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Whenever we undertake to evaluate the effect of
one factor (X) on another (Y'), the question arises as
to whether we should adjust our measurements for
possible variations in some other variable, Z, some-
times called “covariate”, “concomitant” or “con-
founder”. Adjustment amounts to partitioning the
population into groups that are homogeneous rela-
tive to Z, assessing the effect of X on Y in each
homogeneous group and, finally, averaging the re-
sults. The importance of such adjustment has been
recognized as early as 1899, when Karl Pearson,
the founder of modern statistics, discovered what in
modern terms would be called the Simpson’s para-
dox: Any statistical relationship between two vari-
ables may be reversed or negated by including addi-
tional factors in the analysis.

The classical case demonstrating Simpson’s rever-
sal is the study of Berkeley’s alleged sex bias in grad-
uate admission [Bickel et al., 1975], where overall,
data show a higher rate of admission among male
applicants but, broken down by departments, data
show a slight bias toward female applicants.

Despite a century of analysis, the Simpson’s re-
versal phenomenon continues to “trap the unwary”
[Dawid, 1979] and the main question — whether an
adjustment for a given covariate Z is appropriate
in any given study — continues to be debated infor-
mally, on a cases by case basis, resting on folklore
and intuition rather than on hard mathematics. The
statistical literature is remarkably silent on this is-
sue and, aside from the standard advice that one
should not adjust for a covariate that is affected by
the putative cause (X), it provides no further guide-
lines as to what covariates would be admissible for
adjustment and what assumptions would be needed
for making this this determination.! In the Berke-

IMost of the statistical literature is satisfied with infor-
mal warnings that “Z should be quite unaffected by X”
[Cox, 1958, page 48], which is necessary but not sufficient,
or that X should not precede Z [Shafer, 1995, page 294],
which is neither necessary nor sufficient. In some aca-
demic circles, a criterion called “ignorability” is invoked
[Rosenbaum and Rubin, 1983], which merely paraphrases the
problem in the language of counterfactuals. Simplified, it
reads: Z is an admissible covariate relative to the effect of
X on Y if, for every z, the value that Y would obtain had
X been z is conditionally independent of X, given Z. Since
counterfactuals are not observable, and judgments about con-
ditional independence of counterfactuals are not readily as-
sertable from ordinary understanding of causal processes, ig-

ley story, for example, if we suspect that a certain
undisclosed attribute of a candidate (e.g., music ap-
titude) has influenced both the admission decision
and applicants’ choice of departments, then it is not
quite clear whether adjusting for department choice
would reduce or increase bias in assessing alleged sex
discrimination in admissions. More significantly, it
is not uncommon to find trained statisticians dis-
agreeing on such decisions, even if the confounding
attribute can safely be assumed gender-independent.
A concrete controversy that arose out of the problem
of covariate adjustment is the episode of “reverse re-
gression” which occupied the social science literature
in the 1970’s: Should we, in salary discrimination
cases, compare salaries of equally qualified men and
women or, instead, compare qualifications of equally
paid men and women. Another controversy, known
as the Lord Paradox, originated with the question of
whether we should adjust for socioeconomic status
in assessing the effect of tutoring program on reading
score, knowing that children from well to do families,
who do better on the reading test, are more likely
to be in the program Lord paradox, in its various
manifestations, still lingers on, in the psychometric
literature [Wainer, 1991].

The primary reason for the persistence of confu-
sion over the appropriateness of statistical adjust-
ment is that the answers depend on causal assump-
tions, and statisticians, by and large, are reluctant to
discuss such assumptions forthrightly. First, causal
assumptions (e.g., that the rooster’s call does not
cause the sun to rise) are perceived less objective
than typical statistical assumptions (e.g., that two
variables are correlated), presumably because the
former cannot be established by observational stud-
ies. Second, even when causal facts are established
to the satisfaction of statistical standards (say, by
subjecting our rooster to controlled randomized ex-
periment), we still lack an adequate mathematical
notation to state those assumptions symbolically —
causal relationships cannot be distinguished from
statistical associations in the standard language of
probability theory.

The purpose of this paper is to report a formal
and general solution to the problem of statistical
adjustment using the language of graphs. This lan-
guage [Pearl, 1995], which can be traced back to the

norability has remained a theoretical construct, with only mi-
nor impact on practice. Practicing epidemiologists, for exam-
ple are still debating the meaning of ”confounding”, and often
adjust for wrong sets of covariates [Weinberg, 1993].



geneticist Sewal Wright (1919), permits the investi-
gator to express causal assumptions in the form of
arrows among quantities of interest, and, once the
graphs are completed, a simple procedure would de-
cide whether a proposed adjustment is appropriate
relative to the quantity under evaluation.

The procedure is described in the following five
steps, which determine whether a set of variables Z
should be adjusted for, when we we wish to evaluate
the total effect of X on Y.

Procedure:?

Input: Directed acyclic graph in which three sub-
sets of nodes are marked X,Y and Z.

Output: A decision whether the effect of X on YV
can be determined by adjusting for Z.

Step 1. Exit with failure if any node in Z is a de-
scendant of X,

Step 2. (simplification) Simplify the diagram by
eliminating all nodes (and their incident edges)
which are not ancestors of either X, Y or Z.

Step 3. (triangulation) Add an undirected edge be-
tween any two ancestors of Z which share a
common child.

Step 4. (pruning) Eliminate all arrows emanating
from X.

Step 5. (symmetrization) Strip the arrows from all
directed edges.

Step 6. (test) If, in the resulting undirected graph,
Z intercepts all paths between X and Y, then
Z is an appropriate covariate for statistical ad-
justment. Else, Z should not be adjusted for.

When failure occurs in Step 1, it does not mean
that the measurement of Z cannot be useful for
estimating the effect of X on Y; nonstandard ad-
justments might then be used instead of the stan-
dard method of partitioning into groups homoge-
neous relative to Z (see [Galles and Pearl, 1995]).
Finally, if the objective of the study is to eval-
uate the “direct”, rather than the “total” effect

2This procedure is an adaptation of the back-door
criterion in [Pearl, 1995], using the triangulation test
[Lauritzen et al., 1990] of d-separation [Pearl, 1988].

of X on Y, as is the case in the Berkeley ex-
ample, then other graphical procedures are avail-
able to determine the appropriate adjustment (see
[Pear]l and Robins, 1995]), which embody the re-
quirement that other factors (of ') should be “held
constant”.
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