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Abstract

This paper develops a set of graphoid-like axioms
for causal relevance, that is, statements of the form:
“Changing X will not affect Y if we hold Z constant”.
Both a probabilistic and deterministic definition of
causal irrelevance are proposed. The probabilistic def-
inition allows for only two axioms, unless stability is
assumed. Under the stability assumption, probabilis-
tic causal irrelevance is equivalent to path intercep-
tion in cyclic graphs. The deterministic definition al-
lows for all of the axioms of path interception in cyclic
graphs, with the exception of transitivity.

Introduction

In (Geiger, Verma, & Pearl 1990), a set of ax-
ioms was developed for a class of relations called
graphoids. These axioms characterize informational
relevance among observed events based on the seman-
tics of conditional independence in probability calcu-
lus. This paper develops a parallel set of axioms for
causal relevance, that is, the tendency of certain events
to affect the occurrence of other events in the physical
world, independent of an agent’s epistemic state. In-
formational relevance is concerned with statements of
the form “X is conditionally independent of Y given
7" which means that, given the value of Z, gaining in-
formation about X gives us no new information about
Y. Causal relevance is concerned with statements of
the form “X is causally irrelevant to Y given Z,” which
we take to mean: if we physically fix the value of Z,
then changing X will not alter the value of Y.

Axiomatic characterization of causal relevance may
serve as a normative standard for theories of action as
well as a guide for developing representation schemes
(e.g., graphical models) for planning and decision-
making applications.

We provide two formal definitions of causal irrel-
evance, a probabilistic definition and a deterministic
definition. The probabilistic definition, which equates
causal irrelevance with inability to change the proba-
bility of the effect variable, has intuitive appeal but is
inferentially very weak; it does not support a very ex-
pressive set of axioms unless further assumptions are

made about the underlying causal theory. If we add
the stability assumption (i.e., that no irrelevance can
be destroyed by changing the nature of the individual
processes in the system), then we obtain the same set
of axioms as the one governing path interception in
directed graphs. The deterministic definition, which
equates causal irrelevance with inability to change the
effect variable in any state of the world, allows for a
richer set of axioms without making any assumptions
about the causal theory. It supports all the graph in-
terception axioms except transitivity.

Causal Theories

We define causal theories in the following way (see

(Pearl 1995a)).
Definition 1 A causal theory is a J-tuple

T =< V, U, P(u), {fl} >
where

(i) V={X1,...,Xn} is a set of endogenous variables
determined within the system,

(i1) U ={U,...,Un} is a setl of exogenous variables
that represent disturbances, abnormalities, assump-
tions, or boundary conditions,

(iii) P(u) is a distribution function over Uy, ..., Up,
and

(iv) {fi} is a set of n deterministic, non-trivial func-
tions, each of the form

X;= fi(PAj,u) i=1,...n PA;CV\X;

The members of the set PA; (connoting parents) are
often called the direct causes of X;. We will assume
that the set of equations in (iv) has a unique solution
for X1,..., X, given any value of the disturbances
Uiy...,Un. Thus we can consider each variable Y n
V to be a function of the disturbances U n the causal
theory T, and write Y = Yp(u).

We will consider local concurrent actions of the form
do(X = z), which represent external intervention that
forces the variables in X to attain the values z.



Definition 2 (Effect of actions) The effect of the ac-
tion do(X = z) on a causal theory T is given by a
subtheory T, of T, where Ty is obtained by deleting
from T all equations corresponding to variables in X
and substituting the equations X = x instead.

We will also assume each variable Y € V to be a
unique function of the disturbances U in any theory
Ty, thus, Y = Yp_(u). For brevity, the subscript T is
often omitted, leaving Yy (u).

For every set of variables Y C V|

Py = >

{u | Y(u)=y}

The probability induced by the action do(X = =z),
is defined in the same manner, through the function
Yz (u) induced by the subtheory T;. Using & to abbre-
viate do(X = z) we obtain

P(yli) = Pldo(X =)= 3

{u | Ye(u)=y}

P(u).

P(u).

Axioms of Probabilistic Causal
Irrelevance

Definition 3 (Probabilistic Causal Trrelevance). X is
probabilistically causally irrelevant to'Y, given 7, writ-

ten Clp(X,2,Y), iff

Vz,z',y,z P(y|z,z) = P(y|z,2")

(Read: Once we hold 7 fized (at z), changing X will
not affect the probability of V.)

If we remove the “hat” from the definition above, we
get the standard definition of conditional independence
in probability calculus, denoted (X, 7,Y), which are
governed by the graphoid axioms (Geiger, Verma, &
Pearl 1990) below.

1.1 (Symmetry) I(X, Z2,Y) = I(Y, Z, X)

1.2 (Decomposition) I(X, Z,YW) = I(X, Z,Y)
1.3 (Weak union) I(X, Z,YW) = I(X, ZW,Y)
1.4 (Contraction) I(X,Z,YW) = I(X, ZW,Y)

1.5 (Intersection)
I(X, ZY, WYNI(X,ZW,Y) = I(X, Z,YW)
Intersection requires a strictly positive probability
distribution.

One of the most salient difference between informa-
tional and causal relevance is the property of symme-
try, which is encapsulated in axiom 1.1.

Another basic difference between informational ir-
relevance and causal irrelevance is that in the former,
Vo, 2'P(ylz,z) = P(ylz,2') = Yz P(y|z, ) = P(ylz),
while in the latter Vz,2'P(y|Z, &) = P(y|z, &) =%~
VaP(yl,2) = P(yl2).

The question we attempt to answer in this section
is whether the relation of causal irrelevance, CIp(-), is
governed by a set of axioms similar to those governing

informational irrelevance 7(-). An extreme way of mo-
tivating this question would be to ask whether there
are any constraints that prohibit the assignment of ar-
bitrary functions P(y|&) to any pair (X,Y) of variable
sets in V, in total disregard of the fact that P(y|#)
represents the probability of (Y = y) induced by phys-
ically setting X to z in some causal theory 7. Our
finding indicate that, although the assignment P(y|Z)
is not totally arbitrary, it is only weakly constrained
by axioms of causal irrelevance.

The only two axioms which we have found to con-
strain causal irrelevance are the following:

2.2.1 (Right-Decomposition)

CIp(X,Z,YW)=> CIp(X,Z,Y) A CIp(X,Z, W)

2.5.2 (Left-

Intersection) CIp(X,ZW,Y) A CIp(W,ZX,Y )=
CIp(XW,Z,Y)

Many seemingly intuitive properties, however, do
not hold. For instance, none of the following state-
ments hold for all causal theories.

2.2.2 (Left-Decomposition-1)

CIp(XW,Z,Y) = CIp(X,Z,Y)V CIp(W,Z,Y)

2.2.3 (Left-Decomposition-2)

CIp(XW,Z,Y) = CIp(X,Z,Y)V CIp(X,Z,W)

2.2.4 (Left-Decomposition-3)

CIp(XW,Z,Y) A CIp(XY,Z,W) =
CIp(X,Z,Y)V CIp(X,Z, W)

2.3 (Weak Union) CIp(X,Z,WY) = CIp(X,ZW,Y)

2.4 (Contraction) CIp(X,7,Y) A CIp(X, 7Y, W) =
CIp(X,Z, WY)

2.5.1 (Right-

Intersection) CIp(X,ZW,Y) A CIp(X,ZY, W)=
CIp(X,Z, WY)

2.6 (Transitivity)
CIp(X, Z,a)

CIp(X,2,Y) = Clp(a,Z,Y) V
Va ¢ XUZUY

The sentences above were tailored after the graphoid
axioms with the provision that symmetry does not
hold, thus requiring left and right versions. Many of
these sentences have intuitive appeal and, yet, are not
sound relative to the semantics of P(y|%).

The full paper contains counter-examples to prop-
erties 2.2.2 — 2.5.1, and 2.6. Here, we give a counter-
example for the property 2.2.2, stating (siplified) that
if X and W jointly have no effect on Y, then neither
X nor W alone will have an effect on Y.

2.2.2 CIp(XW,Z,Y) = CIp(X,Z,Y)V CIp(W,Z,Y).

X/ Il\w
W



V = {X,W,Y} binary f,(u1) = u;
U = {U;} binary Jw (u1) = u3

CIP(XW,Q),Y) A ﬁCIP(X,@,Y) A ﬁCIP(W,(b,Y)

Numeric Constraints

Although Definition 3 imposes only weak constraints
(axiom 2.2.1 and 2.5.2) on the notion of probabilistic
causal irrelevance, the probability assignments P(y|),
which describe the effects of actions in the domain,
are constrained nevertheless by non-trivial numeri-
cal bounds. For instance, the inequality P(y|Z,Z2) >
P(y,z|2) must hold in any causal theory. This can
easily be shown by the definition of P(y,z|Z) and
P(y|z,%). Consider all values u such that Y;(u) = y
and Z;(u) = z. Clearly, for any of these u’s, ;. (u) =
Yy, since Z is being held to the same value that it would
have obtained without intervention. Additional con-
straints are explored in (Pearl 1995b).

Axioms of Causal Irrelevance for Stable
Distributions

A more expressive set of causal irrelevance axioms is
obtained if we confine the analysis to causal theories
that represent stable distributions, that is, distribu-
tions whose irrelevances are implied by the structure
of the causal theory, and, hence, remain invariant to
changes in the forms of each individual functions f; and
probability P(u). The functions f; of a causal theory
T define a directed (possibly cyclic) graph G(T') in the
following way: Each node in G(T') represents a variable
in V, and there is a directed arc from X to Y in G(T')
iff X € PAy. We can define a stability condition,
similar to (Pearl & Verma 1991), as follows:

Definition 4 (Stability) Let T be a causal theory,
G(T) be the directed graph described by T, and CI(T)
represent all probabilistic causal irrelevances in T. A
causal theory T is stable iff VI" such that G(T) =
G(T"), we have CI(T) C CI(T").

Stability requires irrelevance to be determined by
the structure of the equations, and not merely by the
parameters of the functions. Thus a causal theory is
not stable if we can remove an irrelevance relationship
by replacing an equation or set of equations to obtain
a new theory with fewer irrelevance statements. In the
counter-example to 2.2.2, for example, a minor change
in the form of one of the equations would destroy an
irrelevance, thus the theory is not stable.

Theorem 1 If a causal theory T is stable, then X 1is
probabilistically causally irrelevant to Y given Z in T
iff 7 antercepts all directed paths from X to Y n the
graph G(T') defined by T'. That is:

CIP(Xa ZaY) — RG(T)(X: Z:Y)

Since CIp(X,Z,Y) <= Rgr)(X,Z,Y) in stable
causal theories, probabilistic causal irrelevance is com-

pletely characterized by the axioms of path intercep-
tion in directed graphs. A complete set of such axioms

fy (2, w,ur) = Parity(z, w, u1) was developed in (Paz & Pearl 1994) and is given be-

low:

3.2.1 (Right-Decomposition)

CIp(X,Z,YW)= CIp(X,Z,Y) A CIp(X,Z,W)

3.2.2 (Left-Decomposition)

CIp(XW,Z,Y)=> CIp(X,Z,Y) N CIp(W,Z,Y)

3.4 (Strong Union)
CIp(X,Z2,Y) = CIp(X,ZW,Y) ¥ W

3.5.1 (Right-

Intersection) CIp(X,ZW,Y) A CIp(X,ZY, W)=
CIp(X,Z,YW)

3.5.2 (Left-

Intersection) CIp(X,ZW,Y) A CIp(W,ZX,Y )=
CIp(XW,Z,Y)

3.6 (Transitivity)
CIp(X, Z,a)

CIp(X,2,Y) = CIp(a,Z,Y) V
Va ¢ XUZUY

Axioms of Deterministic Causal
Irrelevance

The notion of irrelevance obtains a deterministic defi-
nition when we consider the effects of an action condi-
tioned on the state of the world u.

Definition 5 (Causal Irrelevance) X is causally irrel-
evani toY given 7 in a causal theory T, Clp(X,Z,Y),
of

Vu,z,z, 2" Yy, (u) = Yoo (u)

i every subtheory of T,.

This definition captures the intuition “If X 1is
causally irrelevant to Y, then X cannot affect Y in
any circumstance.” It is stronger than the probabilis-
tic definition, in that CIp(X,Z,Y) = CIp(X,Z,Y).

With this definition of Causal Irrelevance, we have
the following axioms:

4.2.1 (Right-Decomposition)

CIp(X,Z,YW)= CIp(X,Z,Y) A CIp(X,Z,W)

4.2.2 (Left-Decomposition)

CIp(XW,Z,Y) = CIz(X,Z,Y) N CIp(W,Z,Y)

4.4 (Strong Union)
Clr(X,Z2,Y) = CIz(X, ZW,Y) ¥ W

4.5.1 (Right-

Intersection) CIp (X, ZW,Y) A CIp(X,ZY, W)=
CIr(X,Z,YW)

4.5.2 (Left-

Intersection) CIp (X, ZW,Y) A CIp(W,ZX,Y)—
CIr(XW,Z,Y)

The following axiom, however, does not hold in ev-

ery causal theory :

4.6 (Transitivity) CIr(X,7,Y) = Clrp(a,Z,Y) V
CIr(X,Z,a) Ya ¢ XUZUY



45.1 (By
CIp(X,ZW,Y) A CIp(X, ZY, W) A =CIp(X, Z,YW).

The proofs of these axioms will use the following
theorems :

Theorem 2 (composition) For any variables W, XY
in a causal theory, Wy(u) = w = Yy (u) = Yo (u)

Theorem 3 (reversibility) For any variables X,Y and
W¢ (wa =Yy, ny =w :>Yx = y)

Note that reversibility does not hold in Lewis’
closest-world framework (Lewis 1973). Y = y may
hold in all closest w-worlds, W = w may hold in all
closest y-worlds and, still, ¥ = y may not hold in our
world.

We give a proof for only one of the axioms, the others
are similar.

Contradiction) Assume

=CIp(X,Z,YW) implies Jz,z',z  (Vy.(u) #
Yoz (1)) V (Wes(u) # Wy (u)). Since W and YV are
symmetric, we will only consider Y. Consider the
values of z,z'z,u such that Y;,(u) # Yz, (u). Let
y=Y:(u) and ¥ = Yy, (u).

By composition, Yy (u) = Yy (u) for w = Wy, (u).
By assumption, Y.y (u) = Yy (u). Also by com-
position, Wy, (u) = Wasy(u) for y = Yz, (u). By
assumption, W,y (u) = Wai,y(u). By reversibility,
since y is a solution to the simultaneous equations
Y = Ypiz and w = Wyiyy, then y must also be a
solution to Yz, (u). Thus y = ¥/, a contradiction.
We can use a symmetric arguement to show that
Wy (u) # Wer.(u) also leads to a contradiction.

Why Transitivity Fails in Deterministic
Causality
Causal transitivity is a property that makes intuitive
sense. If a variable A has a causal influence on B, and
B has a causal influence on C', one would think that
A would have causal influence on C'. However, this
is not always the case, even in deterministic causality.
Consider the following causal theory :

Uy

o
\
!

V={X, WY}, z,ye{0,1}, we{0,1,2,3}
U=A{U1,Us} u1,us € {0,1}

P(u1) = P(u2) = 0.5 f(z,u2) =2+ 2%us
Fi(ur) = ug fy(w) = (w>1)

CI7(X,0,Y) A=CIp(W,0,Y) A=CIp(X,0, W) AW ¢

XuzZUyY

In this example, X is not causally irrelevant to W, and
W is not causally irrelevant to Y, but X is causally
irrelevant to Y. The intuition behind this example is
that changing X can only cause a minor change in W,
and Y only responds to large changes in W.

Deterministic Causal Irrelevance and
Directed Graphs

Comparing axioms 3.2-3.5 to 4.2-4.5, we see that de-
terministic causal irrelevance is quite similar to path
interception in a directed graph. In fact, the two no-
tions are related in the following way :

Theorem 4 If 7 blocks all directed paths between X
and Y in the graph G(T) defined by T, then X is

causally irrelevant to Y given 7.

One would like, of course, to have a graph for which
the implication goes both ways. However, transitivity
holds in graph interception and not in CIp(-).

Thus the graph G(T') defined by a causal theory T is
an Irrelevance-Map of T' (every path interception in the
graph corresponds to a valid irrelevance in the theory),
but it is not a perfect map, (not every irrelevance in the
theory corresponds to path interception in the graph.)
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