (z3), the sprinkler (z5), and ab, (e.g., covering
the pavement with a plastic sheet).

To represent the action “turning the sprinkler ON,” or do(X3 = ON), we replace the
equation z3 = f3(x1,u3) in the model of Eq. (7) with the equation 3 = ON. The resulting
submodel, Mx,-on, contains all the information needed for computing the effect of the action
on the other variables. Thus, the operation do(X3; = ON) stands in marked contrast to that
of finding the sprinkler ON; the latter involves making the substitution without removing the
equation for X3, and therefore may potentially influence (the belief in) every variable in the
network. In contrast, the only variables affected by the action do(X3; = ON) are X, and X5,
that is, the descendants of the manipulated variable X3. This mirrors indeed the difference
between seeing and doing: after observing that the sprinkler is ON, we wish to infer that the
season is dry, that it probably did not rain, and so on; no such inferences should be drawn
in evaluating the effects of the contemplated action “turning the sprinkler ON.”

This distinction obtains a vivid symbolic representation in cases where the U;’s are as-
sumed independent, because the joint distribution of the endogenous variables then admits
the product decomposition:

P(z1, 29, 23, T4, T5) = P(11) P(22|21) P(73]|21) P(24]72, 73) P(25|74) 9)
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Similarly, the joint distribution associated with the submodel M, representing the action
do(X3; = ON) is obtained from the product above by deleting the factor P(z3|z;) and
substituting X3 = ON:

P(z1, 9,24, 25|do(X3 = ON)) = P(x1) P(xs|z1) P(24|22, X3 = ON) P(x5|24) (10)

The difference between the action do(X3 = ON) and the observation X3 = ON is thus
seen from the corresponding distributions. The former is represented by Eq. (10), while the
latter by conditioning Eq. (9) on the observation; i.e.,

P(.??l) P(.732|.T1) P(.Tg = ON|$1)P($4|$2,X3 = ON)P(.Z‘5|.T4)
P(X3 = ON)

P($1,$2,I4,{L‘5|X3 = ON) —

Note that the conditional probabilities on the r.h.s. of Eq. (10) are the same as those
in Eq. (9), and can therefore be estimated from pre-action observations. However, the pre-
action distribution P is not sufficient for evaluating conditional counterfactuals whenever
the conditions given are affected by the counterfactual antecedent. For example, the prob-
ability that “the pavement would continue to be slippery once we turn the sprinkler off,”
tacitly presuming that currently the pavement is slippery, cannot be evaluated from the con-
ditional probabilities P(x;|pa;) alone; the functional forms of the f;’s (Eq. 7) are necessary
for evaluating such queries [Balke and Pearl 1994; Pearl 1996].

2.2.2 Policy Analysis in Linear Econometric Models

Causal models are often used to predict the behavior of systems in dynamic equilibrium. In
the economic literature, for example, we find the system of equations

q = bpt+diit+u (11)
p = bg+dow+uy (12)

where ¢ is the quantity of household demand for a product A, p is the unit price of product
A, i is household income, w is the wage rate for producing product A, and u; and us
represent error terms, namely, unmodeled factors that affect quantity and price, respectively
[Goldberger, 1992].

This system of equations constitutes a causal model (Definition 1) if we define
V ={Q, P}, U={U,,U,, I, W} and assume that each equation represents an autonomous
process in the sense of Definition 3. The causal graph of this model is shown in Figure 2.
It is normally assumed that I and W are known, while U; and U, are unobservable and
independent in I and W. Since the error terms U; and U, are unobserved, the model must
be augmented with the distribution of these errors, which is usually taken to be a Gaussian
distribution with the covariance matrix X;; = cov(u;, u;).

We can use this model to answer queries such as:

1. Find the expected value of the demand (@) if the price is controlled at P = py.

2. Find the expected value of the demand (@) if the price is reported to be P = py.
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Figure 2: Causal graph illustrating the relationship between supply and demand

3. Given that the current price is P = py, find the expected value of the demand (@) had
the price been controlled at P = p;.

To find the answer to the first query, we replace Eq. (12) with p = py, leaving

g = bip+dii+u (13)
p = po (14)

The demand is then g = bypy + d1% + uq, and the expected value of () can be obtained from
1 and the expectation of U;, giving

E[Q[do(P = po)] = E[Q] + bi(p — E[P]) + d1(i — E[I]).

The answer to the second query is given by conditioning Eq. (11) on the current obser-
vation {P = po, I = i,W = w} and taking the expectation,

E[Q|po, i, w] = bipo + dii + E[U1|po, i, w]. (15)

The computation of E[U;|py, i, w] is a standard procedure once %;; is given [Meditch, 1969].
Note that, although U; was assumed independent of I and W, this independence no longer
holds once P = pg is observed. Note also that Eqs. (11) and (12) both participate in
the solution and that the observed value p, will affect the expected demand @ (through
E[Ui|po, i, w]) even when b; = 0, which is not the case in query 1.

The third query requires the conditional expectation of the counterfactual quantity ¢p—p, ,
given the current observations {P = py, I =i, W = w}, namely,

E[QZJ:IH ‘p()a Z'a w] = blpl + dit + E[Ul ‘po, 7;, w] (16)

The expected value E[U;|po, i, w] is the same in the solutions to the second and third queries;
the latter differs only in the term b;p;. A general method for solving such counterfactual
queries is described in [Balke and Pearl, 1995].5

5Readers concerned with teaching of policy analysis would be interested to note that the second author has
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3 Composition, Effectiveness, and Reversibility

We now present three properties of counterfactuals — composition, effectiveness, and re-
versibility — which hold in all causal models.

Property 1 (composition) For any two singleton variables Y and W, and any set of vari-
ables X in a causal model, we have

We(u) = w=Yy,(u) = Y;(u) (17)

Composition states that if we force a variable (W) to a value that it would have had without
our intervention, then the intervention will have no effect on other variables in the system.

Since composition allows for the removal of a subscript (i.e., reducing Y., (u) to Y, (u)),
we need an interpretation for a variable with an empty set of subscripts which, naturally, we
identify with the variable under no interventions:

Definition 7 (null action) Yy(u) =Y (u).
Corollary 1 (Consistency) For any variables Y and X in a causal model, we have
X(u)=2=Y(u) = Yy(u) (18)

Proof:

Eq. 18 follows directly from Composition. Substituting X for W and @ for X in Eq. (17),

we obtain Xg(u) = = Yp(u) = Yz(u). Null Action allows us to drop the ), leaving

X(u) =2=Y(u) = Yy(u). O
The implication in Eq. (18) was called Consistency by Robins (1987).5

Property 2 (effectiveness) For all variables X and W, X, (u) = .

Effectiveness specifies the effect of an intervention on the manipulated variable itself, namely,
that if we force a variable X to have the value =, then X will indeed take on the value .

Property 3 (reversibility) For any two variables Y and W, and any set of variables X,

(Yauw(u) = y) & (Wey(u) = w) = Ya(u) =y (19)

presented this example to well over a hundred econometrics students and faculty across the US. Respondents
had no problem answering question 2, one person was able to solve question 1, and none managed to answer
question 3. Pearl (1997a) suggests an explanation.

6Consistency and composition are informally used in economics [Manski, 1990] and statistics within the
potential-response framework [Rubin, 1974]. To the best of our knowledge, Robins (1987) was the first to
state consistency formally and to use it to derive other properties of counterfactuals. Composition was
brought to our attention by Jamie Robins (personal communication, February 1995), a weak version of it is
mentioned explicitly in [Holland, 1986, p. 968].
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In recursive systems, reversibility follows directly from composition. This can easily be seen
by noting that in a recursive system, either Yy, (u) = Yz(u) or Wy,(u) = Wy(u). Thus,
reversibility reduces to (Y, (u) = y) & (Wi(u) = w) = Y, (u) = y, which is another form
of composition, or to (Y;(u) =y) & (Wyy(u) = w) = Y, (u) =y, which is trivially true. In
nonrecursive systems, reversibility is a property of causal loops. If forcing X to a value x
results in a value y for Y, and forcing Y to the value y results in X achieving the value z,
then X and Y will have the values = and y, respectively, without any intervention.

In nonrecursive systems, the properties of composition, effectiveness, and reversibility
are independent — none is a consequence of the other two. This is shown in the Appendix
by constructing a truth table for counterfactual statements such that when any two prop-
erties hold, the third does not. In recursive systems, reversibility holds trivially, and the
independence of composition and effectiveness is easily shown.

3.1 Soundness of Composition, Effectiveness, and Reversibility

Theorem 1 Composition holds in all causal models.

Proof:

Since Y, (u) has a unique solution, forming M, and substituting out all other variables would
yield a unique solution for Y, regardless of the order of substitution. So we will form M,
and examine the structural equation for Y in M,, Y, = f, (z, 2z, w,u), where Z stands for
the rest of the parent set of Y. To solve for Z, we substitute out all variables except XY,
and W. In other words, we substitute out all variables in M,, without substituting into X,
W, and Y, and express Z as a function of z,w, and u. We then plug this solution into f,
to get Y, = f.(x,w, Z(x,w,u),u), which we can write as Y; = f(z,w,u). At this point,
we can solve for W by substituting out all variables in Mx other than X, which leaves
Y, = f(z, W(u,z),u). We can now see that if w = Wy (u), then Y;(u) = Ypu(u). O

This proof is still valid in cases where X = ().

Theorem 2 Effectiveness holds in all causal models.

Proof:
This theorem follows from Definition 5, where Y, (u) is interpreted as the unique solution
for Y of a set of equations under X = z. O

Theorem 3 Rewversibility holds in all causal models.

Proof:

Reversibility follows from the assumption that the solution for V' in every submodel is unique.
Since Y, (u) has a unique solution, forming M, and substituting out all other variables would
yield a unique solution for Y, regardless of the order of substitution. So, we will form M,
and examine the structural equation for Y in M,, which might in general be a function of
X, W, U, and additional variables: Y, = f, (z,w, z,u), where Z stands for parents of ¥ not
contained in X UW UU. We now solve for Z by substituting out all variables except X, Y,
and W. That is, we substitute out all variables in M, avoiding substitutions into X, W
and Y, and express Z as a function of z, w, and u. We then plug this solution into f, to get
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Y, = f, (z,w, Z(x,w,u),u), which we can write as Y, = f(z,w,u). We now consider what
would happen if we solved for Y in M,,,. Since we avoided substituting anything into W when
we solved for Y in M,, we will get the same result as before, namely, Y, = f(z,w, u). In the
same way, we can show that W, = g(z, y,u) and Wy, = g(x,y,u). So, solving for y = Y, (u),
w = W, (u) is the same as solving for y = f(z,w,u) and w = g(zx,y, u), which is the same as
solving for y = Yy (u), w = Wyy(u). Thus, any solution y to y = Yau,(u), w = Wy (u) would
also be a solution to y = Y, (u). O

Reversibility reflects memoryless behavior — the state of the system, V', tracks the state
of U, regardless of U’s history. A typical example of irreversibility is a system of two agents
who adhere to a ‘tit-for-tat’ strategy (e.g., the prisoners’ dilemma). Such a system has two
stable solutions, cooperation and defection, under the same external conditions U, and thus
it does not satisfy the reversibility condition; forcing either one of the agents to cooperate
results in the other agent’s cooperation (Y, (u) = y, Wy (u) = w), yet knowing this outcome
does not guarantee cooperation from the start (Y (u) = y, W(u) = w). Irreversibility, in
such systems, is a product of using a state description that is too coarse, one where all of
the factors that determine the ultimate state of the system are not included in U. In a
tit-for-tat system, the state description should include factors such as the previous actions
of the players, and reversibility is restored once the missing factors are included.

3.2 Completeness of Composition and Effectiveness

Definition 8 (causal ordering) A causal ordering X ... X, of a set of variables is an or-
dering such that for any two variables X = X; andY = Xy, i < k, we have X,,(u) = X,(u),
where 7 is any set of variables not including X orY.

Clearly, for every recursive model we can find an ordering that satisfies the condition of
Definition 8. In fact, every ordering consistent with the arrows of the causal graph G(M)
will satisfy this condition. A system in which the variables are indexed along a specific causal
ordering will be called a causally ordered system.

Theorem 4 Composition, together with effectiveness, are complete for causally ordered sys-
tems, relative to conjunctions of counterfactual statements.

A formal proof of completeness requires the explication of two properties, definiteness
and uniqueness,” which are implied by the definition of causal models (Definition 1).

Property 4 (definiteness) For any variable X and set of variables Y,
dr € X sit. X,(u) ==z (20)
Property 5 (uniqueness) For every variable X and set of variables Y,

Xy(u) =2 & Xy(u) =2' =z =2 (21)

"These two properties, definiteness and uniqueness, were kept implicit in the completeness proof originally
reported in [Galles and Pearl, 1997al; the benefit to explicating them formally was brought to our attention
by [Halpern, 1998].
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Definition 9 (statement) By a counterfactual statement, or statement for short, we denote
a sentence of the form Y (u) =y for a specific variable Y € V, a specific realization x of a
set of variables X C 'V, and a specific u in the domain of U.

Definition 10 (semantic entailment) Given a set S of counterfactual statements, let Mg
be the set of models of S, namely, the set {m1,...,m,} of all causal models such that all
statements in S hold for each m;. A counterfactual statement o is semantically entailed by
S, written S = o, if o holds in each m; € Mg.

Definition 11 (syntactic entailment) Given a set A of axioms, a set of counterfactual state-
ments S syntactically entails a counterfactual statement o, written S F4 o, if o can be
derived from S using repeated applications of axioms from A together with the rules of logic.

Denote by CO the set of n(n — 1)/2 statements X,,(u) = X,(u)VX,Y € V such that
X precedes Y in the causal ordering. Define A¢ to be the set {composition, effectiveness,
definiteness, uniqueness, CO}. We want to show that all statements that are semantically
entailed by S are also syntactically entailed by S, namely, that

SEoc = Sta,0

[Note that] the axiom of definiteness require the use of disjunction, which is not part of a
simple counterfactual statement as specified in Definition 9. Thus, [by limiting our target
sentences to conjunctions of counterfactual statements (Definition 9), the language relative
which we need to establish completeness is weaker than the one used for expressing axioms
Ac.]

To establish completeness, it is enough to show that every set of statements S that
is consistent with Ao has a model. To see that this condition is sufficient to prove the
completeness of Ag, assume that there is some set S and statement p : X,(u) = z such that
in every model consistent with S, p holds, and p is not derivable from S using Ac. Since p is
not derivable from S, there must be some other statement p' : X,(u) = 2',z # ', such that
SU{p'} is consistent with Ac. Since in every model consistent with S, X,(u) = z holds, no
model is consistent with S U {p'}. Thus, if A is not complete, then there must exist some
set S” that is consistent with Ac, and has no model. Looking at the contrapositive, if every
set of statements S that is consistent with Ac has a model, then A is complete.

We now show that for any set of statements S, if S is consistent under A¢ then S has
a model. We will use the concept of a maximally consistent set, which is a standard tech-
nique used to prove completeness in modal logic [Fagin et al., 1995]. Consider a maximally
consistent set S*. That is, a superset of S that is consistent with A¢ such that any superset
of S* is not consistent with A-. We will show that there is a causal model M which satisfies
every statement in S*, and thus satisfies every statement in 5.8

Proof (by induction): We prove that, for any maximally consistent set S*, there exists
a causal model M which satisfies every statement in S*, by induction on the number of
variables |V| in S*.

8We thank Joseph Halpern for calling our attention to this technique which simplifies appreciably the
completeness proof originally reported in [Galles and Pearl, 1997a]. Halpern (1997) further shows that com-
position and effectiveness are complete in recursive models for which the causal order is not specified and,
furthermore, the target language can be extended to disjunctions and negation of counterfactual statements.
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Base Case:

If |V| =1, then the statements X (u) in S* determine the function for X, and effectiveness
ensures that X, (u) =z for all z € X.

Inductive Case:

Consider the variables V' that are in S*. Let Y € V be the last element in the causal ordering.
Consider the set S™, which is S* with all statements of the form Y, (u) =y and X,,(u) = =
removed. By the inductive hypothesis, there is a model M’ such that every element of S’ is
satisfied.

We now extend M’ to M, such that every element in S* is satisfied in M. For each
variable X € M' and each value y of Y, fx(x1,..., 2k, y,u) = fxur(T1,...,25,u). We
define fy as follows: for each statement (Y,(u) = y) € S* such that [Z| = |V| — 1 and
Y & Z, fy(z,u) = y. Definiteness ensures that fy will be completely determined.

Since M’ satisfied all elements of S™, and given the causal ordering such that X,,(u) =
X, (u) for all X,,(u), X,(u) in S*, M satisfies all statements of the form form X,(u) in S*.

We now show that M satisfies every element of S* of the form Y,(u) = y. We show this
by induction on the size of |V| — |Z|.

Base Cases:

(i) Y € Z. By effectiveness, Y,(u) =y is in M.
(ii) |V|—|Z| = 1. By construction of fy, Y,(u) =y=Y =y isin M,.

Inductive Case:

V| —|Z| = k. Consider Y,,(u) = ¢/, where x = X,(u). Above, we proved that X,(u) is
satisfied in M, and by the inductive hypothesis, Y,,(u) = v’ is satisfied in M. Thus, by
composition, Y, (u) =y is satisfied in M and, also by composition, y = y'. Thus, Y,(u) =y
is satisfied in M. O

4 Comparison of Causal Models with Lewis’s Closest-
World Formalism

We now show that for recursive systems, composition and effectiveness are sound and com-
plete within Lewis’s closest-world framework [Lewis, 1973b]. We begin by providing a version
of Lewis’s logic for counterfactual sentences (from |[Lewis, 1981]).
Rules
(1) If A and A= B are theorems, so is B.
(2) If (B, &...)=C is a theorem, so is ((AO— By)...) = (A= C).
Axioms

1) All truth-functional tautologies.

9)  ADO- A
3)  (AO» B)& (BOo A) = (A0 () = (B O O).
4)  (AVB)O»A)V((AVB)O=B)V (AVB) 0= C) = (A0 ) & (B O C)).

ot

A0+ B— A— B.
A& B=— AUO— B.

D
N — —

AN TN N N N N
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The statement A O— B stands for “In all closest worlds where A holds, B holds as
well.” Lewis does not put any restrictions on the distance measured, except for the obvious
requirement that world w be no further from itself than any other world w' # w. In essence,
causal models define an obvious distance measure among worlds, d(w,w'), given by the
minimal number of local interventions needed for transforming w into w’. As such, all of
Lewis’s axioms are true for causal models and follow from effectiveness, composition, and
(for nonrecursive systems) reversibility.

To relate Lewis’s axioms to those of causal models, we must translate his syntax. We
will equate Lewis’s world with an instantiation of all the variables, including those in U,
in a causal model. Values of subsets of variables in causal models will stand for Lewis’s
propositions, (e.g., A and B in the statements above). Thus, in a causal model, the meaning
of the Lewis statement A O— B is “If we force a set of variables to have the values A, a

second set of variables will have the values B.” Let A stand for a set of values z4,...,z,
of the variables X1,...,X,, and let B stand for a set of values v, ..., %, of the variables
Yi,..., Y. Then

Yva...am (U’) =Y &

(22)
mel...wn (U) = Un &

Conversely, we need to translate causal statements such as Y (u) = y into Lewis’s no-
tation. Let A stand for the proposition X = z, and B stand for the proposition ¥ = y.
Then

Y,(uy=y=A0- B (23)

We can now examine each of Lewis’s axioms in turn.
(1) This axiom is trivially true.

(2) This axiom is the same as effectiveness: if we force a set of variables X to have the
value z, then the resulting value of X is . That is, X,(u) = z.

(3) This axiom is a weaker form of reversibility, which is relevant only for nonrecursive
causal models.

(4) Because actions in are restricted to conjunctions of literals, this axiom is irrelevant.
(5) This axiom follows directly from composition.

(6) This axiom follows directly from composition.

Likewise, composition and effectiveness follow from Lewis’s axioms. Composition is a
consequence of axiom (5) and rule (1) in Lewis’s formalism, while effectiveness is the same
as Lewis’s axiom (2).

In sum, for recursive models, the causal model framework does not add any restrictions
to counterfactual statements beyond those imposed by Lewis’s framework; the very general
system of closest worlds is sufficient for recursive systems. When we consider nonrecursive
systems, however, we see that reversibility is not enforced by Lewis’s framework. Lewis’s
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axiom (3) is similar to, but not as strong as reversibility: that is, ¥ = y may hold in all
closest w-worlds, W = w may hold in all closest y-worlds, and Y = y still may not hold in the
actual world. Nonetheless, we can safely conclude that in adopting the causal interpretation
of counterfactuals, together with the representational and algorithmic machinery of modifi-
able structural equation models, we are not introducing any restrictions on the structure of
counterfactual statements in recursive systems.

5 Applying Counterfactual Derivation: Example

Consider the century-old debate over the effect of smoking on the incidence of lung cancer.
According to many, the tobacco industry has managed to block anti-smoking legislation
by arguing that the observed correlation between smoking (X) and lung cancer (Y) could
be explained by some sort of carcinogenic genotype (U;) that involves inborn craving for
nicotine.® However, according to the Surgeon General’s report of 1964, there is a causal link
between smoking and lung cancer that is mediated by the accumulation of tar (Z) deposited
in a person’s lungs. The two claims are combined in the graph of Figure 3, which represents
causal models having the following structure:

V = {X (Smoking), Y (Lung Cancer), Z (Tar in Lungs)}

U = {U;, U}, U || Us

Tr= fl(u1)
z = fo(x,us)
y= f3(zau1)

The graphical model embodies several assumptions. The missing link between X and
Y represents the assumption that the effect of smoking cigarettes (X) on the production of
lung cancer (V') is entirely mediated through tar deposits in the lungs. To justify the missing
link between U; and U,, we must assume that even if a genotype (U;) is aggravating the
production of lung cancer, it nevertheless has no effect on the amount of tar in the lungs
except indirectly, through cigarette smoking.

To demonstrate how counterfactual analysis can help assess the degree to which cigarette
smoking increases (or decreases) lung cancer risk, imagine a study in which the three vari-
ables, X, Y, and Z, were measured simultaneously on a large, randomly selected sample from
the population. From such data, we wish to assess the risk of lung cancer (for a randomly
chosen person in the population) under two hypothetical policies: smoking (X = 1) and
refraining from smoking (X = 0). In other words, we wish to derive an expression for the
probability of Y = y under the action do(X = z), P(Y = y|do(z)) = P(Y, = y), based on
the joint distribution P(z,y, z) and the assumptions embodied in the graphical model.

In [Pearl, 1995a] this problem was solved by a graphical method, using a set of ax-
ioms which, when certain conditions hold in the graph, transform expressions of the form
P(y|z,do(x)) into other expressions of this type, so as to eliminate the do(-) operator. Here
we show how the counterfactual expression P(Y; = y) can be reduced to ordinary proba-
bilistic expression (involving no counterfactuals) by purely symbolic machinery, using only
probability calculus and two rules of inference: effectiveness and composition. To this end,

9For an excellent historical account of this debate, see [Spirtes et al., 1993, pp. 291-302].
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we first need to translate the assumptions embodied in the graphical model into the lan-
guage of counterfactuals. In [Pearl, 1995a, p. 704] it is shown that the translation can be
accomplished systematically, using two simple rules:

Rule 1 FEzclusion restrictions. For every variable Y having parents P Ay, and for every set of
variables Z disjoint of P Ay, we have

Yoa, (1) = Ypa, 2 (u) (24)

Rule 2 Independence restrictions. If Z1, ..., Zy is any set of nodes in V' not connected to Y
via a path containing only U variables, we have

}/;)ay || {leazl IR Zk;uazlc } (25)

Rule 1 reflects the insensitivity of Y to any manipulation, once its direct causes PAy are
held constant; it follows from the identity v; = f;(pa;, u) in Definition 1. Rule 2 interprets
independencies among U variables as independencies between the counterfactuals of the
corresponding V' variables, with their parents held fixed. Indeed, the statistics of Y, is
governed by the equation Y = fy(pay,uy), therefore, once we hold PAy fixed the residual
variations of Y are governed solely by the variations in Uy.

X 4 Y

Smoking  Tarin Cancer
Lungs

Figure 3: Causal graph illustrating the effect of smoking on lung cancer.

Applying these two rules, we see that the causal graph encodes the following assumptions:

Zy(u) = Zy(u) (26)
Xy(u) = Xy(u) =X,(u) = X(u) (27)
Vi(u) = Yu(u) (28)

Zy I {Y., X} (29)

Eqgs. (26-28) follow from the exclusion restrictions of Eq. (24), using:
PAX = {@},PAY = {Z} and PAZ = {X}
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Eq. (26), for instance, represents the absence of a causal link from Y to Z, while Eq. (27)
represents the absence of a causal link from Z or Y to X. In contrast, Eq. (29) follows from
the independence restriction of Eq. (25), since the lack of a connection between (i.e., the
independence of) U; and U, rules out any path between Z and {X, Y} that contains only U
variables.

We now use these assumptions, and the properties of composition and effectiveness, to
compute various tasks:

Task 1 Compute P(Z, = z), i.e., the causal effect of smoking on tar.

P(Z,=2) = P(Z,=zz) from Eq. (29)
= P(Z=z|z) by composition (30)
= P(z[z)

Task 2 Compute P(Y, = y), i.e., the causal effect of tar on cancer.

P(Y,=y) = > P(Y.=ylz)P(z) (31)

and since Eq. (29) implies Y, || Z;|X, we can write

PY,=ylz) = P ,=ylz,Z,=2) from Eq. (29)
= P(Y,=y|z,2) by composition (32)
= P(ylz, 2) by composition

Substituting Eq. (32) in Eq. (31) gives

P(Y,=y) =) P(ylz,2)P(z) (33)

T

Task 3 Compute P(Y, = y), i.e., the causal effect of smoking on cancer.

For any variable Z,
Ye(u) =Y, (u), if Z,(u)=2 by composition
Since Y, (u) =Y, (u) (from Eq. (28)),

Yo(u) =Y, (u) =Y, (u) where z, = Z,(u) (34)

Thus,

PY,=y) = P, =y from Eq. (34)
Y. P(Y., =y|Zy = 2)P(Zy = 2)
= Y, P(Y,=y|Z,=2)P(Z,=2) by composition
= Y. P(Y,=y)P(Z, = 2) from Eq. (29)
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P(Y, =y) and P(Z, = z) were computed in Eq. (30) and Eq. (33). Substituting gives
us
P(Y,=y)=>_ P(z|lz)>_ P(y|z,2")P(z') (36)

The right hand side of Eq. (36) can be computed from P(xz,y,z) and coincides with
the “front-door” formula derived in [Pearl, 1995a].

In general, a counterfactual quantity such as P(Y, = y) that can be reduced to expressions
involving probabilities of observed variables is called identifiable [Fisher, 1966; Pearl, 1997b].
Our completeness result implies that any identifiable counterfactual quantity can be reduced
to the correct expression by repeated application of composition and effectiveness.

6 Conclusions and Discussion

The completeness of composition and effectiveness in recursive causal models has two major
implications. First, it shows that in systems with no feedback, the causal interpretation
of counterfactuals adds no restrictions beyond those of Lewis’s closest-world interpretation.
Thus, the unstructured closest-worlds framework embodies all of the causal restrictions on
counterfactuals that are not embodied already by the requirement of recursiveness. In non-
recursive systems, however, there is a difference between the two formalisms; the causal
reading of counterfactuals imposes the additional restriction of reversibility.

Second, the completeness result assures us that a deduction of counterfactual relation-
ships in recursive models may safely be attempted with two axioms only, that is, all truths
derivable by structural equation semantics are also derivable using effectiveness and compo-
sition. This establishes, in essence, the formal equivalence of structural equation modeling,
popular in economics and the social sciences [Goldberger, 1992], and the potential-response
framework, as used in statistics [Rubin, 1974; Holland, 1986; Robins, 1986].!° In nonrecur-
sive models, however, this is not necessarily the case. Attempts to evaluate counterfactual
statements using only composition and effectiveness may fail to certify some statements that
are true in all causal models but whose validity can only be recognized through the use of
reversibility.!!

The structural-counterfactual equivalence established in this paper does not in any way
diminish the usefulness of structural equations and graphs in causal analysis. Graphs and
equations are indispensable tools for expressing the assumptions that make up a causal
model. Such assumptions must rest on prior experiential knowledge, which, as suggested
by ample evidence, is encoded in the human mind in terms of interconnected assemblies of
autonomous mechanisms from which we draw inferences about actions, changes, and their
ramifications. These mechanisms are thus the building blocks from which judgments about

10This equivalence was anticipated in Holland (1988), Pratt and Schlaiffer (1988), Pearl (1995), and Robins
(1995). Note, though, that the equation-deletion part of our model (Definition 2) is not made explicit in the
standard literature on structural equation modeling.

1 Joseph Halpern (1997) has recently shown that composition, reversibility, effectiveness, and definiteness
are complete in recursive as well as nonrecursive models, as long as the uniqueness assumption holds. He
also characterized systems in which uniqueness does not hold, using axioms of more elaborate syntax.

19



counterfactuals are derived. Structural equations {f;} and their graphical abstraction G(M)
provide faithful mapping for these mechanisms and constitute, therefore, the most natural
language for articulating or verifying causal assumptions. Thus, graphical specification of
assumptions, followed by translation into counterfactual notation and then by symbolic
derivation, as exemplified in Section 5, should yield a more effective method of analysis than
a method that insists on expressing assumptions directly as counterfactuals. Indeed, an
assumption such as the one expressed in Eq. (29) is not easily comprehended by even skilled
investigators. In contrast, its structural image U; || U, evokes an immediate process-based
interpretation. e

Graphs may also assist symbolic proof procedures [Galles and Pearl, 1997b| by display-
ing independence relations (among counterfactuals as well as measured variables) that are
not easily derived symbolically [Balke and Pearl, 1994]. For example, it is not straightfor-
ward to show that the assumptions of Egs. (26)-(29) imply the conditional independence
(Y, || Z:|{Z,X}) but do not imply the conditional independence (Y, || Z.|Z). Such
implications can be easily tested in the graph of Figure 3 or in the dual-graph method of
[Balke and Pearl, 1994].

But perhaps the most compelling reason for molding causal assumptions in the language
of graph is that such assumptions are needed before the data are gathered, at a stage when
the model’s parameters are still “free,” that is, still to be determined from the data. The
usual temptation is to mold those assumptions in the language of statistical independence,
which carries an aura of testability, hence of scientific legitimacy. However, conditions of
statistical independence, regardless of whether they relate to V' variables, U variables, or
counterfactuals, are generally sensitive to the values of the model’s parameters, which are not
available at the modeling phase. The substantive knowledge available at the modeling phase
cannot support such assumptions unless they are stable, that is, insensitive to the values
of the parameters involved [Pearl, 1998b]. The implications of graphical models, which rest
solely on the interconnections among mechanisms, satisfy this stability requirement and can
therefore be ascertained from generic substantive knowledge, before data are collected. For
example, the assertion (X | Y|Z,U;), which is implied by the graph of Figure 3, remains
valid for any substitution of functions in {f;} and for any assignment of prior probabilities
to U; and Us.

These considerations apply not only to the formulation of causal assumptions but also
to the language in which causal concepts are defined and communicated. Many concepts in
the social and medical sciences are defined in terms of relationships among unobserved U
variables, also called errors or disturbance terms. For example, key econometric notions such
as erogeneity and instrumental variables have traditionally been defined in terms of absence
of correlation between certain observed variables and certain error terms in the equations that
govern response variables. Naturally, such definitions attract criticism from strict empiricists,
who regard unobservables as metaphysical or definitional [Richard, 1980; Engle et al., 1983;
Holland, 1988], and from counterfactual analysts, who regard the use of equations as an
unwarranted commitment to a particular functional form [Angrist et al., 1996].

The analyses of this paper shed new light on this controversy by explicating the op-
erational meaning of the “so-called disturbance terms” [Richard, 1980] and by clarifying
the relationships among error-based, counterfactual, and graphical definitions. These three
modes of description form a simple hierarchy. Since graph separation implies independence,
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but independence does not imply graph separation [Pearl, 1988], definitions based on graph
separation should imply those based on error-term independence. Likewise, since for any
two variables X and Y the independence relation Ux || Uy implies the counterfactual in-
dependence X,,, || Ypa, (but not the other way around), it follows that definitions based
on error independence should imply those based on counterfactual independence. Overall,
we have the hierarchy:

Graphical criteria = Error-based criteria = Counterfactual criteria

The econometric notion of exogeneity may serve to illustrate this hierarchy. The prag-
matic definition of exogeneity is best formulated in counterfactual or interventional terms,
and reads:

Counterfactual exogeneity: X is exogenous relative to Y iff the effect of X on Y is
identical to the conditional probability of Y given X, namely, if

P(Y, =y) = P(y|z) (37)

or, equivalently,
P(Y = yldo(z)) = P(yl|z) (38)
which, in turns, is equivalent to the independence condition Y, | X, named “ignorability”

in [Rosenbaum and Rubin, 1983].

This definition is pragmatic, in that it highlights the reasons economists should be con-
cerned with exogeneity by explicating the policy-analytic benefits of discovering that a vari-
able is exogenous. However, this definition fails to guide an investigator into verifying, from
substantive knowledge of the domain, whether the condition above holds in any given sys-
tem, especially when many equations are involved. To facilitate such judgments, economists
[e.g., Koopmans, 1950] have adopted the error-based definition:

Error-based exogeneity: X is exogenous in M relative to Y if X is independent of all
error terms that have an influence on Y that is not mediated by X .2

This definition is more transparent to human judgment because the reference to error
terms tends to focus attention on specific factors, potentially affecting Y, with which a
scientist is familiar. Still, to judge whether such factors are statistically independent is a
difficult mental task unless the independencies considered are dictated by topological con-
siderations, which assures their stability. Indeed, the most popular conception of exogeneity
is encapsulated in the notion of “common cause,” formally:

Graphical exogeneity: X is exogenous relative to Y if X and Y have no common ancestor
in G(M)."®

It is not hard to show that the graphical condition implies the error-based condition,
which, in turns, implies the counterfactual (or pragmatic) condition of Eq. (38). The latter
implication immediately rules out any contention that the error terms are metaphysical or

2Tndependence relative to all errors is sometimes required in the literature (e.g., Dhrymes, 1970, p. 169),
but this is obviously too strong.

13The augmented graph G(M) should be used in this test, where a latent common parent is added for every
pair of dependent errors. This definition paraphrases the “back-door criterion” [Pearl, 1995a] in the special
case of no covariates. The incorporation of observed covariates is straightforward in all three definitions.
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definitional, as suggested by Hendry (1995, p. 62) and Holland (1988, p. 460). The equality in
Eq. (38), and hence its error-independence implicant, is clearly within the realm of empirical
verification, albeit requiring controlled experiments. From a narrow empiricist viewpoint,
the meaning of an error term uy is defined through the equation Y,,, = fy(pay,uy), which
states that the variable Uy is merely a convenient device for encoding variations in the
functional mapping from PAy to Y. The statistics of these variations are observable when
pay is held fixed. From a broader perspective, however, the error terms can be viewed as
(summaries of) a highly structured background knowledge, whose empirical basis may well
lie outside the boundaries of specific study at hand [Pearl, 1998a).

A three-level hierarchy similarly characterizes the notion of instrumental variables [Bow-
den and Turkington, 1984; Pearl, 1995b]. The traditional definition qualifies a variable Z
as instrument (relative the pair (X,Y)) if (i) Z is independent of all terms in the equation
for Y (excluding X and variables affected by X) and (i) Z is not independent of X. The
counterfactual definition replaces the former condition with (i) Z is independent of Y,, while
the corresponding graphical condition reads (i) every path connecting Z and Y must pass
through X, unless it contains arrows pointing head-to-head.

Note that, in both examples, the graphical definitions are insensitive to the value of
the model’s parameters and can therefore be ascertained using our general, qualitative un-
derstanding of how mechanisms and processes are tied together. It is for this reason that
graphical vocabulary guides and expresses so well our intuition about exogeneity, instru-
ments, confounding, and even (I speculate) more technical notions such as randomness and
statistical independence.
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Appendix A

Independence of Composition, Effectiveness, and Reversibility

We show that reversibility, composition, and effectiveness are independent by creating a
table of counterfactual statements such that two of the properties hold, but the third does
not. We will consider a small model, one with only two binary variables X and Y, and a
single value for U.
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A.1 Composition and Effectiveness, not Reversibility

X=0
XX:O :0
XX:l == 1
Xy:():O
Xy:1:1

A.2 Effectiveness and Reversibility, not Composition

X=0
XX:():O
XX:1 - 1
Xy:():O
Xyzlz]_

A.3 Composition and Reversibility, not Effectiveness

X=0
XX:():O
XX:1 :0
XY:():O
Xy:1=0

Y =0
YX:O = O
YX:l == 1
Yy:() =0
Yy:1 == 1

Y=1
YX:() =1
YX:1 - 0
YY:O = O
YY:l == 1

Y =1
YX:O == 1
YX:1 = 1
Yy:() = 1
YY:I - 1

Xx=0y=0=0
Xx=0y=1=0
Xx=1y=0=1
Xx-1y-1=1

Xx=o0y=0=0
Xx—0y=-1=0
Xx=1,y=0=1
Xxz1y=1 =1

Xx=0y=0=0
Xx=oy=1=0
Xx=1,y=0=0
Xx=1y=1=0

YX:O,Y:O == 0
Yx—oy-1=1
Yx—1y=0=0

Yx-1y-1=1

Yx—0,y=0=0
Yx—oy=1=1
Yx=1y=0=0

YX:l,Y:l =1

Yx—oy=0=1
Yx—oy=1=1
Yxoiy—0=1
Yxoiy=1=1
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