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Abstract

This paper develops axioms and formal semantics for statements of the form “X
is causally irrelevant to Y in context Z,” which we interpret to mean “Changing X
will not affect Y if we hold Z constant.” The axiomization of causal irrelevance is
contrasted with the axiomization of informational irrelevance, as in “Learning X will
not alter our belief in Y, once we know Z.” Two versions of causal irrelevance are an-
alyzed, probabilistic and deterministic. We show that, unless stability is assumed, the
probabilistic definition yields a very loose structure, that is governed by just two trivial
axioms. Under the stability assumption, probabilistic causal irrelevance is isomorphic
to path interception in cyclic graphs. Under the deterministic definition, causal irrel-
evance complies with all of the axioms of path interception in cyclic graphs, with the
exception of transitivity. We compare our formalism to that of [Lewis, 1973], and offer
a graphical method of proving theorems about causal relevance.

1 Introduction

In [Geiger et al., 1990], a set of axioms was developed for a class of relations called graphoids.

These axioms characterize informational relevance!

among observed events based on the se-
mantics of conditional independence in probability calculus. This paper develops a parallel
set of axioms for causal relevance, that is, the tendency of certain events to affect the occur-
rence of other events in the physical world, independent of the observer-reasoner. Informa-
tional irrelevance is concerned with statements of the form “X is conditionally independent
of Y given Z,” which means that, given the value of Z, gaining information about X gives
us no new information about Y. Causal irrelevance is concerned with statements of the form
“X is causally irrelevant to Y given Z,” which we take to mean “Changing X will not alter
the value of Y, if Z is fixed.”

The notion of causal relevance has its roots in the philosophical works of [Good, 1961],
[Suppes, 1970] and [Salmon, 1984], who attempted to give probabilistic interpretations to

!The term “relevance” will be used primarily as a generic name for the relationship of being relevant or
irrelevant. It will be clear from the context when “relevance” is intended to negate “irrelevance.”



cause effect relationships, and recognized the need to distinguish causal from statisti-
cal relevance. Although these attempts have not produced an algorithmic definition of
causal relevance, they led to methods of testing the consistency of relevance statements
against a given probability distribution and a given temporal ordering among the variables
[Cartwright, 1989, Eells, 1991, Pearl, 1996b]. The current paper aims at axiomatizing rel-
evance statements in themselves, with no reference to underlying probabilities or temporal
orderings.

Axiomatic characterization of causal relevance may serve as a normative standard for
theories of action as well as a guide for developing representation schemes (e.g., graphical
models) for planning and decision-making applications. For example, instead of explicitly
storing all possible effects of an action, as in STRIPS [Fikes and Nilsson, 1972], such rep-
resentation schemes should enable an agent to examine only direct effects of actions, and
infer which actions are relevant for a given goal, and which actions cease to be relevant once
others are implemented.

An axiomization of causal relevance could also be useful to experimental researchers in
domains where exact causal models do not exist. If we know, through experimentation, that
some variables have no causal influence on others in a system, we may wish to determine
whether other variables will gain such influence, perhaps under different experimental condi-
tions, or may ask what additional experiments could provide such information. For example,
suppose we find that a rat’s diet has no effect on tumor growth while the amount of exercise
is kept constant and, conversely, that exercise has no effect on tumor growth while diet is
kept constant. We would like to be able to infer that controlling only diet (while paying
no attention to exercise) would still have no influence on tumor growth. A more subtle
inference problem is whether changing cage temperature could have an effect on the rat’s
physical activity, having established that temperature has no effect on activity when diet is
kept constant and that temperature has no effect on (the rat’s choice of ) diet when activity
is kept constant.

We provide two formal definitions of causal irrelevance, a probabilistic definition and
a deterministic definition. The probabilistic definition, which equates causal irrelevance
with inability to change the probability of the effect variable, has intuitive appeal but is
inferentially very weak; it does not support a very expressive set of axioms unless further
assumptions are made about the underlying causal theory. If we add the stability assumption
(i.e., that no irrelevance can be destroyed by changing the nature of the individual processes
in the system), then we obtain the same set of axioms for probabilistic causal irrelevance
as the one governing path interception in directed graphs. The deterministic definition,
which equates causal irrelevance with inability to change the effect variable (in any state
of the world), allows for a richer set of axioms without making any assumptions about the
causal theory. All of the path interception axioms for directed graphs, with the exception of
transitivity, hold for deterministic causal irrelevance.

In Section 2, we define causal theories, a formal model for interpreting causal state-
ments. In Section 3 we provide a definition of probabilistic causal irrelevance, and determine
which of the graphoid axioms hold under this definition. Finally, in Section 4, we give a
non-probabilistic definition of causal irrelevance, and offer a graphical method of proving
statements about causal irrelevance.



2 Causal Theories

A causal theory is a fully specified model of the causal relationships that govern a given
domain, namely, a mathematical object that provides an interpretation (and computation)
of every causal query about the domain. Following [Pearl, 1995a] we will adopt here a
definition that generalizes most causal models used in engineering and economics.

Definition 1 (Causal Theory) A causal theory is a 4-tuple
T'=< V7 U,P(u), {fl} >
where

(1) V={Xy,....X,} is a set of endogenous variables determined within the system,

(i1) U ={Uy,..., Uy} is a set of exogenous variables that represent disturbances, abnormal-
ittes, assumptions, or boundary conditions,

(iii) P(u) is a distribution function over Uy, ..., U, and

(iv) {f:} is a set of n deterministic, non-trivial functions, each of the form
xi:fi(paivu) izlv"-an (1)

where pa; are the values of a set of variables PA; C V \ X, (connoting parents), called the
direct causes of X;. We will assume that the set of equations in (iv) has a unique solution
for Xq,.... X, given any value of the disturbances Uy,...,U,,. Thus we can consider each
variable Y € V to be a function of the disturbances U in the causal theory T':'Y = Yy(u).

The uniqueness assumption is equivalent to the requirement that {f;} represent a deter-
ministic physical system in equilibrium. Assuming that all relevant boundary conditions U
were accounted for, such a system can only be in one state. Systems with feedback, however,
can have several equilibrium states. For example, consider the equations * =y V wu and
y=a V u. The state U = 0 permits two possible solutions for X and ¥ — (X =1,Y = 1)
and (X =0,Y = 0) — so such functions would be disallowed in a causal theory. Nonunique-
ness, however indicates dependency on other factors, not modeled in /. Such factors often
can be summarized by the notion of “previous state”, and incorporated into our analysis as
a third kind of variables supplementing V' and U [Galles, 1996a].

Drawing arrows between the variables PA; and X, defines a directed graph G(7'), which
we call the causal graph of T'. In general, G(T') can be cyclic. Figure 1 illustrates a simple yet
typical causal graph. It describes the causal relationships among the season of the year (Xi),
whether rain falls (X;) during the season, whether the sprinkler is on (X3) during the season,
whether the pavement is wet (X4), and whether the pavement is slippery (X5). All variables
in this figure are binary, taking a value of either “True” or “False,” except the root variable
X; which can take one of four values: “Spring,” “Summer,” “Fall,” or “Winter.” Here, the
absence of a direct link between X; and X5, for example, captures our understanding that
the influence of seasonal variations on the slipperiness of the pavement is mediated by other
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Figure 1: A diagram representing a causal theory on five variables.

conditions (e.g., the wetness of the pavement). The corresponding theory consists of five
functions, each representing an autonomous mechanism:

ry = U1
T2 = f2 X17 )
I3 = f3 X17U3)

(

(

Ty = f4(

L5 = fs(X47U5) (2)

The disturbances Uy, ..., Us are not shown explicitly in Figure 1, but are understood to

govern the uncertainties associated with the causal relationships. A typical specification of
the functions {f1,..., fs} and the disturbance terms is given by the Boolean theory below:

3 = [(X1 = Winter) V (X; = Fall) V aby] A —al,

3 = [(Xi = Summer)V (X; = Spring) V abs] A —abl
ry = (xz2V a3V aby) A -ab)
x5 = (x4V abs) A —ab (3)

where z; stands for X; = true, and ab; and ab} stand, respectively, for triggering and in-
hibiting abnormalities. For example, aby stands for (unspecified) events that might cause
the ground to get wet (x4) when the sprinkler is off (—z3) and it does not rain (—z3), while
—abl stands for (unspecified) events that will keep the ground dry in spite of the rain, the
sprinkler and aby, say covering the ground with plastic sheet.

Definition 1 merely provides a description of the mathematical objects that enter into
a causal theory. To meet our requirement that a causal theory be capable of computing
answers for all causal queries, we need to supplement Definition 1 with an interpretation
of the sentence “X = x causes Y = y.” In ordinary discourse, such a sentence is normally
interpreted to mean that we can bring about the condition Y = y by externally enforcing the
condition X = x. Thus, Definition 1 needs to be supplemented with a formal interpretation
of the notion “enforcing X = z” that is compatible with its usage in the language.

External intervention normally implies changing some mechanisms in the domain. In
a logical circuit, for example, the act of enforcing the condition X; = 0 by connecting
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some intermediate variable X; to ground amounts to changing the mechanism that normally
determines X;. If X; is the output of an OR gate, then after the intervention X; would no
longer be determined by the OR gate but by a new mechanism (involving the ground) which
clamps X; to 0 regardless of the input to the OR gate. In the equational representation,
this amounts to replacing the equation X; = fi(pa;,u) with a new equation, X; = 0, that
represents the grounding of Xj.

The replacement of just one equation, not several, reflects the principle of locality in
the common understanding of imperative sentences such as: “Raise taxes” or “Make him
laugh.” When told to clean his face, a child does not ask for a razor, nor does he jump into
the swimming pool. The proper interpretation of the modal sentence “do p” corresponds to a
a minimal perturbation of the existing state of affairs, and this, in the context of Definition 1,
corresponds to the replacement of a minimal set of equations necessary to make p compatible
with U.

In general, we will consider concurrent action of the form do(X = z), where X involves
several variables in V.? This leads to the following definition:

Definition 2 (Effect of Actions) The effect of the action do(X = z) on a causal theory
T is given by a subtheory T, of T', where T, is obtained by deleting from T all equations
corresponding to vartables in X and substituting the equations X = x instead.

The syntactical transformation described in Definition 2 corresponds to replacing the
old functional mechanisms z; = f;(PA;,u) with new mechanisms X; = z; that represent
the external forces that set the values x; for each X; € X. As before, we will assume each
variable Y € V to be a unique function of the disturbances U in any theory T,: Y = Yr, (u).
For brevity, the subscript T' is often omitted, leaving Y, (u).

The assumption that there is a unique solution for Xy,..., X, imposes some restrictions
on the functions f;. However, the equations do not need to be recursive to ensure uniqueness.
For example, the causal theory given by Figure 2 dictates unique values for X and Y for
U; = 0 and U; = 1. The subtheories of T" also dictate unique solutions; there is a unique
value for Y (for both values of Uy) in T'x—o and Tx=1, and a unique value for X (for both
values of Uy) in Ty—g and Ty—;.

Uy
V ={X,Y} binary ; - Zl g/é ;y X — >y
_ - y = ~—
U = {U;} binary Pluy) = 0.5

Figure 2: A valid nonrecursive causal theory, with unique values for X and Y for all values

of U.

2The formalization of conditional actions of the form “do(X = z)if Z = 2” is straightforward [Pearl, 1994].




Returning to the example of Figure 1, represent the action “turning the sprinkler ON.” or
do(X3 = ON), we delete the equation X5 = f3(Xi,Us) from the theory of Eq. (2) and replace
it with X3 = ON. The resulting subtheory, T'x,—on, contains all the information needed for
computing the effect of the action on other variables. It is easy to see from this subtheory
that the only variables affected by the action are X4 and X5, that is, the descendants of the
manipulated variable X;. Note, however, that the operation do(X3 = ON) stands in marked
contrast to that of finding the sprinkler ON; the latter involves making the substitution
without removing the equation for X3, and therefore may potentially influence (the belief
in) every variable in the network. This mirrors indeed the difference between seeing and
doing: after observing that the sprinkler is ON, we wish to infer that the season is dry, that
it probably did not rain, and so on; no such inferences should be drawn in evaluating the
effects of the contemplated action “turning the sprinkler ON.”

The notation Y, (u) is sometimes used in the statistical literature [Rubin, 1974] to stand
for the counterfactual sentence “The value that Y would take in person wu, had X been
;7 where X stands for a type of treatment that a person can receive. There is a strong
connection between the the sentence above and our interpretation of Y, (u) [Pearl, 1995a].
Definition 2 interprets the abstract, counterfactual sentence above in terms of the processes
responsible for Y taking on the value Y, (u) as X changes to . It treats u not merely as an

Zz

index of an individual but, rather, as the set of attributes u that characterize the individual,
the experimental conditions under study, and so on. In Section 4, we will show that the
process-based semantics given in Definition 2 will uncover new properties of Y, (u) that were
not formalized in the statistical literature.

An explicit translation of intervention into “wiping out” equations from the causal model
was first proposed in [Strotz and Wold, 1960], and used in [Fisher, 1970] and [Sobel, 1990].
Graphical ramifications were explicated in [Spirtes et al., 1993] and [Pearl, 1993]. In-
terpretations of causal and counterfactual utterances in terms of Y.(u) are given in
[Pearl, 1996a].Other formulations of causality, in terms of event trees are given in
[Robins, 1987] and [Shafer, 1996].

Note that Y, (u) is well defined even when U = v and X = x are incompatible in 7', thus
allowing for actions to enforce propositions that are not realized under normal conditions.
For example, if T" describes a logic circuit we might wish to intervene and set some voltage
X to z, even though the input dictates X # z. It is for this reason that one must invoke
some notion of mechanism breakdown or “surgery” in the definition of interventions.

The unique feature of our formulation of actions, which sets it apart from the formula-
tions in control theory or decision analysis [Savage, 1954, Heckerman and Shachter, 1995], is
that an action is treated as a modality, namely, it is not given an explicit name but acquires
the names of the propositions that it enforces as true. This enables the model to predict the
effect of a huge number of action combinations without the modeler having to attend to such
combinations. Instead, the causal theory is constructed by specifying the characteristics of
each individual mechanism under normal conditions, free of intervention. Likewise, the dis-
tribution P(u) need only characterize normal fluctuations in boundary conditions, excluding
abnormal eventualities such as interventions.



3 Probabilistic Causal Irrelevance

The fact that each endogenous variable is a function of U and that T specifies a probability
distribution over U defines a probability distribution over the endogenous variables. That
is, for every set of variables Y C V| we have

Ply)= > Pl (4)
fu | Y(w=y)

The probability induced by the action do(X = z) is defined in the same manner, through the
function Y, (u) induced by the subtheory 7. Using & to abbreviate do(X = z), we obtain

P(ylt) = P(yldo(X = x))= > Plu) ()
fu | Ya(w)=u}

The existence of a probability distribution over all variables leads to a natural definition
of the probabilistic version of causal irrelevance.

Definition 3 (Probabilistic Causal Irrelevance) X is probabilistically causally irrelevant to
Y, given Z, written Clp(X,Z,Y), iff

Va,2' y,z Pyl2,2) = P(y|2, ) (6)
Read: Once we hold 7 fized (at z), changing X will not affect the probability of Y.

3.1 Comparison to Informational Relevance

If we remove the “hats” from Definition 3 above, we get the standard definition of conditional
independence in probability calculus, denoted I(X, Z,Y'), which is governed by the graphoid
axioms [Geiger et al., 1990] given in Figure 3

1.1 (Symmetry) I(X,Z,Y) = I(Y, Z, X)

1.2 (Decomposition) I(X, Z,YW) = I(X, Z,Y)

1.3 (Weak union) I(X, Z, YW) = I(X, ZW,Y)

1.4 (Contraction) I(X, Z,Y) & I(X, ZY,W) = I(X, Z,Y W)
(

1.5 (Intersection) I(X,ZY, W) & [(X, ZW,)Y) = (X, Z,YW)

Intersection requires a strictly positive probability distribution.

Figure 3: The graphoid axioms.

These axioms, a special form of which was introduced in [Dawid, 1979] and [Spohn, 1980],
were rediscovered by [Pearl and Paz, 1987] who conjectured them to be complete. The con-
jecture has been refuted by [Studeny, 1990], who also proved that conditional independence
in probability theory has no finite axiomatization. Nevertheless, the graphoid axioms cap-
ture the most important features of informational relevance, “Learning irrelevant information
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should not alter the relevance status of other propositions in the system; what was relevant
remains relevant, and what was irrelevant remains irrelevant.” [Pearl, 1988]

One of the most salient difference between informational and causal relevance is the
property of symmetry, axiom 1.1. Informational relevance is symmetric, stating that if X is
relevant to Y, then Y is relevant to X as well. For example, learning whether the sprinkler
is on provides information on whether the grass is wet and, vice versa, learning whether the
grass is wet provides information on whether the sprinkler is on. This property is clearly
violated in causal theories: turning a sprinkler on tends to make the grass wet, so turning
on the sprinkler gives us information about the state of the grass. Conversely, wetting the
grass has no physical effect on the state of the sprinkler, and gives us no information about
whether the sprinkler was on or off.

Another basic difference between informational and causal relevance is that in the former
the rule of hypothetical middle [Pearl, 1988, p. 17] always holds:

MIN, P(y|z) < P(y) < MAX,P(y|x) (7)

In causal relevance, P(y) might greater than MAX, P(y|Z), or less than MIN, P(y|%). Figure
4 illustrates such a possibility.

U,
X
r = U
V ={X,Y} binary ’ :{1 if o =wuy \Y
U = {U;} binary Y 0 otherwise
P(ul =

Figure 4: An example of P(y) > MAX,P(y

2).

In Figure 4, there are two endogenous variables X and Y, as well as an exogenous
variable ;. Without any intervention, X will always have the same value as U;, hence,
Y will have the value 1. If X and U; have different values, then Y will have the value
0. If we intervene and set X to 1, then Y will have the value 1 when U; = 1, which
has a probability 0.5, and Y will have the value 0 when U; = 0, which has a probability
0.5: P(Y = 0|set(X = 1)) = P(Y = llset(X = 1)) = 0.5. Similarly, we can see that
P(Y = 0|set(X = 0)) = P(Y = 0|]set(X = 1)) = 0.5. Thus, MAX,P(y|z) = 0.5, and
P(Y=1)=1>0.5=MAX,P(y|z).

Note that, in view of the violation of the rule of the hypothetical middle (Eq. (7)),
Definition 3 is not equivalent to

Va,y,z P(ylz, &) = Py

?) (8)

Read: Once we hold Z fixed (at z), controlling X will not affect the probability of Y. In fact,
Definition 3 is stronger than Eq. (8), since statement 2.5.2 (left-intersection of Theorem 1
below) follows from the former and not from the latter.
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The notion of probabilistic causal irrelevance may bring to mind a related concept of
ignorability [Rosenbaum and Rubin, 1983] which is extremely important in analyzing the
effectiveness of treatments (e.g., drugs, diet, educational programs) from uncontrolled stud-
ies. The two concepts are however different. Ignorability allows us to ignore HOW X
obtained its value x, while irrelevance allows us to ignore which value X actually obtained.
Ignorability is defined as the condition

P(Y = yle) = P(Y = y|z,2) (9)

which in our notation reads:

Plylz,3) = P(y|z.2) (10)

It allows an investigator to relate the response Y, to observable conditional probabilities. A
central question in experimental design is to select a set of observables Z that would make
Eq. 9 true, given causal knowledge of the domain. Ignorability in itself does not provide
such a criterion; though it states the problem in formal counterfactual language: “Z can
be selected if, for every x, the value that Y would obtain had X been z is conditionally
independent of X, given Z.” A criterion for selecting Z can be obtained from the graph
G(T') underlying a causal theory, as given by the “back-door criterion” in [Pearl, 1995a].

The question we attempt to answer in this section is whether the relation of causal
irrelevance, Clp(-), is governed by a set of axioms similar to those governing informational
irrelevance I(-). An extreme way of motivating this question would be to ask whether
there are any constraints that prohibit the assignment of arbitrary functions P(y|%) to any
pair (X,Y) of variable sets in V, in total disregard of the fact that P(y|&) represents the
probability of (Y = y) induced by physically setting X to x in some causal theory 7". Our
finding indicate that, although the assignment P(y|Z) is not totally arbitrary, it is only
weakly constrained by axioms of causal irrelevance.

3.2 Axioms of Probabilistic Causal Irrelevance

We have found only two axioms that constrain causal irrelevance.

Theorem 1 For any causal theory, the following two properties must hold :
2.2.1 (Right-Decomposition) Clp(X,Z,YW) = Clp(X,Z,Y)& Clp(X,Z, W)
2.5.2 (Left-Intersection) Clp(X,ZW,Y )& Clp(W,ZX,Y) = CIp(XW, Z,Y)

Property 2.2.1 reads: If changing X has no effect on Y and W considered jointly, then
it has no effect on either Y or W considered separately. This follows trivially from the fact
that P(-) is a probability function, but it does not reflect any quality of causation.

Property 2.5.2 reads: If changing X cannot affect P(y) when W is fixed, and changing
W cannot affect P(y) when X is fixed, then changing X and W together cannot affect P(y).

Many seemingly intuitive properties, however, do not hold. For instance, none of the
following sentences hold for all causal theories.



2.2.2 (Left-Decomposition-1) CIp(XW,Z)Y) = CIp(X,Z,Y)V Clp(W,Z)Y)
2.2.3 (Left-Decomposition-2) CIp(XW, Z,Y) = Clp(X,Z,Y)V Clp(X,Z, W)

2.2.4 (Left-Decomposition-3) Clp(XW,Z,Y) & Clp(XY,Z,W) = CIp(X,Z,Y) V
CLp(X, 2, W)

2.3 (Weak Union) Clp(X,Z,WY) = Clp(X,ZW,Y)

(

2.4 (Contraction) Clp(X,Z,Y)& Clp(X,Z2Y, W)= Clp(X,Z,WY)
2.5.1 (Right-Intersection) Clp(X,ZW,Y) & Clp(X,ZY, W)= Clp(X,Z,WY)
(

2.6 (Transitivity) CIp(X,Z,Y) = Clp(a, Z,Y)V Clp(X,Z,a) Ya ¢ XU ZUY

The sentences above were tailored after the graphoid axioms (Figure 3) with the provision
that symmetry does not hold, thus requiring left and right versions. Many of these sentences
have intuitive appeal and yet are not sound relative to the semantics of P(y|Z). For example;
property 2.2.2 states that if changing X has an effect on Y, and changing W has an effect on
Y, then changing X and W simultaneously should also affect Y. It is hard to come up with
a simple real-life example that refutes this assertion. Still, as will be shown in the Section
3.4 and in Appendix A, each of these sentences is refuted by some specific causal theory.

3.3 Proofs of Axioms of Probabilistic Causal Irrelevance

We now prove the two sentences of Theorem 1.

221 Clp(X, 2, YW)= CIp(X, Z,Y)&CIp(X, Z,W) holds trivially. CIp(X, Z, YW )=
P(yw|z,&) = P(yw|z,2"). We can sum over W to get P(y|z,2) = P(y|Z,2'), which
implies Clp(X, Z,Y). O

2.5.2 (By contradiction) Assume CIlp(X,ZW,
Since -Clp(XW,Z,Y),

Y) & CIp(W,ZX,Y) & ~CIp(XW, Z,Y).

by definition

of Clp(-), y,z,2',w,w',z Ply|z,w,2) # P(y|z,v0',2"). However, Clp(X, ZW,Y)
implies Yy, z, 2, z,w P(y|z,&,w) = P(y|2,&',®). Furthermore, CIp(W,ZX,Y) im-
plies Yy, z', w,w', z (y|2 &' ) = P(ylz, Lb’), so Vo, 2", w,w' z P(y|z,2,w) =
P(y|z, 2", w) = P(y|z, 2", 0). Thus Va, 2’ w,w' 2z Pylz,2,w) = Py
contradicts Jz, ', w, w’ ,2 P(y|z,z,w) # P(

@'
2’

Z,2',w"), which
2,3%’,121’). 0

3.4 Counterexample to Property 2.2.2

We now disprove property 2.2.2 by counterexample. This counterexample is not necessarily
meant to model a common, real-life situation. Rather, it disproves the claim that all possible
causal theories must conform to the property.

2.2.2 CIp(XW,Z,Y) = CIp(X,Z,Y)V CIp(W, Z,Y).

Figure 5 shows a counterexample to this sentence. In this theory, CIp(XW,0,Y) &
-Clp(X,0,Y)& ~CIp(W,0,Y)
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U

X/ 1\W
W/

T =
V ={X,W,Y} binary w = u v
U = {U;} binary y = Parity(x,w, u)

P(uy) = 0.5

Figure 5: Counterexample to property 2.2.2.

This counterexamples is more clear when we consider the contrapositive form of the
claim. In this example, changing W can affect the probability of Y, and changing X
can affect the probability of Y, but changing W and X simultaneously has no effect
on the probability of Y. This is extremely counterintuitive, if tweaking X has an effect
on Y, and tweaking W has an effect on Y, we would expect the more flexible option
of changing X and W simultaneously to also affect Y.

The key to this counterexample is the fact that setting W removes the connection
between W and U;. When we intervene on only X, W takes on the same value as Uy,
and Y will always have the value of X. When we intervene on both X and W, there
is no longer any connection between U/; and W. Thus, the probability that W and Uy
will have the same value is 0.5, and P(y) = 0.5

Counterexamples to the other properties (2.2.3, 2.2.4, 2.3, 2.4, 2.5.1, 2.6) are in Appendix

A.

3.5 Numeric Constraints

Although Definition 3 imposes only weak constraints (axiom 2.2.1 and 2.5.2) on the structure
of probabilistic causal irrelevance, the probability assignments P(y|Z), which describe the

effects of actions in the domain, are constrained nevertheless by non-trivial numerical bounds.

For instance, the inequality

(y|#, 2) > Py, z|&) (11)

must hold in any causal theory. This can easily be shown by the definition of P(y, z|Z) and

Py

and

z,%). Recall from Eq. (5) that

Ply,z|2) = > P(u)

{u [ Yoz (u)=y}

Consider UY*, the set of all values u of U such that Y,(u) =Y and Z,(u) = z, and UY, the

set of all values u’ of U such that Y,,(u) = y. Since all values u of UY* already constrain Z
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to have the value z, fixing Z at z will not affect the value of Y. Thus, for all values u of UY*,
Y:.(u) = y. Hence, UY D U¥* and P(y|Z,2) > P(yz|&). This can be shown more formally
using Theorem 6, which is proven below, in Section 4.2. Additional constraints are explored

in [Pearl, 1995b].

3.6 Axioms of Causal Irrelevance for Stable Theories

The set of axioms we obtained for causal irrelevance was much smaller than we would
expect from our intuition of causal effect relations. We have two explanations for this
discrepancy. One possibility is that probabilistic causal irrelevance does not capture our
intuition of causal mechanisms. This possibility will be explored in Section 4, which gives a
deterministic definition of causal irrelevance and yields a more complete set of axioms. The
other possibility is that the type of examples exploited in Section 3.4 and Appendix A are
not commonly observed in everyday life. This section explores what assumptions need to be
made for probabilistic causal irrelevance to have a more expressive set of axioms.

A more expressive set of causal irrelevance axioms is obtained if we confine the analysis to
stable causal theories, that is, causal theories whose irrelevances are implied by the structure
of the causal theory, and, hence, remain invariant to changes in the forms of each individual
functions f;. We will define stability through the concept of a replacement class. A replace-
ment class 7 is a set of all theories that have the same variables V and U, and the same
functional arguments. In other words, the functions are allowed to change between members
of 7, but the arguments of these functions are not allowed to vary. Formally, for any two
theories T1,T; € 7 and any two functions f;(PA;) € T1 and f/(PA}) € Tz, PA; = PA.. The
class 7(T') represents the replacement class that contains the theory 7.

We now define stability using replacement classes, similar to [Pearl and Verma, 1991a].

Definition 4 (Stability) Let T' be a causal theory. An irrelevance Clp(X,Z,Y) in T is
stable if it is shared by all theories in 7(1'). The theory T is stable if all of the irrelevances
in T are stable.

Stability requires irrelevance to be determined by the structure of the equations, not
merely by the parameters of the functions. Thus, a causal theory is not stable if we can
remove an irrelevance relationship by replacing an equation or set of equations to obtain a
new theory with fewer irrelevance statements. In each of the examples in Section 3.4 and
Appendix A, for instance, a minor change in the form of one of the equations would destroy
an irrelevance. Note that none of the theories presented in Figure 5 or the appendix is stable.

There are, however, many stable causal theories. All monotonic linear systems, for ex-
ample, are stable. One might think that any causal theory that contained only additive,
monotonic functions f; would be stable. The causal theory of Figure 16, however, refutes
that conjecture.

Definition 5 (Path-interception) Let int(X,Z,Y )q stand for the statement “every directed
path from X to'Y in graph G contains at least one element in 77

»

3The probabilistic notion of stability (also called “DAG-isomorphism,” “nondegeneracy” [Pearl, 1988,
p. 391], and “faithfulness” [Spirtes et al., 1993]) was used by Pearl and Verma [1991] to emphasize the
invariance of certain independencies to functional form.
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Theorem 2 If a causal theory T is stable, then X is probabilistically causally irrelevant to
Y, given Z, in T iff Z intercepts all directed paths from X to Y in the graph G(T) defined
by T'. That is,

CIP(X, Z7 Y) < int(X, Z, Y)G(T)

Proof:
(i) ClIp(X,Y, Z) = mt(X,Y, Z)a(r)

Assume that there exists a stable causal theory 7' that induces a probabilistic causal
irrelevance relation C'Ip(-), and assume that, for some sets of variables X, Y, Z, Clp(X, Z,Y)
and —int(X, Z,Y )g(r). Since there is a directed path from X to Y that is not intercepted by
Z in G(T'), we can easily construct a theory 7" such that G(1") = G(T') and =CIp(X,Z,Y)
in 77. We can do this by changing all of the functions that lie on the path from X to Y
to disjunctions and then modifying the other functions to ensure that P(y|Z) < 1. Thus, if
we force X to have the value 1, Y will also have the value 1, and P(y|z,%) # P(y|%). By
assumption, Clp(X,Z,Y), so CI(T) € CT(T"). Thus, T is not a stable causal theory, a

contradiction.

(i) int(X, Z,Y )y = Clp(X, Z,Y)

We will use the following lemma:

Lemma 1 For any structural equation f, in a causal theory T, if a series of funclional
substitutions results in a new function g, such that X is an argument of g,,, then there must

be a directed path from X toY in G(T).

We will prove this lemma by induction on the number of functional substitutions.

Base Case: If we make no substitutions into f,, then every argument X of f, must be a
parent of Y in G(T'), by our definition of G(T'). Thus, there is a directed path from each
argument of f, to Y in G(T)

Inductive Case: Assume that n — 1 functional substitutions into f,
new function g, such that for each argument X of g, there is a directed path from X to Y
in G(T'). We use this assumption to prove that after n substitutions resulting in gy, there
is a directed path from every argument of g3 to Y in G(7'), as follows: When we do a single
substitution, we replace a variable with a function of its parents in G(71'). So, for any new
argument X' that is introduced to gj- by substituting in for X, X’ must be a parent of X
in G(T'). By the inductive hypothesis, there must be a directed path from X to Y in G(T).
Thus, there must be a directed path from X' to Y in G(T').

We can now prove the implication int(X, Z,Y gy = CIp(X, Z,Y). We will consider
f,, the functional equation for Y in 7,. After we do a functional substitution for all variables
in f, except for X and Z, we are left with a new function ¢g,. By Lemma 1, since there is
no directed path from X to Y in G(7,), X is not an argument of g, so ¢, is a function of
only Z and U. Since g, is a function of only Z and U, and not of X, Y,,(u) = Y,(u), so
P(y|&,2) = P(y|2), and CIp(X,Z,Y). O

Since CIp(X,Y,Z) <= int(X,Y, Z)g(r) in stable causal theories, probabilistic causal
irrelevance is completely characterized by the axioms of path interception in directed graphs.
A complete set of such axioms was developed in [Paz and Pearl, 1994, Paz et al., 1996] and

always result in the

is given in Figure 6.
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3.2.1 (Right-Decomposition) int(X, Z, YW ) = int(X, Z,Y)e & int(X, Z,W)q

3.2.2 (Left-Decomposition) int(XW, Z,Y ) = int(X, Z,Y)e & int(W, Z,Y )¢
3.4 (Strong Union) int(X,Z,Y ) = int(X,ZW,Y)e YW

3.5.1 (Right-Intersection) int(X, ZW,Y )¢ & int(X, ZY, W) = int(X, Z, Y W)

3.5.2 (Left-Intersection) int(X, ZW,Y )q & int(W, ZX,Y )¢ = int(XW, Z,Y )q

6

3.6 (Transitivity) int(X, Z,Y ) = int(a, Z,Y )V int(X,Z,a)¢ Va ¢ XUZUY

Figure 6: Sound and complete axioms for path interception in directed graphs.

4 Causal Irrelevance

The notion of causal irrelevance obtains a deterministic definition when we consider the
effects of an action conditioned on a specific state of the world u.

Definition 6 (Causal Irrelevance) X is causally irrelevant to Y, given Z, in a causal theory
T, Clp(X,Z2,Y), if
Vu,z,z,2" Yy (u) = Yo, (u) (12)

in every subtheory of T,.

Note that unlike the probabilistic definition of causal irrelevance (see Eq. (8)), this
definition is equivalent to

Vu,z,x Y. (u) = Y (u) (13)

This definition captures the intuition “If X is causally irrelevant to Y, then X cannot
affect Y under any circumstance.” It is stronger than the probabilistic definition, in that
Clp(X,2,Y) = Clp(X,Z,Y).

This definition of irrelevance bears some similarity to the idea of limited unresponsiveness
presented in [Heckerman and Shachter, 1995]. However, whereas Heckerman and Shacter
define causality in terms of limited unresponsiveness to a specific set of actions, we view
irrelevance as a property of a causal theory. In fact, a version of their definition of causality,
translated into our language, will be shown to be a theorem of causal irrelevance in Section
4.6.2 (see Eq. (18)).

To see why we require the equality Y;.(u) = Yu.(u) to hold in every subtheory of 77,
consider the causal theory of Figure 7. In this example, Z follows X and, hence, Y follows
X, that is, Yx—o(u) = Yx=1(u) = uz. However, since f, is a nontrivial function of X, X
is perceived to be causally relevant to Y. Only holding Z constant would reveal the causal
influence of X on Y. To capture this intuition, we must therefore consider all subtheories in
Definition 6.
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T = uy
V ={X,Z,Y} binary :{1: if ¢ =2 \V/

U = {Uy, U} binary otherwise
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= |l
)
‘1

ur) = Pluy) =

Figure 7: Example of a causal theory that requires the examination of subtheories to deter-
mine causal relevance.

4.1 Causal Irrelevance Axioms

With this definition of Causal Irrelevance, we have the following theorem:

Theorem 3 For any causal theory, the following sentences must hold:
4.2.1 (Right-Decomposition) Clp(X,Z,YW) = Clp(X,Z,Y) & Cl¢(X, Z, W)
4.2.2 (Left-Decomposition) CIo(XW,Z,)Y) = CI¢(X,Z,Y) & Clp(W, Z,Y)
4.4 (Strong Union) Clp(X,Z,Y) = Cl¢p(X,ZW,Y) VW
4.5.1 (Right-Intersection) Clp(X, ZW,Y ) & Clp(X,Z2Y, W)= Cl¢(X,Z,YW)
4.5.2 (Left-Intersection) Clp(X, ZW,Y) & Clp(W, ZX,Y) = Clo(XW, Z,Y)
The following sentence, however, does not hold in every causal theory:

4.6 (Transitivity) Cl¢(X,Z2,Y) = Clp(a, Z,Y)V Clp(X,Z,a) Ya ¢ XUZUY

4.2 Theorems of Causal Statements

To prove the causal irrelevance axioms, we will use some of the following theorems and
definitions.

Definition 7 (Null Action) For any variable X, Xy(u) = X(u).

Definition 7 provides an interpretation for a null subscript, which will be needed in the proofs
below.

Theorem 4 (Degeneracy) For all variables X and W, X ,(u) = x.

Proof:
This theorem follows from Definition 1, where Y, (u) is interpreted as the unique solution
for Y of a set of equations under X = x. It is included for completeness. O
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Theorem 5 (Uniqueness) For any variable X, set of variables 7, and value z, there exists
a unique value x of X such that X,(u) = x. O

Proof:
This theorem follows directly from the definition of causal theories, which required a
unique value for any variable X, given any value of the disturbances U, in any subtheory. O

Theorem 6 (Composition) For any variables Y and W, and set of variables XW in a
causal theory,

We(u) = w=Y.(u) = You,(u) (14)

Proof:

Since Y, (u) has a unique solution, forming 7, and substituting out all other variables would
yield a unique solution for Y. regardless of the order of substitution. So, we will form 7}
and examine the structural equation for Y in 7, : Y, = f, (z,z,w,u), where Z stands
for the rest of the parent set of Y. We now solve for Z by substituting out all variables
except X,Y, and W. That is, we substitute out all variables in T, avoiding substitutions
into X, W and Y, and express Z as a function of z,w, and u. We then plug this solution
into f, to get Y, = f,(z,w, Z(z,w,u),u), which we can write as Y, = f(z,w,u). At this
point, we can solve for W, substituting out all variables in T'x other than X, which leaves
Y, = flz,W(u,x),u). We can now see that if w = W, (u), then Y, (u) = Yo (u). O

This proof is still valid in cases where X = (.

Corollary 1 (Consistency) For any variables Y and X in a causal theory,
X(u)=2=Y(u) = Y,(u) (15)

Proof:

Corollary 15 follows directly from Composition. Substituting X for W and @ for X in Eq.

(14), we obtain Xg(u) = z = Yj(u) = Y (u). Null Action allows us to drop the ), leaving

X(u) =2=Y(u) = Yz(u). O
The implication in Eq. (15) was called Consistency by [Robins, 1987]. *

Theorem 7 (Reversibility) For any variables X and W, and set of variables X,
(You(u) =y) & (Wey(u) = w) = Yolu) = y (16)

Proof:

Reversibility follows from the assumption that the solution for V in every subtheory is unique.
Since Y, (u) has a unique solution, forming 7, and substituting out all other variables would
yield a unique solution for Y, regardless of the order of substitution. So, we will form 7
and examine the structural equation for Y in 7, which might in general be a function of

4This property and Composition were tacitly used in economics [Manski, 1990] and statistics within
the so-called Rubin’s model [Rubin, 1974]. To the best of our knowledge, Robins was the first to state
Consistency formally and to use it to derive other properties of counterfactuals.
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X,W,U, and additional variables : Y, = f, (z,w, z,u), where Z stands for parents of ¥ not
contained in X UW U U. We now solve for Z by substituting out all variables except X.Y,
and W. That is, we substitute out all variables in 7., avoiding substitutions into X, W and
Y, and express Z as a function of z,w, and u. We then plug this solution into f, to get
Y, = fi(v,w, Z(z,w,u),u), which we can write as Y, = f(z,w,u). We now consider what
would happen if we solved for Y in T7,,. Since we avoided substituting anything into W when
we solved for Y in T, we will get the same result as before, namely, Y,,, = f(z,w,u). In the
same way, we can show that W, = ¢g(z,y,u) and W, = g(x,y,u). So, solving for y = Y, (u),
w = W, (u) is the same as solving for y = f(z,w,u) and w = g(x,y, u), which is the same as
solving for y = Yy, (u), w = Wy, (u). Thus, any solution y to y = Yy, (u), w = Wy (u) would
also be a solution to y = Y, (u). O

Reversibility reflects memoryless behavior — the state of the system, V', tracks the state of
U, regardless of its history. A typical example of irreversibility is a system of two agents (as in
the prisoners’ dilemma) who adhere to a “tit-for-tat” strategy. Such a system has two stable
solutions, cooperation and defection, under the same external conditions U and, therefore,
does not satisty the Reversibility condition; forcing either one of the agents to cooperate
results in the other agent’s cooperation (Y, (u) =y, W,(u) = w), yet this does not guarantee
cooperation from the start (Y (u) = y, W(u) = w). Irreversibility, in such examples, is a
product of using too coarse a state description, where not all of the factors which determine
the ultimate state of the system are included in U. In the tit-for-tat example, such factors
should include the previous actions of the players. Reversibility is restored once these factors
are included.

The properties of Null Action, Degeneracy and Composition are complete for recursive
systems. In non-recursive systems, Null Action, Degeneracy, Composition, and Reversibility
are not complete. If, however, we replace Reversibility with a slightly stronger property, we
obtain a complete (but not sound) set of properties [Galles, 1996b].

4.3 Proofs of Causal Irrelevance Axioms

Using the theorems from the previous section, we can prove the axioms of causal irrelevance.

4.2.1 Holds trivially. a

4.2.2 (By contradiction) Assume that there exists a causal theory such that CIp(XW, Z,Y )&
~(CI(X,2,Y) & CIo(W,Z,Y)). So, either CIo(XW,Z,Y) & ~CI1(X,Z,Y), or
Clpy(XW, Z,Y)&~Clp(W, Z,Y). First, we consider Cl¢o(XW, Z,Y)&=Cl¢(X,Z,Y).
By our definition of Cl¢(-), ~Cl¢(X, Z,Y) implies that there exists two values z, 2’ of
X and some value u of U such that Y,.(u) # Y.(u). Now, let us consider the x, 2/, z, u
such that Y,.(u) # Yyr.(u). Using these values, we can determine a w and w' as follows :
Let w = W, (u), and v’ = Wy, (u). It does not matter whether w = w’ or w # w’. By
Composition, Y., () # Yo (). Thus, Jz,w, z,u Yy, (u) # Yo (u), which contra-
dicts CIp(XW, Z,Y). Thus, Clo(XW, Z,Y)&—=Clp(X, Z,Y) leads to a contradiction.
We can use a symmetric argument to show that Clp(XW, Z,Y)&-CI¢(W, Z,Y) also

leads to a contradiction. O
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4.4 By our definition of CI¢(+), Cl¢(X, Z,Y )=Y,.(u) = Y. (u) for all subtheories of T,..
For an arbitrary W, we consider the subtheory 7', where W is forced to have the value
w. By our definition of causal irrelevance, Y;,,,(u) = Yy, for all values w. In addition,
since Clp(X,Z2,Y) = Y,.(u) = Yu,(u) for all subtheories of T', Yy, (u) = Y.y, for
all subtheories of T,. Since W was arbitrary, Clp(X,Z,Y) = Clp(X, ZW,Y) for all
wW. O

4.5.1 (By contradiction) Assume Clp(X,ZW,Y) & Clp(X,Z2Y, W) & =Cl¢p(X, Z,YW).
-Clp(X, Z,YW) implies Jz, 2,z (Ye.(u) # Yoo (w)) V (Wes(u) # Way(u)). Since
W and Y are symmetric, we will only consider Y. Consider the values of x,2', 2z, u

such that Y,.(u) # Yy, (u). Let y = Y. (v) and y' = Yo, (u).

By Composition, Y.(u) = Yi.(u) for w = Wy, (u). By assumption, Y., (u) =
Yerzw(u). Also by Composition, Wo,(u) = Wy, (u) for y = Y..(u). By assumption,
Wosy(u) = Warsy (u). By Reversibility, since y is a solution to the simultaneous equa-
tions y = Yz, and w = Wiy, then y must also be a solution to Yz, (u). Thus y = v/,
a contradiction. We can use a symmetric argument to show that W,,(u) # W, (u)
also leads to a contradiction. O

4.5.2 (By contradiction) Assume Clp(X,ZW.Y) & Clp(W,ZX,Y) & =CIo(XW,Z,Y).
Since ~Clp(XW, Z,Y), by definition of Clp(), Jz, 2", w,w', 2 Yiw.(u) # Y. (u).
However, Clp(X,ZW,Y) implies Vz,2',z,w  Yiw(u) = Ye(u). Furthermore,
Cly(W, ZX,Y) implies V', w, w', 2z Yo (u) = Yon,(u) So, Vo, 2", w,w', 2 Yoy, (u) =
Yirw=(w) = Yongo(u), thus Vo, 2, w0,z Yiu.(v) = Yo, (u). This contradicts
dz, 2’ w0’z Yiws(6) # Yo (u). O

4.4 Causal Relevance and Lewis’s Counterfactuals

It is instructive to compare our framework to that of [Lewis, 1973]. We give here a version
of Lewis’s logic for counterfactual sentences (from [Lewis, 1981]).
Rules
(1) If A and A = B are theorems, so is B.
(2) If (Bi&...)=C)is a theorem, sois (AO— By)...) = (A= ()
Axioms
(1) All truth-functional tautologies

(2) AO— A

(3) (A= B)&(BO—» A) = (A0~ (C)=(BO—= ()

(4) (AVB)O—- A)V((AVB)O-B)V(((AVB)O-(C)=(A0-C) & (BO— ()
(5) A-B= A= 1B

(6) A B= A0O- B

Where the statement A O— B stands for “in all closest worlds where A holds, B holds as
well”. Lewis is careful not to put any restrictions on definitions of closest worlds, except for
the obvious requirement that world w be no further from itself than any other w’ # w. In
essence, causal theories with local interventions define an ordering among worlds that gives
a metric by which to define what worlds are closest. As such, all of the axioms of Lewis are
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true for causal theories, and follow from Degeneracy, Composition, and Reversibility.?
In order to relate Lewis’s axioms to our own, we need a translation from his syntax to
ours:

A0D-B=YP(u)=8B (17)

where Y B is a variable with values { B, B}. We can now examine each of Lewis’s axioms in
turn.

Trivially True.
This axiom is the same as Degeneracy, and it is stated in our formalism as X, (u) = .
This follows directly from Reversibility.

Since actions in causal theories are restricted to conjunctions of literals, this axiom
does not apply. However, under the interpretation do(A V B) = do(A) V do(B), this
property does hold.

(5) This axiom follows directly from Composition.

(6) This axiom follows directly from Composition.

We see that Lewis’s axioms are more general, hence less powerful. Composition is a
consequence of Lewis’s axiom (5) and rule (1). Reversibility, however, is not enforced by the
Lewis framework. Lewis’s axiom (3), while similar, is not as strong as Reversibility. ¥ =y
may hold in all closest w-worlds, W = w may hold in all closest y-worlds and, still, ¥ =y
may not hold in our world.

4.5 Why Transitivity Fails in Causal Relevance

Causal transitivity is a property that makes intuitive sense, which we would like to explain
with an axiomatic definition. If a variable A has a causal influence on B, and B has a causal
influence on C', one would think that A would have causal influence on C'. However, this is
not always the case, even in deterministic causality. Consider the causal theory described in
Figure 16 of Appendix A, reprinted here as Figure 8.

In this example, X is not causally irrelevant to W, and W is not causally irrelevant to Y,
but X is causally irrelevant to Y. The intuition behind this example is that changing X can
only cause a minor change in W, while Y only responds to large changes in W. However,
the failure of transitivity is deeper then that. Even when X has more complete control over
the intermediate variable W, we may still not be able to achieve transitivity. Consider the
causal theory of Figure 9.

This theory is the same as the theory of Figure 8, except that W has now been split into
Wi ... Wy, corresponding to W’s four possible values. That is, Wy is true if x 4+ uy = 0, Wy

5Steps toward applying Lewis’s system to actions and decisions were taken by Gibbard and Harper
[Gibbard and Harper, 1981] but this work has not been extended to cover the additional properties, such as
Reversibility, that causal theories dictate.
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w=2x+ 2% uy W
V=AX,W,Y}, 2,y € {0,1}, w € {0,1,2,3}  z=u V
U= {U,Us} uy,uy € {0,1} y=(w>1) Y

P(uy) = P(uz) = 0.5

Figure 8: Counterexample to transitivity in causal irrelevance.

1 2 3 4
V = {X, Wy, Wy, Ws, Wy, Y} binary 0 ﬁ‘zf? 12 \\Y//
U = {U;,U,} binary 204__ vt

Figure 9: Transitivity fails, even when a variable is more completely controlled by its parents
than in the prior example.

is true if x + uy = 1, Wy is true if x 4+ uy = 2, and Wy is true of x + uy = 3. Now, by fixing
X, we can cause any of the intermediate variables W; ... W, to be false in any given state
of the world u. Likewise, each of the intermediate variables Wy ... W, can affect Y in any
given state of the world u. However, X has no effect on Y in any state of the world .

4.6 Causal Relevance and Directed Graphs
4.6.1 Causal Graphs as Irrelevance-Maps

Comparing axioms 3.2-3.5 to 4.2-4.5, we see that causal irrelevance is quite similar to path
interception in directed graphs. Since people (and machines) can easily reason about graphs
it would be useful to create a graph that represents all of the causal relevances and irrele-
vances of a given causal theory. That is, we would like to create a graph G'(7') such that

(i) Each variable X in 7' corresponds to exactly one node X’ in G'(T')

(ii) For all subsets of nodes X', Y', Z" in G'(T'), int(X', Z',Y")gn1) = CI7(X, Z,Y).
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(iii) For all subsets of variables XY, Z in T', Cl¢(X, Z,Y ) = int(X', Z',Y" )i (1).

In such a graph G'(T), if all directed paths from X’ to Y’ were intercepted by some
variables in Z, then X would be causally irrelevant to Y in the theory T'. Likewise, if a set
of variables X was causally irrelevant to a set Y given fixed Z, then all paths from nodes in
X’ to nodes in Y’ would be intercepted by some variables in Z.

The obvious choice for G'(T') is G(T'), the graph associated with the causal theory itself,
as defined by Eq. (1). In fact, if we use G'(T') = G(T'), then the implication (ii) holds, since
in Section 3.6 we showed that int(X, Z,Y )gr) = Yez(u) = Y.(u), and thus Clp(X, Z,Y).
However, since transitivity holds in int(-)¢ and not always in CI(-), there might not be a
graph G'(T') that implications (ii) and (iii) hold simultaneously. Nonetheless, we can, use
directed graphs to validate candidate theorems of causal irrelevance, as shown below.

4.6.2 Graphs as Theorem Provers

Consider an oracle that takes in statements about path interception and returns YES if the
statement holds in all directed graphs and NO otherwise. We will show that such an oracle
can be used to validate or refute sentences about causal irrelevance.

First, let the canonical form for sentences in the language of causal irrelevance be an im-
plication, whose antecedent consists of a conjunction of non-negated literals, and consequent
consists of non-negated literals. For instance, consider the sentence®

CIr(X, Z,Y) & ~CIp(X,0,Y) = ~CI1(Z,0,Y) (18)

This sentence is not in canonical form because the second conjunct in the antecedent is
negated and the statement in the consequent is negated. The canonical form of this sentence
is

CIp(X,Z,Y) & CIp(Z,0,Y) = CI¢(X,0,Y) (19)

Any causal irrelevance sentence can be written in a unique canonical form using standard
logical procedures.

Definition 8 (Horn Component) A Horn component H of a causal irrelevance sentence S
is a sentence H such that :

e H is in canonical form,
o The consequent of H contains no disjunctions, and
o H= 5.

If a sentence S is in the canonical form a; & ay & ...a; = by V by V ... by, then a Horn
component of S is any sentence of the form a; & ay & ...a; = b;. For example, Eq. (19)
has no disjunctions in its consequent, hence is itself a Horn component.

For any causal irrelevance statement A of the form CIp(X, Z,Y), we will consider A, to
be the corresponding path-interception statement int(X, Z,Y )g(r). Using this convention,
we can define

A version of this theorem was chosen in [Heckerman and Shachter, 1995] as the definition of causality.
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Theorem 8 (Graphical Theorem Verification) A causal irrelevance sentence S is true for
all causal theories if and only if there exists @ Horn component H of S such that H, is true
for all graphs.

For example, consider the sentence in Eq. (18). The canonical form of this sentence is
given in Eq. (19). The sentence is itself a Horn component. The corresponding sentence for
path interception in directed graphs, int(X, Z, Y )q & nt(Z,0,Y)e = int(X,0,Y ), states
that if all paths from X to Y are intercepted by Z, and there are no paths from Z to Y,
then there is no path from X to Y. This sentence is true for all directed graphs, hence Eq.
(18) is a valid theorem.

Next, consider transitivity, stated as Clp(X,Z,Y )= Clr(a,Z,Y)V Clp(X, Z,a). The

Horn components of this sentence are

H' :CI¢(X,2,Y)= Clr(a,Z,Y) (20)
H? : CIp(X,2,Y) = Cly(X, Z,a). (21)

Looking at each of the corresponding path interception sentences in turn, we find that H; :
(X, Z,Y )o=int(a, Z,Y)q is not true for all directed graphs, and H} : int(X, Z,Y )o =
int(X, Z,a)g is also not true for all directed graphs, that is, if Z intercepts all paths from
X to Y, it is not the case that either Z intercepts all paths from any other variable to Y or
Z intercepts all paths from X to any other variable. Thus, transitivity is not a theorem in
all causal theories.

Proof (of Theorem 8)

First, we prove that if there are no disjunctions in the consequent of a canonical form
sentence, then the sentence is true if and only if the corresponding sentence is true for path
interception in directed graphs.

We will prove this by contradiction. Assume that there exists some theorem A = B,
where A and B are conjunctions of literals such that :

e A=— B is not a theorem in causal irrelevance

o A, = B, is a theorem in path interception in directed graphs

Since A, = B, is a theorem in path interception, then we must be able to generate B,
from A, using the axioms of path interception in directed graphs.

Also, since A = B is not a theorem in causal irrelevance, every such generation of
B, from A; must include the application of the axiom of transitivity. When the axiom of
transitivity is used, a disjunction is created. This disjunction must be used in the generation
of B,. By assumption, B, does not contain a disjunction. Also, none of the antecedents of
any of the axioms of path interception contain disjunctions. Thus the only way to use this
disjunction in the generation of B is to to resolve the disjunction with a negated clause.
Since A, started with no negated statements, and none of the axioms of path interception can
be used to create negated statements, we cannot resolve the disjunction with anything. Thus
the generation of B, from A, did not require an application of transitivity, a contradiction.
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Next, we prove that if a theorem A = BV (' is a theorem in causal irrelevance, then
either A= B is a theorem in causal irrelevance or A=-C"1is a theorem in causal irrelevance.
It A= BV is a theory in causal irrelevance, then we must be able to generate BV C' from
A using the axioms of causal irrelevance. Since no axiom creates a disjunction, the only way
to generate BV C from A is to either generate B from A and add C, or generate C' from A
and add B.

Thus, a causal irrelevance sentence is a theorem if and only if there is a path interception
theorem that corresponds to one of the Horn components of the original sentence. a

5 Conclusions

How do scientists predict the outcome of one experiment from the results of other experiments
run under totally different conditions? Such transfer of experimental knowledge, though it
is essential to scientific progress, involves inferences that cannot easily be formalized in the
standard languages of logic, physics, or probability.

The formalization of such inferences requires a language within which the experimental
conditions prevailing in one experiment can be represented, and the outcome of that exper-
iment can be posed as constraint in the design and analysis of the next experiment. The
description of experimental conditions, in turn, involves both observational and manipulative
sentences, and requires that manipulative phrases (e.g., “having no effect on,” “holding 7
fixed”), as distinct from observational phrases (e.g., “being independent of,” “conditioning
on Z”),” be given formal notation, semantical interpretation, and axiomatic characterization.
It turns out that standard algebras, including the algebra of equations, Boolean algebra, and
probability calculus, are all geared to serve observational sentences, but not manipulative
sentences.

This paper bases the semantics of manipulative sentences on a set of structural equations
that we call a causal theory. Unlike ordinary algebraic equations, a causal theory treats
every equation as an independent mathematical object attached to one and only one vari-
able. Actions are treated as modalities and are interpreted as the nonalgebraic operator of
replacing equations.

This semantics permits us to develop an axiomatic characterization of manipulative state-
ments of the form “Changing X will not affect Y if we hold Z constant,” that we propose
as the meaning of causal irrelevance: “X is causally irrelevant to Y in context 7Z.” This
axiomatization highlights the differences between causal and informational irrelevance, as
in “Finding X will not affect our belief in Y, once we know Z.” The former shows a closer
affinity to graphical representation than the latter. Under the deterministic definition, causal
irrelevance complies with all of the axioms of path interception in cyclic graphs, with the
exception of transitivity. This affinity leads to graphical methods of proving theorems about
causal relevance and explains, in part, why graphs are so prevalent in causal talk and causal
modeling.

“Philosophers, statisticians, and economists have been notoriously sloppy about confusing “holding Z
constant” with “conditioning on a given Z” [Pearl, 1995a].

23



Acknowledgments

This research was partially supported by Air Force grant #AFOSR/F496209410173, NSF
grant #IRI1-9420306, and Rockwell/Northrop Micro grant #94-100. We thank Joe Halpern
for commenting on the first draft of this paper and for noting that property 4.5.1 does not
hold in Lewis’ closest-world framework.

A

2.2.3

2.24

Appendix : Counterexamples

CIp(XW,2,Y) = CIp(X,Z,Y)V CIp(X, Z,W).

T =u
= {X, W, Y} binary w=(r & u) \l’
= {U;} binary y = Parity(xz,w, uy) Y
P(uy) = 0.5

Figure 10: Counterexample to sentence 2.2.3.

In Figure 10, we can see that CIp(XW,0,Y) & =CIp(X,0, W) & ~CIp(X,0,Y).

In this example, changing X can affect the probability of Y, and changing X can affect
the probability of W, but changing X and W together cannot affect the probability of
Y. Since changing X affects the value of W, it makes sense to think that intervening
on W while intervening on X would not interfere with the effect that X has on Y.
However, X does not completely control W. That is, when we only intervene on X,
U still has some effect on W. Controlling both X and Y removes the influence of U,
on W. As in the property 2.2.2, removing the connection between U; and W prevents
X from having an effect on Y.

Clp(XW,Z,Y)& Clp(XY,Z, W)= CIp(X,Z,Y)V Clp(X, Z,W).
In Figure 11, we can see that

P(w) = P(y) = 0.5

P(w|set(X = 1)) = P(y|set(X = 1)) = 0.75;

P(w|& g)) = 0.5 for all values of z,y; and

P(y|z,w) = 0.5 for all values of Z,w

Thus, C[p(XW,Q),Y) & CIp(XY,0,W) & ~(CIp(X,0,Y)V CIp(X, 0, W)).

This example actually contains two causal theories, each similar to the theory of ex-
ample 2.2.2. In one, W is a function of X,Y, and U;, and Y is a function of U;. As
in example 2.2.2, X can affect W when Y has the same value as U,, but it has no
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U, U,
Uy ifuy, =0 pr—
V ={X,W,Y} binary y= {Pamty(:p w,uy) ifuy =1 x/
U = {U;,U,} binary w { Pamty(x y,u;) ifuy =0
(75} if Ug = 1
P(uy) = P(uy) = 0.5

Figure 11: Counterexample to property 2.2.4.

effect on P(w) when Y is held constant. In the other, W is a function of Uy, and Y is
a function of X, W, and U;. Also as in 2.2.2, X can affect Y when W has the same
value as Uy, but it has no effect on P(w) when W is fixed. U; determines which model
is in effect at any given time. While intervening on only X can affect P(w) and P(y),
simultaneously changing X and Y together have no effect on P(w), and simultaneously
changing X and W together have no effect on P(y).

2.3 Clp(X,Z,WY)=> CIp(X,ZW,Y).

Ul /Ug
X W
r = Uy
V ={X,W,Y} binary W = uy \NY
U = {U;,U,} binary y=(x & (w XOR uy))
P(ul) = P(UQ) =0.5

Figure 12: Counterexample to property 2.3.

In the causal theory of Figure 12, CIp(X,0, YW )& =CIp(X,W,Y).
In this example, X does not have any effect on Y since P(y) = 0, and X can only act
as an inhibitor if Y. When we intervene on W, then it is possible for ¥ to have the
value 1, and X can affect the probability of Y. Thus, X can only affect ¥ when we
intervene on W, and X has no effect on W.

24 Clp(X, Z,Y)& Clp(X, ZY, W) = Clp(X, Z, WY).
In the causal theory in Figure 13, CIp(X,0,Y) & Clp(X,Y, W) & - CIlp(X,0, WY).
While changing X can affect P(w) (and hence P(y,w)) when Y is not held fixed, and
changing X has no effect on P(y), fixing Y blocks the effect that X has on W.

2.5.1 CIp(X,ZW,Y) & CIp(X,ZY, W)= CIp(X, Z,WY).
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T = Uy
V ={X,W,Y} binary Y = Uy \N
U = {U;,U,} binary w = Parity(z,y, us)
P(ul) = P(‘ug) =0.5

Figure 13: Counterexample to property 2.4.

U, U,
v/
X Y

T = Uy
V ={X,W,Y} binary Y = Uy \N
U = {U;,U,} binary w = Parity(z,y, us)
P(ul) = P(UQ) =0.5

Figure 14: Counterexample to property 2.5.1.

In Figure 14, CIp(X,W,Y) & CIp(X,Y,W) & ~CIp(X,0, WY).

Fixing W prevents X from altering the probability of Y, and fixing Y prevents X from
altering the probability of W, but X can change the probability of W (and hence the
probability of W & Y') if there is no intervention on Y.

Up to this point, all of the counterexamples have relied on some exogenous variable from
U having two different children in V. Obviously, this is not essential, since we could always
create similar examples in which each exogenous variable has exactly one child. For example,
in the theory of Figure 14, we could replace U, with Z to get the theory of Figure 15.

In this theory, all of the exogenous variables U have exactly one child, yet property 2.5.1
still does not hold. There is still an undirected cycle in the underlying causal graph, which
is required for property 2.5.1 to be false. Properties 2.2.1 — 2.6 are all true for all causal
theories whose causal graphs are trees. In addition, properties 2.2.1-2.5.2 are true for all
causal theories whose causal graphs are polytrees. Property 2.6, as we will see now, is not
always true, even when we restrict its causal graph to be a polytree.

2.6 CIp(X,2,Y) = Clp(a, Z,Y)V Clp(X,Z,a) VYa ¢ XUZUY,

In the causal theory of Figure 16, CIp(X,0,Y)&-CIp(W, 0, Y)&—CIp( X, 0, W)&W ¢
XUZUY.

X can only cause a minor change in W, while a large change in W is required to affect

Y. Thus, X can affect W, and W can affect Y, but X has no effect on W. Even if we
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r = Uy v
V= {X,W,Y,Z} binary 77" W
U = {Uy, Uy} binary w = Parity(z,y, z) w

Z = U3

P(uy) = P(uz) = 0.5

Figure 15: Counterexample to 2.5.1, such that each variable in U has a single child.

T = Uy w
V:{X7W7Y}7xvy€{071}7‘1’96{0717273} w=x+2%uy \\k
U={U,Us} uy,uy € {0,1} y=(w>1)

Pluy=1)=Pluy; =1) = 0.5

Figure 16: Counterexample to property 2.6.

restrict all variables to be binary, transitivity will not hold. For this counterexample, W
could be split into 4 binary variables Wy ... Wy, with f,, = =(z V uy), f,,, = = & —ug,
Jow, =2 & g, fy, =2 & ug, fy = ws V wy. Section 4.5 further elaborates this
example.
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