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Abstract

Competing theories of causation based on statistical and power accounts are as-
sessed and related to the normative theories of probabilistic causality and structural
modeling. Recent advances in graphical models enable us to cast discussions of these
theories in precise mathematical language, thus clarifying their strengths and limita-
tions. The inferential machinery that accompanies the graphical language provides
solutions to a number of enduring problems of causal inference, including the analysis
of actions, and the processing of counterfactual utterances.

1 Introduction

The central aim of many empirical studies in the physical, behavioral, social, and biological
sciences is the elucidation of cause-effect relationships among variables. It is through cause-
effect relationships that we obtain a sense of a “deep understanding” of a given phenomenon,
and it is through such relationships that we obtain a sense of being “in control,” namely,
that we are able to shape the course of events by deliberate actions or policies. It is for these
two reasons, understanding and control, that causal thinking is so pervasive, popping up
in everything from everyday activities to high-level decision making: a car owner wonders
why an engine won’t start; a cigarette smoker would like to know, given his/her specific
characteristics, to what degree his/her health would be affected by refraining from further
smoking; a policy maker would like to know to what degree anti-smoking advertising would
reduce health care costs; and so on. Although a plethora of data has been collected on
cars and on smoking and health, the appropriate methodology for extracting answers to
such questions from the data has been fiercely debated, partly because some fundamental
questions of causality have not been given fully satisfactory answers.
The two fundamental questions of causality are:

1. What empirical evidence is required for legitimate inference of cause-effect relation-
ships?

2. Given that we are willing to accept causal information about a certain phenomenon,
what inferences can we draw from such information, and how?



The primary difficulty is that we do not have a clear empirical semantics for causality;
statistics teaches us that causation cannot be defined in terms of statistical associations,
while any philosophical analysis of causation in terms of deliberate control quickly reaches
metaphysical dead-ends over the meaning of free will. Indeed, Bertrand Russell (1913) noted
that causation plays no role in physics proper and offered to purge the word from the language
of science. Karl Pearson (1911) advocated such a purge from statistics which, regretfully,
has been more successful than that envisioned by Russell.

Philosophical difficulties notwithstanding, scientific disciplines that must depend on causal
thinking have developed paradigms and methodologies that successfully bypass the unsettled
questions of causation and that provide acceptable answers to pressing problems of exper-
imentation and inference. Social scientists, for example, have adopted path analysis and
structural equation models, and programs such as LISREL have become common tools in
social science research. Econometricians, likewise, have settled for stochastic simultaneous
equations models as carriers of causal information and have focused most of their efforts
on developing statistical techniques for estimating the parameters of these models. Statisti-
cians, in contrast, have adopted Fisher’s randomized experiment as the ruling paradigm for
causal inference, with occasional excursions into its precursor — the Neyman-Rubin model of
potential response [Neyman, 1923, Rubin, 1974].

None of these paradigms and methodologies can serve as an adequate substitute for a
comprehensive theory of causation, one suitable for explaining the ways people infer and
process causal relationships. The structural equations model is based largely on informal
modeling assumptions and has hardly been applied beyond the boundaries of linear equations
with Gaussian noise. The statisticians’ paradigm of randomized experiments is too restrictive
in natural, pre-scientific learning environment, and it does not allow for the integration
of statistical data with the rich body of (previously acquired) causal knowledge that is
available in ordinary discourse. And philosophers have essentially abandoned the quest for
the empirical basis of causation. Early attempts to reduce causality to probabilities got
entangled in circular definitions (see Subsection 2.2) and recent theories, based on processes
[Salmon, 1994] or capacities [Cartwright, 1989, chapter 4], though conceptually appealing,
have not been formalized with sufficient precision to describe how people learn, represent,
and use causality in ordinary practice.

A new perspective on the problem of causation has recently emerged from a rather
unexpected direction — artificial intelligence (Al). When encoding and processing causal
relationships on digital machines became necessary, the problems and assumptions that
other disciplines could keep dormant and implicit had to be explicated in great detail, so as
to meet the levels of precision necessary in programming.

Explicating cause-effect relationships has become a concern central to several areas of
Al: natural language processing, automated diagnosis, robot planning, qualitative physics,
and database updates. In the area of robotics, for example, the two fundamental problems
of causation were translated into concrete, practical questions:

1. How should a robot acquire causal information through interaction with its environ-
ment?
2. How should a robot process the causal information it receives from its creator-programmer?

Attempts to gloss over difficulties with causation quickly result in a programmer’s nightmare.
For example, when given the information “If the grass is wet, then the sprinkler must have



been on” and “If I break this bottle, the grass will get wet,” the computer will conclude “If
I break this bottle, the sprinkler must have been on.” The swiftness and concreteness with
which such bugs surface has forced computer scientists to pinpoint loosely stated assumptions
and then assemble new and more coherent theories of actions, causation, and change.

The purpose of this paper is to summarize recent advances in causal reasoning, to show
how they clarify, unify, and enrich previous approaches in philosophy, economics, and statis-
tics, and to relate these advances to two models of causal judgment that have been proposed
in the psychological literature: the statistical contingency model [Jenkins and Ward, 1965,
Cheng, 1992] and the power-based model [Shultz, 1982]. The statistical contingency model
and its variants are grounded in the philosophical literature of probabilistic causality, to be
described and assessed in Section 2. Related advancements in probabilistic causal discovery,
based on the language of graphs [Pearl and Verma, 1991, Spirtes et al., 1993] are described
in Section 3. It is shown that graphs offer a powertul language for formulating and resolving
some of the fundamental problems in probabilistic causality and, in addition, that graphs
offer techniques of extracting causal relationships from intricate patterns of probabilistic
dependencies, including distinct patterns created by unobserved factors. The power-based
model takes after the structural equations models used in econometrics, in which causal
relationships are defined in terms of hypothetical manipulative experiments. A general, non-
parametric formulation of structural equations models is given in Section 4, and is shown to
support a wide variety of causal relationships, including predictive, abductive, manipulative
and counterfactual modes of reasoning.

Integrated models, in which causal judgment is shaped by both statistical data and pre-
conceived notions of power [Cheng et al., 1995, this volume], are more closely related to
an action calculus formulated in [Pearl, 1994]. In this formulation, prior causal knowledge
is encoded qualitatively in the form of a graph containing both observed and unobserved
variables, and the magnitudes of causal forces in the domain are inferred from both the
probability of the observed variables and the topological features of the graph. The calculus
(described in Section 4.4) admits two types of conditioning operators: ordinary Bayes con-
ditioning, P(y|X = ), which represents the observation X = z, and causal conditioning,
P(y|do(X = z)), read: the probability of ¥ = y conditioned on holding X constant (at x) by
deliberate action. Given a mixture of such observational and causal sentences, together with
the topology of the causal graph, the calculus derives new conditional probabilities of both
types, thus enabling one to quantify the effects of actions and observations, to specity con-
ditions under which manipulative experiments are not necessary, and to suggest additional
observations or auxiliary experiments from which the desired inferences can be obtained.

I propose this formalism as a basis for theories of causal learning and, in particular,
how humans integrate information from diverse sources — passive observation, manipulative
experimentation, and linguistic instruction — to synthesize a coherent causal picture of the
environment.

2 Probabilistic Causality

Probabilistic causality is a branch of philosophy that attempts to explicate causal relation-
ships in terms of probabilistic relationships. This attempt is motivated by several ideas and
expectations. First and foremost, probabilistic causality promises a solution to the centuries-



old puzzle of causal discovery, that is, how humans discover genuine causal relationships from
bare empirical observations, free of any causal preconceptions. Given the Humean dictum
that causal knowledge originates with human experience and the (less compelling but cur-
rently fashionable) assumption that human experience is encoded in the form of a probability
function, it is natural to expect that causal utterances might be reducible to a set of relation-
ships in some probability distribution that is defined over the variables of interest. Second,
in contrast to deterministic accounts of causation, probabilistic causality offers substantial
cognitive economy. Physical states and physical laws need not be specified in minute detail
because instead they can be summarized in the form of probabilistic relationships among
macro-states so as to match the granularity of natural discourse. Third, probabilistic causal-
ity is equipped to deal with the modern (i.e., quantum theoretical) conception of uncertainty,
according to which determinism is merely an epistemic fiction, and nondeterminism is the
fundamental feature of physical reality.

The formal program of probabilistic causality owes its inception to H. Reichenbach (1956)
and I.J. Good (1961) and has subsequently been pursued by P. Suppes (1970), B. Skyrms
(1980), R. Otte (1981), W. Spohn (1980), W.C. Salmon (1984), N. Cartwright (1989),
and E. Eells (1991). The current state of this program is rather disappointing consider-
ing its original aspirations. Salmon has abandoned the effort altogether, concluding that
“causal relations are not appropriately analyzable in terms of statistical relevance relations”
[Salmon, 1984, page 185]; instead, he has proposed an analysis in which “causal processes”
are the basic building blocks. More recent accounts by Cartwright and Eells have resolved
some of the difficulties encountered by Salmon, but at the price of, on the one hand, com-
plicating the theory beyond recognition and, on the other, compromising its original goals.
The following is a brief account of the major achievements and difficulties of probabilistic
causality, as elaborated in Cartwright (1989) and Eells (1991).

2.1 Temporal ordering

Standard probabilistic accounts of causality assume that, in addition to a probability func-
tion P, we are also given the temporal order of the variables in the analysis. This is under-
standable, considering that causality is an asymmetric relation, while statistical relevance is
symmetric. Lacking temporal information, it would be impossible, for example, to decide
which of two dependent variables is the cause and which the effect, since every joint dis-
tribution P(z,y) induced by a model in which X is a cause of ¥ can also be induced by a
model in which Y is the cause of X. Thus, any method of inferring that X is a cause of Y
must also infer, by symmetry, that Y is a cause of X. By imposing the constraint that an
effect never precede its cause, the symmetry is broken and causal inference can commence.

The reliance on temporal information has its price though, as it excludes a priori the
analysis of cases in which the temporal order is not well defined, either because processes
overlap in time or because they (appear to) occur instantaneously. For example, one must
give up the prospect of determining (by uncontrolled methods) whether sustained physical
exercise contributes to low cholesterol levels or, the other way around, low cholesterol levels
enhance the urge to engage in physical exercise. Likewise, the philosophical theory of prob-
abilistic causality would not attempt to distinguish between the claims “tall flag poles cause
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long shadows” and “long shadows cause tall flag poles,” in which, for all practical purposes,

the putative causes and effects occur simultaneously.



We shall see when we discuss graphical methods that some determination of causal di-
rectionality can be made from atemporal statistical information, albeit with a weakened set
of guarantees.

2.2 Circularity

Despite the reliance on temporal precedence, the criteria that philosophers have devised for
identifying causal relations suffer from glaring circularity: In order to determine whether an
event C is a cause of event F, one must know in advance how other factors are causally
related to €' and E. Such circularity emerges from the need to define the “background
context” under which a causal relation is evaluated, since the intuitive idea that causes
should increase the probability of their effects must be qualified by the condition that other
things are assumed equal. For example, striking a match is a cause for fire, but only when
oxygen is present, when the match is dry, and so on. Thus, it seems natural to define

Definition 1 C is causally relevant to E if there is at least one condition F' in some back-

ground context K such that P(E|C,F) > P(E|-C, F).

But what kind of conditions should we include in the background context? On the
one hand, insisting on a complete description of the physical environment would reduce
probabilistic causality to deterministic physics (barring quantum-level considerations). On
the other hand, ignoring background factors altogether, or describing them too coarsely,
would introduce spurious correlations and other confounding effects. A natural compromise
is to require that the background context itself be “causally relevant” to the variables in
question, a move that is the source of circularity in the definition of statistical causality.

The dangers of describing the background too coarsely will be illustrated via two exam-
ples, one using the celebrated Simpson’s paradox, the other the issue of interactive factors.

Simpson’s paradox [Simpson, 1951], first encountered by Pearson in 1899 [Aldrich, 1994],
refers to the phenomenon whereby an event C' seems to increase the probability of £ in a given
population p and, at the same time, decrease the probability of £ in every subpopulation of
p. In other words, if /' and —F are two complementary events describing two subpopulations,
we might well encounter the inequalities

P(E|C) > P(E|-C) (1)
P(E|C,F) < P(E|-C, F) 2)
P(E|C,~F) < P(E|~C,~F) (3)

While such order reversal might not surprise students of probability, it may become para-
doxical when given a causal interpretation. For example, if we associate ' with taking a
certain drug, £ with recovery, and F' with being a female, under the causal interpretation
of Egs. (1)-(3) the drug would be harmful to both males and females and beneficial to the
population as a whole. Intuition deems such a result impossible, and correctly so.

The explanation for Simpson’s paradox is that the inequality

P(E|C) > P(E|-C)

is interpreted erroneously. It is not a statement about C' being a positive causal factor for £
because the inequality may be due to spurious confounding factors that may cause both '



and K. In our example, for instance, the drug may appear beneficial on the average because
the women, who recover (despite the drug) more often than the men, are also more likely
than the men to use the drug.

The standard method for dealing with potential confounders of this kind is to “hold them
fixed,”! namely, to condition the probabilities on any factor that might cause both C' and
E. In our example, if being a female (F') is perceived to be a cause for both recovery (£)
and drug usage (C'), then the effect of the drug needs to be evaluated separately for men
and women (as in Egs. (2)-(3)) and averaged accordingly.

Here we see the emergence of circularity: In order to determine the causal role of C'
relative to E (e.g., the effect of the drug on recovery), we must first determine the causal
role of every factor F' (e.g., gender) relative to C' and FE. More crucial, we must make sure
that €' is not causally relevant to F, or else no C' would ever qualify as a cause of £, because
we can always find factors F' that are intermediaries between C' and £ which screen off £
from C'.?

Factors affecting both €' and F can be rescued from circularity by conditioning on all
factors preceding C' but, unfortunately, other factors that cannot be identified through tem-
poral ordering alone must also be weighed. Consider the following example. I must bet heads
or tails on the outcome of a fair coin toss; I win if [ guess correctly, lose if [ don’t. Naturally,
once the coin is tossed (and while the outcome is still unknown), the bet is deemed causally
relevant to winning, even though the probability of winning is the same whether I bet heads
or tails. To reveal the causal relevance of the bet (C), we must include the outcome of
the coin (F') in the background context, even though F' does not meet the common-cause
criterion — it does not affect my bet (C) nor is it causally relevant to winning (£) (unless
we first proclaim the bet relevant to winning). Worse yet, we cannot justify including F' in
the background context by virtue of its occurring earlier than C' because whether the coin
is tossed before or after my bet is totally irrelevant to the problem at hand. We conclude
that temporal precedence alone is insufficient for identifying the background context, and
we must refine the definition of the background context to include what Eells (1991) calls
“interacting causes,” namely, (simplified) factors F' that (i) are not affected causally by C
and (ii) jointly with C' (or =C') increase the probability of £.

Due to the circularity inherent in all definitions of causal relevance, probabilistic causality
cannot be regarded as a program for extracting causal relations from temporal-probabilistic
information but, rather, as a program for validating whether a proposed set of causal rela-
tionships is consistent with the available temporal-probabilistic information. More formally,
suppose someone gives us a probability distribution P and a temporal order O on a (com-
plete) set of variables V. Furthermore, any pair of variable sets, X and Y, in V is annotated
by a symbol R or I, where R stands for “causally relevant” and [ for “causally irrelevant.”
Probabilistic causality deals with testing whether the proposed R and [ labels are consistent
with the pair < P, O > and that cause should both precede and increase the probability of

!The phrases “hold F fixed” or “control for F',” used by both philosophers (e.g., [Eells, 1991]) and statis-
ticians (e.g., [Pratt and Schlaifer, 1988]), connote external interventions and may, therefore, be misleading
(see later sections on acting vs. seeing). In standard probability language, all one can do is to simulate
“holding F' fixed” by considering cases with equal values of F', namely, “conditioning” on F' and —F', an
operation I will call “adjusting for F'.”

2F “screens off” E from C if C and E are conditionally independent, given both F' and —F'; equivalently,
if equalities hold in Eqgs. (2) and (3).



effect.
Currently, the most advanced consistency test is the one based on Eells’ criterion of

relevance [Eells, 1991], which translates into:
Consistency test: For each pair of variables labeled R(X,Y'), test whether

(i) X precedes Y in O, and

i) there exist z, @', y such that P(y|z,z) > P(y|z’, z) for some z in Z
bl bl y y bl y bl bl
where Z is a set of variables in the background context K, such that

I(X,Z7) and R(Z,Y).
This now raises additional questions:
A. Is there a consistent label for every pair < P,0O >7
B. When is the label unique?

C. Is there a procedure for finding a consistent label when it exists?

While some insights into these questions are provided by the graphical methods to be dis-
cussed in Section 3, the point to notice is that, due to circularity, the mission of probabilistic
causality has been altered: from discovery to that of consistency testing.

2.3 The closed-world assumption

By far the most critical and least defensible paradigm underlying probabilistic causality
rests on the assumption that a probability function exists on all variables relevant to a given
domain of discourse. This assumption absolves the analyst from worrying about unmeasured
spurious causes, which might (physically) affect several variables in the analysis and still
remain obscure to the analyst. It is well known that the presence of such “confounders”
may reverse or negate any causal conclusion that might be drawn from probabilities. For
example, observers might conclude that “bad air” is the cause of malaria if they are not aware
of the role of mosquitoes, or that falling barometers are the cause of rain, or that speeding
to work is the cause of being late to work, and so on. Because they are unmeasured,
or even unsuspected, the confounding factors in such examples cannot be neutralized by
conditioning or by “holding them fixed.” Thus, taking Hume’s program of extracting causal
information from raw data seriously entails coping with the problem that the validity of any
such information is predicated on the untestable assumption that all relevant factors have
been accounted for.

Similar problems affect psychological theories that use statistical relevance to explain how
children extract causal information from experience. The proponents of such theories cannot
ignore the fact that the child never operates in a closed, isolated environment. Unnoticed
external conditions govern the operation of every learning environment, and these conditions
often have the potential to confound cause and effect in unexpected and clandestine ways.

Fortunately, that children do not grow in closed, sterile environments like those in statis-
tical textbooks has its advantages too. Aside from passive observations, a child possesses two
valuable sources of causal information which are not available to the ordinary statistician:
manipulative experimentation and linguistic advice. Manipulation subjugates the putative
causal event to the sole influence of a known mechanism, thus overruling the influence of



uncontrolled factors which might also produce the putative effect. “The beauty of indepen-
dent manipulation is, of course, that other factors can be kept constant without their being
identified” [Cheng, 1992]. The independence is accomplished by subjecting the object of
interest to the whims of one’s volition, to ensure that the manipulation is not influenced by
any environmental factor likely to produce the putative effect. Thus, for example, a child can
infer that shaking a toy can produce a rattling sound, because it is the child’s hand, governed
solely by the child’s volition, that brings about the shaking of the toy and the subsequent
rattling sound. The whimsical nature of free manipulation replaces the statistical notion of
randomized experimentation and serves to filter sounds produced by the child’s actions from
those produced by uncontrolled environmental factors.

But manipulative experimentation cannot explain all of the causal knowledge that hu-
mans acquire and possess, simply because most variables in our environment are not subject
to direct manipulation. The second valuable source of causal knowledge is linguistic advice,
namely, explicit causal sentences about the workings of things which we obtain from parents,
friends, teachers, and books, and which encodes manipulative experience of past generations.
As obvious and uninteresting as this source of causal information might appear, it probably
accounts for the bulk of our causal knowledge, and understanding how this transterence of
knowledge works is far from trivial. In order to comprehend and absorb causal sentences
such as “The glass broke because you pushed it,” the child must already possess a causal
schema within which such inputs make sense. To further infer that pushing the glass will
make someone angry at you and not at your brother, even though he was responsible for
all previous breakage, requires a truly sophisticated inferential machinery. In most children,
this machinery is probably innate.

Note, however, that linguistic input is by and large qualitative; we rarely hear parents
explaining to children that placing the glass at the edge of the table increases the probability
of breakage by a factor of 2. Yet, quantitative assessments of the effects of one’s actions must
be made in any decision-making situation, and the question arises, How does one combine
quantitative empirical data with qualitative causal relations to deduce quantitative causal
assessments? The problem is especially critical in situations in which empirical data is
available on only a small part of the causal field, while the bulk of that field is represented
as rudimentary statements of what affects what in the domain. By analogy, this resembles
the task of figuring out how to fix a TV set when given only a general understanding of
the principles of television electronics combined with empirical data on five knobs and one
screen. This problem will be dealt with in Section 4.

2.4 Singular vs. general causes

Wayne A. Davis (1988, page 145) summarizes the distinction between singular and general
causes as follows:

A general causal statement, like “Drinking hemlock causes death,” asserts that
one general event causes another. A singular causal statement, like “Socrates’
drinking hemlock caused his death,” asserts that one singular event caused an-
other. The relationship between singular and general causation is not simple.
From the fact that being poisoned causes death, we cannot infer that Alan’s be-
ing poisoned caused his death (he might have died of a bullet wound first). And



even though Jim Fixx’s last run caused his death, it is too strong to say that
going for a a run causes death.

The account of probabilistic causality provided so far (Subsections 2.1-2.3) addresses
only general causal statements. Whether probabilistic information suffices for asserting sin-
gular causal statements, and where knowledge about singular causes comes from if it doesn’t,
further exacerbates the problems of probabilistic causality.® The next example demonstrates
that singular causes require knowledge in the form of counterfactual or functional relation-
ships. Such knowledge is not needed for general causes, nor can it be extracted from bare
statistical data even under controlled experimentation. It requires a higher level of inductive
generalization, one capable of extracting temporal invariants.

My son Danny feeds the dog whenever I ask him to, with a few exceptions. Ten
percent of the time he feeds the dog even when I do not ask him to, and 10% of
the time he does not feed the dog even when asked to. Today I asked Danny to
feed the dog, which he did, and I wonder, Did he do it because I asked him to or

was he about to do it anyway?

Let C' and F stand for “asking” and “feeding,” respectively. The story above can be
summarized by two conditional probability statements,

P(E|C) =090 P(~E|~C) = 0.90 (4)

which, together with the prior probability P(C), fully specify the joint probability on the
variables in question. Moreover, we can safely assume that C is the only relevant cause of
£ in the story, and that C' and £ are not confounded by any hidden common cause, so the
same probabilities would prevail if C' (vs. =C') were chosen by randomized experiment, hence
the outcome associated with interventions or decisions is likewise determined by Eq. (4). For
example, the probability that Danny will feed the dog tomorrow if I decide to ask him to is
unequivocally 0.90.

Still, whether today’s request was the actual cause for today’s feeding is difficult, in
fact impossible, to determine, given the information at hand. The difficulty stems from the
ambiguity concerning the mechanism underlying Danny’s occasionally abnormal behavior.
We will show two alternative mechanisms, both compatible with the probabilistic behavior
of Eq. (4), yet each giving a different answer to the singular causal query, “Was my asking
the actual cause of today’s feeding?” (equivalently: “Would E have been true had C' been
false?”).

Consider two competing models:

A. 20% of the time, Danny is in an absent-minded trance; he would feed the dog at
random with 50% probability, regardless of whether he was asked to.

B. 10% of the time, Danny is in a rebellious mood; he would feed the dog if he were
not asked to, and would not feed the dog if he were asked to do so.

3Eells’s (1991, chapter 6) analysis of token-level causation and Cartwright’s (1989, chapter 3) argument
for “singular causes first” (rejected by Eells) both presuppose knowledge of how the occurrence of one singular
event raises the probability of another, and thus only beg the question of where that extra knowledge comes
from and how it is encoded in the mind.



It is easy to see that Models A and B are both compatible with the probabilistic information
given in Eq. (4), while they differ on the counterfactual query. In Model B, Danny’s feeding
the dog today rules out the possibility that he is in a rebellious mood; hence, he would not
have fed the dog if not asked, and we can rest assured that my asking was the actual cause of
today’s feeding. In Model A, however, today’s feeding still leaves uncertain whether Danny
is in an alert state of mind or in one of those absent-minded trances (giving a 8:1 chance to
each possibility). If alert, Danny would not have fed the dog had I not asked him to; if in a
trance, there is a 50% chance that he would still have fed the dog. Thus, the probability that
my asking actually caused today’s feeding is 100% in Model B, and less than 100% (8/9) in
Model A.

We see now that probabilistic information, even enriched with information about tem-
poral ordering and causal relevance, is insufficient for answering counterfactual queries; the
task requires the specification of the functional relationship between the putative cause and
the putative effect.

This deficiency of the probabilistic account cannot be dismissed as metaphysical, that
is, on the grounds that counterfactual sentences are, by definition, empirically untestable,
hence meaningless. Counterfactual statements do in fact have an empirical content, but
only when coupled with assumptions of persistence (perhaps this is what Hume meant by
“regularity”). For example, assume that Danny’s state of being in an abnormal mood persists
for not one but several days. Our counterfactual query would then translate into a sharp
empirical question of whether we can count on the dog being fed tomorrow. In fact, the
ingredient that makes countertactual probabilities hard to compute is not the counterfactual
phrasing of the query but rather the fact that the query is accompanied with information that
renders the event in question unique, unlike any other event summarized in the probability
distribution P. Before we find out that Danny in fact fed the dog today, we have no problem
answering the counterfactual query, “Would he feed the dog if he were not asked to?” The
difficulty stems from observing Danny feeding the dog today, thus making this day singular,
unlike any other day summarized in P. In other words, Danny was not (and can never be)
observed under both conditions, being asked and not being asked, on the very same day.
Thus, it is only when we observe the persistence of some mechanism (Danny’s abnormality)
for several successive observations that we can substantiate a counterfactual claim, and it is
due to such persistence that counterfactual statements acquire their empirical content and
their unique role in planning and knowledge communication. We shall see in Section 4.5 that
counterfactual knowledge is essential for predicting the effect of actions when measurements
are available about conditions that are likely to be affected by those actions.

Proponents of probabilistic causality may argue that by introducing new hypothetical
variables into the analysis and stretching the notion of a “factor” to include counterfactual
strategies, singular causes can still be treated in the probabilistic framework. For example, in
the situation above, we could introduce Danny’s “mood” or “mode of behavior” as a factor in
the background context and, by conditioning the outcome E on this new factor, the correct
answer would obtain using ordinary probabilistic computations. In general, accessing the
degree to which an event C' actually causes an observed event E involves considering as factors
each of the four possible functions from {C,-~C} to {E,—FE}, for which the term “mood”
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is merely indexical.* However, introducing these new factors seems like a roundabout way
of squeezing meta-probabilistic causal and counterfactual information into the probabilistic
vocabulary, and it is a far cry from Hume’s program of inferring causes from probabilities,
because there is no way to distinguish Model A from Model B solely on the basis of statistical
observations without either going into a deeper analysis of Danny’s state of mind or assuming
that whatever mood Danny is in persists unaltered for at least few trials. Such specification
is accomplished more naturally in the structural equations framework, to be described in
Section 4.

3 The Language of Causal Graphs

Causal graphs appear sporadically in the writings of Simon, Reichenbach, Cartwright, and
Eells, where they are used primarily for mnemonic or display purposes. The use of graphs as
a formal mathematical language for defining and processing causal relationships is relatively
recent. We shall see that graphs offer a powerful language for expressing and resolving some
fundamental questions in probabilistic causality, as well as a plausible hypothesis of how
causal relationships are organized in the human mind.

3.1 Direct causes and Bayesian networks

A convenient starting point for introducing causal graphs is through the notion of Marko-
vian parents.

Definition 2 Let V = {Xy,..., X, } be an ordered set of variables, and let P(v) be the joint
probability distribution on these variables. A set of variables PA; is said to be Markovian
parents of X; if PA; is a minimal set of predecessors of X; thal renders X; independent of
all its other predecessors. In other words, PA; is any subset of {X1,..., X;_1} satisfying

P('Ij|pa]') :P('Ij|x17-"7$j—1) (5)
such that no proper subset of PA; satisfies Eq. (5).

Definition 2 assigns to each variable X a select set of parent variables which are sufficient
for determining the probability of X;; knowing the values of other preceding variables is
redundant once we know the values pa; of the parent set PA;. This assignment can be
represented in a form of a directed acyclic graph (DAG) in which variables are represented
by nodes and where arrows are drawn from each node of the parent set PA; toward the
child node X;. Definition 2 also suggests a simple recursive method of constructing such a
DAG: Starting with the pair (X1, X3), we draw an arrow from X; to X3 if the two variables
are dependent. Continuing to X3, we draw no arrow in case X3 is independent of { X7, X5 };
otherwise, we examine whether X, screens off X5 from X; or X; screens off X3 from X;. In
the first case, we draw an arrow from X; to Xj3; in the second, we draw an arrow from X,
to X3. If no screening condition is found, we draw arrows to X3 from both X; and X;. In
general, at the :th stage of the construction, we select any minimal set of X;’s predecessors

“Many more functions need be considered in cases where C interacts with other factors of E

(see[Balke and Pearl, 1994]).
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that shield X; from its other predecessors (as in Definition 2), call this set PA; (connoting
“parents”), and draw an arrow from each member in PA; to X;. The result is a directed
acyclic graph, called a “Bayesian network” in [Pearl, 1988], in which an arrow from X; to
X assigns X; as a Markovian parent of X, consistent with Definition 2.

Figure 1 illustrates a simple yet typical Bayesian network. It describes relationships
among the season of the year (X;), whether rain falls (X;) during the season, whether
the sprinkler is on (X3) during that season, whether the pavement would get wet (X4),
and whether the pavement would be slippery (X5). All variables in this figure are binary,
taking a value of either true or false, except the root variable X;, which can take one of
four values: Spring, Summer, Fall, or Winter. The network was constructed in accordance
with Definition 2, using causal intuition as guide. The absence of a direct link between X;
and Xj, for example, captures our understanding that the influence of seasonal variations
on the slipperiness of the pavement is mediated by other conditions (e.g., the wetness of
the pavement). This intuition coincides with the independence condition of Eq. (5), since

knowing X, renders X5 independent of {X;, X5, X3}.
SEASON

SPRINKLER @/ \@ RAIN
N

WET
!

@ SLIPPERY

Figure 1: A Bayesian network representing causal influences among five variables.

How do graphs enter our discussion of causality? To see the connection, we need to make
three additional steps. First, we identify the ordering of the variables with their temporal
order. Second, we make the closed-world assumption, namely, that V' = X;,..., X, include
all relevant variables for the phenomenon under study. Finally, we make a smooth transition
from events to variables as the basic objects of causal relationships. This will enable us to
say, for example, that force causes (or influences) acceleration, without specifying precisely
what magnitude of force (an event) accounts for what level of acceleration (an event).?

With these provisions in mind, it is natural to identify the Markovian parents PA; as
“direct causes” of X;; “causes”, because they exhibit the temporal-probabilistic features of
causal relevance described in Section 2, and “direct” because they are not mediated (or
screened off) by any other group of variables, especially when the parent set is unique.

Definition 3 (direct causes ) Let V = {X1,..., X,,} be a complete set of temporally ordered
variables, and let P(v) be the joint probability distribution on these variables. We say that
X is a direct cause of X if X; is a member of the parent set PA; in a Bayesian network of
P(v) constructed along the temporal order.

5[Spohn, 1980, Mulaik, 1986] are among the few who advocated this transition in the philosophical litera-
ture, though it has been used routinely in path analysis [Wright, 1921] economics [Simon, 1953] and artificial
intelligence [Kim and Pearl, 1983]
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Definition 3 provides a natural generalization of deterministic causality, in the spirit
of Mulaik, (1986). If deterministic causes are defined as a set of conditions sufficient for
determining the value of X;, regardless of other eventualities, then Definition 3 merely
substitutes probability determination for value determination: once the direct causes of X
are known, the probability of X; is completely determined; no other event preceding X;
would modify this probability. In Section 3.2 we will see that this invariance is in fact
stronger; no other event except consequences of X; would modity the probability of Xj;.
However, this invariance still falls short of the absolute invariance induced by deterministic
causes, where the value of X; remains determined against both past and future eventualities.
A probabilistic version of such absolute invariance will be achieved through the manipulative
and counterfactual accounts of causation, to be discussed in Section 4.

Definition 3 is also compatible with that of Eells (Section 3.2), which was based on
causal relevance among events. A direct cause X; of X; must contain an event X; = z;
that is causally relevant to at least one event X; = z; (i.e., P(x;|z;, F) # P(x;|2}, F) for at
least two values, x; and 2! of X;) because, otherwise, there would be some set of factors F
which screens off X; from X;, thus violating the minimality of PA;. Conversely, if any event
X; = z; 1s deemed causally relevant to event X; = z;, then X; must be either a direct cause
of X; or causally relevant to some direct cause of X;, because if X; satisfies neither of these
possibilities, it is not an ancestor of X; in the graph; X; would then be screened off from X;
by some of its X;’s predecessors, and that would imply that X; is not causally relevant to
X after all.

However, the main advantage of commencing discussion of causality with the notion of
direct causes is that the problem of circularity disappears (since each parent set is assigned
independently of the others), the questions of consistency and uniqueness are resolved, and,
not the least important, Definition 3 invites the language of graphs, with the help of which
much harder questions of causality can be formulated and resolved.

Consider first the question of consistency. Assume we are given the pair
< P,O > as before and we wish to find a consistent labeling (D) on pairs of variables,
such that a pair (X;, X;) is labeled D iff “X; is a direct cause of X;” in accordance with
Definition 3. It is a simple matter to find such a labeling by constructing a Bayesian network
along O, and associating the labels with the links of the resulting DAG. Thus, the question
of consistency is answered in the affirmative; every pair < P, > has a labeling consistent
with Definition 3, as given by the links of the constructed graph. The question of uniqueness
also has a simple solution; if P(v) > 0 for every configuration v, then the parent sets PA;
are unique [Pearl, 1988, page 119] and, hence, there will be a unique set of direct causes for
every variable. Causal ambiguities emerge when some configurations obtain zero probability,
representing deterministic constraints. For example, a chain X; — X; — X3 of necessary
and sufficient causes cannot be distinguished from a fork X; « X; — X3 of necessary and
sufficient causes, because {X;} and {X;} each is sufficient for determining {X3}, hence,
each can serve as a Markovian parent of X3. This is precisely the ambiguity noticed in
probabilistic causality [Otte, 1981]: even given complete specification of temporal ordering,
probabilistic information fails to distinguish genuine from spurious causes when causal con-
nections degenerate into deterministic, necessary and sufficient relationships.® Definition 3

SWe will argue later, in discussing the structural definition of causation, that neither causal chains nor
causal forks can consist of strictly necessary and sufficient causes, because the meaning of the sentence “X,
is a cause of X3” rests in the claim that manipulating X5, independently of events preceding X, would

13



confines the occurrence of such ambiguities to cases where deterministic constraints permit
multiple minimal parent sets in the construction of the network.

An immediate beneficiary of graph language is the simplification and clarification of the
notion of background context (sometimes called causal field) namely, the set K of variables
which one should assume constant in assessing the causal relevance of one variable to an-
other (see Definition 1). Subsection 2.2 summarizes the difficulties which philosophers have
encountered in defining the appropriate background context for such assessment. The graph-
ical concepts established by Definition 2 permit a constructive, noncircular definition of K,
as follows:

Background context: In assessing the causal role of X relative to Y, the appropriate
background context consists of all variables which are

1. direct parents of Y or of any intermediate variable between X and Y, and
2. nondescendants of X.

Since the notions of parents, intermediate and descendants are defined unambiguously in
the graph, and the graph is defined constructively from the pair < P,O >, the background
context, likewise, is well defined. Thus, one can now test systematically whether any event
X = z is a positive, negative or a mixed cause of another event Y = y, by constructing the
Bayesian network, identifying the variables in K and, finally, comparing the probabilities
P(y|z, F) and P(y|a', F) for each realization F' of K.” For example, in assessing the causal
role of having the sprinkler on (X3 = ON) on having a slippery pavement (X5 = true) in
Figure 1, the relevant background context consists of a single variable: Rain (X3), and one
needs to compare the quantities:

P(X5 =true|Xs = ON, Xy = true) vs. P(X5 = true|Xs = OFF, Xy = true)
and
P(X5 =true|Xs = ON, X,y = false) vs. P(X;5 = true|Xs = OFF, X, = false)

Since inequality holds in the first pair and equality in the second, we conclude that Sprinkler =
ON is a positive cause of Slippery. We need not (and, in fact, should not) adjust for Xy
because it is a descendant of X5. There is no harm, however, in including additional variables
(such as X7) in K, as long as they are nondescendants of X,.

We will see later (Section 4) that, the variables in K possess a unique feature; it does not
matter if we “hold K fixed” by external intervention or we “condition on K being constant.”
Although the two interpretations are generally not equivalent, they yield the same result
for the relation between X and Y whenever K is selected by the graphical criterion above.
This might explain why philosophers and statisticians, who generally ignore the distinction
between “fixing” and “conditioning” (see footnote 1), often manage to escape the paradoxical
consequences that such confusion may produce.

change X3; the very existence of such manipulation rules out X; as being necessary and sufficient for Xs.

“If variable X is not an ancestor of variable Y then, clearly, event X = z must be causally irrelevant to
event Y = y. If X is an ancestor of Y, then X = & may still be causally irrelevant to Y = y, since the causal
relevance between X and Y shown in the graph may be due to other states of X and Y.
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3.2 Implied independencies and observational equivalence

The construction implied by Definition 2 defines a Bayesian network as a carrier of conditional
independence information relative to a specific temporal order O. Since temporal information
is not always available (see Section 2.1) and since variable ordering, in general, is a meta-
probabilistic notion, one may ask whether the independence information conveyed by the
graph can be communicated without making an explicit reference to the ordering O. This
information would then impose constraints on the possible ordering of the variables, and
would open the possibility of inferring, or ruling out, causal relations from P alone.

Assume that a Bayesian network G was constructed from a probability distribution P and
ordering O. It is interesting to ask what features of P characterize all those distributions that
are capable, under some ordering of the variables, to produce a Bayesian network identical to
(. To answer this question, we recall that the essential property of P used in the construction
of G was Eq. (5), and that every distribution satisfying Eq. (5) can be decomposed (using
the chain rule of probability calculus) into the product

P(zy,...,z,) = HP("L’Z | pa;) (6)

where pa, are the values of the parents (PA;) of X; in GG. For example, the DAG in Figure 1
induces the decomposition

P(x1, 22,23, 24, x5) = P(x1) P(x2]|21) Px3|z1) P(as|zs, v3) Pws|zs) (7)

The product decomposition in Eq. (6) is no longer order-specific since, given P and G,
we can test whether P decomposes into the product given by Eq. (6) without making any
reference to variable ordering. Moreover, for every distribution decomposed as Eq. (6) one
can find an ordering O that would produce G as a Bayesian network. We therefore conclude
that a necessary and sufficient condition for a probability distribution P to induce a DAG ¢
is that P admits the product decomposition dictated by G, as given in Eq.(6). If P satisfies
this condition, we say that GG represents P.

A convenient way of characterizing the set of distributions represented by a DAG G is to
list the set of (conditional) independencies that each such distribution must satisfy. These
independencies can be read off the DAG by using a graphical criterion called
d-separation [Pearl, 1988]. To test whether X is independent of Y given Z in the distributions
represented by (G, we need to examine (G and test whether the nodes corresponding to
variables Z d-separate all paths from nodes in X to nodes in Y. By path we mean a sequence
of consecutive edges (of any directionality) in the DAG.

Definition 4 (d-separation) A path p is said to be d-separated (or blocked) by a set of nodes
Z iff:

(i) p contains a chain i — j — k or a fork « «— j — k such that the middle node j
s in 4, or,

(i1) p contains an inverted fork i — j «—— k such that neither the middle node j nor any
of its descendants (in G) are in Z.
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If XY, and Z are three disjoint subsets of nodes in a DAG G, then Z is said to d-separate
X fromY, denoted (X || Y|Z)q, iff Z d-separates every path from a node in X to a node
inY .

The intuition behind d-separation is simple: In chains X — Z — Y and forks X « 7 —
the two extreme variables are dependent (marginally) but become independent of each other
(i.e., blocked) once we know the middle variable. Inverted forks X — Z « Y act the op-
posite way; the two extreme variables are independent (marginally) and become dependent
(i.e., unblocked) once the value of the middle variable (i.e., the common effect) or any of
its descendants is known. For example, finding that the pavement is wet or slippery (see
Figure 1) renders Rain and Sprinkler dependent, because refuting one of these explanations
increases the probability of the other.

In Figure 1, for example, X = {X;} and Y = {X;3} are d-separated by Z = {X;}; the
path X; «— X; — Xjisblocked by X; € Z, while the path X; — X, «— X3 is blocked because
X4 and all its descendants are outside Z. Thus (X, || X3|X1)g holds in G. However, X
and Y are not d-separated by Z’ = {X;, X5}, because the path X, — X, « X is unblocked
by virtue of X5, a descendant of X4, being in Z’. Consequently, (X2 || X3|{X1, X5})e does
not hold; in words, learning the value of the consequence X; renders its causes X, and Xs
dependent, as if a pathway were opened along the arrows converging at Xj.

Theorem 1 [Verma and Pearl, 1990, Geiger et al., 1990]. For any three disjoint subsets of
nodes (X,Y,7Z) in a DAG G, Z d-separates X from Y in G if and only if X is independent

of Y conditional on Z in every distribution represented by .

The d-separation criterion can be tested in time linear in the number of edges in G. Thus,
a DAG can be viewed as an efficient scheme for representing Markovian independence as-
sumptions and for deducing and displaying all the logical consequences of such assumptions.

Note that the ordering with which the graph was constructed does not enter into the
d-separation criterion; it is only the topology of the resulting graph that determines the set
of independencies that the probability P must satisty. Indeed, the following theorem can be
proven [Pearl, 1988, page 120].

Theorem 2 [f a Bayesian network G is constructed recursively along some ordering O (as
in Definition 2), then a construction along any ordering O' consistent with the direction of
arrows in G would yield the same network. Consequently, any variable in a Bayesian network
is independent of all its nondescendants, conditional on its parents.

An important property that follows from the d-separation characterization is a criterion
for determining whether two given DAGs are observationally equivalent, that is, whether
every probability distribution that is represented by one of the DAGs is also represented by
the other.

Theorem 3 [Verma and Pearl, 1990] Two DAGSs are observationally equivalent iff they have

the same sets of edges and the same sets of v-structures, that is, two converging arrows whose
tails are not connected by an arrow.
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Observational equivalence places a limit on our ability to infer causal directionality from
probabilities alone. Two networks that are observationally equivalent cannot be distin-
guished without resorting to manipulative experimentation or temporal information. For
example, reversing the direction of the arrow between X; and X, in Figure 1 does not in-
troduce any new v-structure. Therefore, this reversal yields an observationally equivalent
network, and the directionality of the link X; — X, cannot be determined from probabilistic
information. The arrows X, — X4 and Xy — X5, however, are of different nature; there
is no way of reversing their directionality without creating a new v-structure. Thus, we see
that some probability functions P (such as the one responsible for the construction of the
Bayesian network in Figure 1), unaccompanied by temporal information, can constrain the
directionality of some arrows, and hence the directionality of the causal relationships among
the corresponding variables. The precise meaning of such directionality constraints will be
discussed in the next subsection.

Additional properties of DAGs and their applications to evidential reasoning are discussed
in [Geiger, 1990, Lauritzen and Spiegelhalter, 1988, Spiegelhalter et al., 1993, Pearl, 1988,
Pearl, 1993, Pearl et al., 1990].

3.3 Causal discovery

The interpretation of DAGs as carriers of independence assumptions does not necessarily
imply causation and will in fact be valid for any set of Markovian independencies along any
ordering (not necessarily causal or chronological) of the variables. However, the patterns of
independencies portrayed in a DAG are typical of causal organizations, and some of these
patterns can only be given meaningful interpretation in terms of causation. Consider, for
example, the following intransitive pattern of dependencies among three events: £ and Ej
are dependent, F3 and £ are dependent, yet £, and FE; are independent. If you ask a
person to supply an example of three such events, the example invariably portrays F; and
FE; as two independent causes and K3 as their common effect, namely, £; — FE3 «— Es.
Fitting this dependence pattern by using Fj3 as the cause and F; and F, as the effects,
although mathematically feasible, is very unnatural indeed (the reader is encouraged to try
this exercise).

Such thought experiments teach us that certain patterns of dependency, totally void of
temporal information, are conceptually characteristic of certain causal directionalities and
not others. Reichenbach (1956) has suggested that this temporal asymmetry is a characteris-
tic of Nature, reflective of the second law of thermodynamics. Pearl and Verma (1991) have
offered a more subjective explanation, attributing the asymmetry to choice of language and
to certain assumptions (e.g., Occam’s razor) prevalent in scientific induction. Regardless of
the origins of this asymmetry, exploring whether it provides a significant source of causal
information (or at least causal clues) in human learning is an interesting topic for research
[Waldmann et al., 1995].

The distinction between transitive and intransitive dependencies has become the ba-
sis for algorithms aimed at extracting causal structures from raw statistical data. Several
systems that systematically search and identify causal structures from empirical data have
been developed [Pearl, 1988, page 387-397] and [Pearl and Verma, 1991, Spirtes et al., 1993].
Technically, because these algorithms rely solely on conditional independence relationships,
the structures found are valid only if one is willing to accept forms of guarantees that are
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weaker than those obtained through controlled randomized experiments — namely, minimal-
ity and stability [Pearl and Verma, 1991]. Minimality guarantees that any other structure
compatible with the data is necessarily less specific, and hence less falsifiable and less trust-
worthy, than the one(s) inferred. Stability ensures that any alternative structure compatible
with the data must be less stable than the one(s) inferred; in other words, slight fluctuations
in experimental conditions will render the alternative structure incompatible with the data.
With these forms of guarantees, the algorithms can provide criteria for identifying genuine
and spurious causes, with or without temporal information.

Minimality can be easily illustrated in Figure 1: if one draws all graphs that are obser-
vational equivalent to the one shown in the figure (there are exactly three such graphs) one
finds that they all contain an arrow directed from X3 to X4. This still does not make X,
a genuine cause of Xy, because the specific data at hand, summarized in P, could in fact
be generated by another graph, say G’, which is not observationally equivalent to GG, and in
which an arrow is directed the other way around, from X, to X;. For example, one choice
of G' would be a complete DAG (i.e., one containing a link between every pair of nodes)
rooted at Xj; although G’ contains an arrow from Xy to Xs, it could be made (with the
proper choice of parameters) to represent any probability distribution whatsoever, including
P. Is there a rationale, then, for preferring G on G’, given that both represent P precisely
(in the sense of Eq. (6))? There is! Having the potential of fitting any data means that G’
is empirically nonfalsifiable, that P is overfitted, hence, that G’ is less trustworthy than G.
This preference argument can be advanced not merely to complete DAGs but against any
DAG G’ that can be made to fit more experimental data (i.e., probability functions) than G.
Indeed, it can be shown that the set of probabilities representable by any DAG G’ which fits
P and contains an arrow from X, to X; would necessarily be a superset of those represented
by G.

The minimality argument above rests on the closed world assumption, and would fail if
hidden variables are permitted. For example, the DAG X «— a — Z «— b — Y imposes the
same set of independencies on the observed variables X, Y, Z as the v-structure X — Z « Y,
yet the former does not present X as a cause of Z. The remarkable thing about minimality,
however, is that it uniquely determines the directionality of some arrows even when we
dispose of the closed-world assumption and allow for the presence of hidden variables. The
arrow from X4 to X; in Figure 1 is an example of such occasion. Among all DAGs that fit P,
including DAGs containing unobserved variables, those which do not include an arrow from
X4 to X5 are nonminimal, i.e., each fits a superset of the probability distributions (on the
observables) represented by (. It is this feature that encouraged Pearl and Verma (1991) to
label certain links in the DAG “genuine causes”, to be distinguished from “potential causes”
and “spurious associations”. The latter identifies certain associations as non-causal (i.e., no
link exists between the corresponding nodes in all minimal DAG’s that fit the data) implying
that the observed association must be attributed to a hidden common cause between the
corresponding variables. Criteria and algorithms for identifying genuine causes, potential
causes, and spurious associations are described in Pearl and Verma (1991) and Spirtes et al
(1993).

Alternative methods of identifying causal structures in data assign prior probabilities
to the parameters of the network and use Bayes’ rule to score the degree to which a given
network fits the data [Cooper and Herskovits, 1990, Heckerman et al., 1994]. These methods
have the advantage of operating well under small-sample conditions, but they encounter
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difficulties in coping with hidden variables.

4 Structural Causality

While Bayesian networks capture patterns of independencies that are characteristic of causal
organizations, they still leave open the question of how these patterns relate to the more
basic notions associated with causation, such as influence, manipulation, and control, which
reside outside the province of probability theory. Manipulations are unquestionably central
to the analysis of causal thinking. Even generative accounts of causality, according to which
causal inquiries aim merely at gaining an “understanding” of how data are generated, are
not totally divorced from notions of manipulation, albeit hypothetical. In the final analysis,
the quest for understanding “how data is generated” or “how things work” is merely a quest
for predictions of what could be expected if things were taken apart and reconfigured in
various ways, that is, for expectations under various hypothetical manipulations.

An inspection of the Bayesian network depicted in Figure 1 reveals that the network does
in fact provide an effective representation for certain kinds of manipulations and changes
of configuration. Any local reconfiguration of the mechanisms in the environment can be
translated, with only minor modification, into an isomorphic reconfiguration of the network
topology. For example, to represent a disabled sprinkler, we simply delete from the network
all links incident to the node “Sprinkler”; to represent a pavement covered by a tent, we
simply delete the link between “Rain” and “Wet.” This flexibility is often cited as the in-
gredient that marks the division between deliberative and reactive agents, and that enables
the former to manage novel situations instantaneously, without requiring training or adap-
tation. How then are these extra-probabilistic notions of reconfiguration and manipulation
connected to the strictly probabilistic notion of conditional independence, which forms the
standard basis for Bayesian networks and the entire study of probabilistic causality?

The connection is made through the structural account of causation, according to which
probabilistic dependencies are but a surface phenomenon of more fundamental relationships
— functional dependencies among stable, or autonomous, mechanisms. The roots of this
account go back to path analysis in genetics [Wright, 1921] and structural equation models
in econometrics [Haavelmo, 1943, Simon, 1953], and it can justly be regarded as the math-
ematical basis for the power models used in the psychological literature. The basic idea
behind the structural account was extended in [Pear]l and Verma, 1991] for defining general
probabilistic causal theories, as follows. Each child-parents family in a DAG G represents a
deterministic function

Xi = filpa;, &) (8)

where pa; are the parents of variable X; in (G, and where ¢;, 0 < ¢ < n, are mutually indepen-
dent, arbitrarily distributed random disturbances. Characterizing each child-parent relation-
ship as a deterministic function, instead of as the usual conditional probability P(z; | pa;),
imposes equivalent independence constraints on the resulting distributions and leads to the
same recursive decomposition that characterizes DAG models (see Eq. (6)). However, the
functional characterization X; = fi(pa,,€;) also specifies how the resulting distributions
would change in response to external interventions, since each function is presumed to rep-
resent a stable mechanism in the domain and therefore remains constant unless specifically
altered. Thus, once we know the identity of the mechanisms altered by an intervention and
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the nature of the alteration, the overall effect of an intervention can be predicted by mod-
ifying the appropriate equations in the model of Eq. (8) and using the modified model to
compute a new probability function of the observables.

The simplest type of external intervention is one in which a single variable, say X, is
forced to take on some fixed value z!. Such atomic intervention amounts to replacing the
old functional mechanism X; = fi(pa,, ¢;) with a new mechanism X; = z} which represents
the external force that sets the value z!. If we imagine that each variable X; could poten-
tially be subject to the influence of such an external force, then we can view each Bayesian
network as an efficient code for predicting the effects of atomic interventions and of myriad
combinations of such interventions, without encoding these interventions explicitly. What
is more remarkable yet is that it is possible, under certain conditions, to predict the effect
of interventions without knowing the functions {f;}; the topology of the graph combined
with the probability of the observables suffice. This means that it should be possible to infer
causal influences, in the presence of unmeasured variables, from a combination of statistical
data and qualitative linguistic assertions about the general workings of mechanisms. The
following subsection presents these ideas in a formal setting.

4.1 Causal theories and actions

Definition 5 A causal theory is a four-tuple
T'=<V,U,P(u),{f:} >

where

(1) V=A{Xy,...,X,} is a set of observed variables,

(ii) U = {Uy,..., Uy} is a set of exogenous (often unmeasured) variables that represent
disturbances, abnormalities, or assumptions,

(ii1) P(u) is a distribution function over Uy, ..., U, and
(iv) {f:} is a set of n deterministic functions, each of the form

Xi=fi(PAi,u) i=1,....n (9)
where PA; s a subset of vartables in V' not containing X;.

We will assume that the set of equations in (iv) has a unique solution for X;, ..., X, given
any value of the disturbances Uy, ..., U,,. Therefore, the distribution P(u) induces a unique
distribution on the observables, which we denote by Pr(v). The structural parent sets,
PA;, are again considered the direct causes of X; and they define a directed graph G which
may, in general, be cyclic. However, unlike the Markovian parents defined in Subsection
2.1 (see Definition 2), PA; is selected from V by considering outcomes of manipulative
experiments (according to Lemma 4 below), not by conditional independence considerations,
as in probabilistic causality. The result of encoding this manipulative information in the
equations will be a major relaxation of the small-world assumption (Subsection 2.3); the
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analysis of actions will require only rudimentary, qualitative assumptions about the structure
of the unmeasured U variables.

Consider the example depicted in Figure 1. The corresponding theory consists of five
functions, each representing an autonomous mechanism:

X1 = U

Xy = fo(X1,0s)

Xs = f3(X1,Us)

Xy = fa( X3, X2, Uy)

Xs = [f5(Xy,Us) (10)

The disturbances Us,...,Us are not shown explicitly in the graph of Figure 1, but are
understood to govern the uncertainties associated with the causal relationships. A typical
specification of the functions {fi,..., f5} and the disturbance terms is given by the Boolean
theory below:

3 = [(Xi = Winter) V (X; = Fall) V aby] A —al,

x5 = [(X; = Summer)V (X; = Spring) V abs] A —ab,
ry = (x3V 3V aby) A —ab)
s = (x4V abs) A —ab (11)

where z; stands for X; = true, and ab; and ab! stand, respectively, for triggering and inhibit-
ing abnormalities.® For example, ab, stands for (unspecified) events which might cause the
ground to get wet (z4) when the sprinkler is off (—z3) and it does not rain (—x3), while —ab/,
stands for events which will keep the ground dry despite the rain, the sprinkler and aby, say
covering the ground with plastic sheet.

As stated in the introductory subsection, the main role of structural causal theories is
to facilitate the analysis of actions. We will consider local concurrent actions of the form
do(X = ), where X C V is a set of variables and z is a set of values from the domain of
X. In other words, do(X = z) represents a combination of direct actions that forces the
variables in X to attain the values z.

Definition 6 (effect of actions) The effect of the action do(X = x) on a causal theory T is
given by a subtheory T, of T', where T, obtains by deleting from T all equations corresponding
to variables in X and substituting the equations X = x instead.

For example, to represent the action “turning the sprinkler ON,” do( X3 = ON), we delete
the equation X3 = f5(X7,Us) from the theory of Eq. (10), and replace it with X3 = ON.
The resulting subtheory, T'x,—on, contains all the information needed for computing the
effect of the actions on other variables. It is easy to see from this subtheory that the only
variables affected by the action are X, and Xj, that is, the descendants, of the manipulated
variable X3. This is to be expected, since nondescendants of X3 (i.e., season and rain) are
presumed to be causally irrelevant to X3, yet it stands in marked contrast to the operation

8Goldszmidt and Pearl (1992, 1995) describe a qualitative method of causal analysis based on attributing
infinitesimal probabilities to the ab predicates.
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of probabilistic conditionalization (on X3) which may potentially influence (the beliefs in)
every variable in the network. The mathematics underlying these two operations, and the
conditions that enable us to predict the effects of actions without specifying {f;}, will be
discussed in the next two subsections.

Definition 6 should be taken as an integral part of Definition 5, because it assigns meaning
to each individual equation in 7. Specifically, it dictates what hypothetical experiments
of the type do(X = x) must be considered by the author of the structural equations in
deciding which variables PA; should enter into the r.h.s of each equation. By writing X, =
fa( X2, X3,u), for example, the analyst defines X; and X3 as the direct causes of X4 which,
according to Definition 6, means that holding X; and X3 fixed determines the value of X,
regardless of changes in the season (X7) and regardless of any direct action we might take
to make the ground slippery (X5). In general, Definition 6 endows PA; with the following
meaning: PA; is a set of variables that, if held fixed, would determine (for any u) the value
of X; regardless of any other action do(Z = z) that one may perform, where 7 is any set
of variables not containing X; or any member of PA;. Moreover, no proper subset of PA;
possesses that quality.

Lemma 4 provides a succinct summary of this property, and can also be viewed as the
structural definition of direct causes.

Lemma 4 Let Y(x;u) stand for the solution of Y under subtheory T, as in Definition 6.
The direct causes of variable X; are the minimal set of variables PA; which satisfy

Xi(pas, z;u) = Xi(pas; u) (12)

for every u and for every set Z not containing X; or any member of PA;. (pa; denotes a
specific instantiation of PA;).

Clearly, if a causal theory is given explicitly, as in Definition 5, then the direct causes
PA; can be identified syntactically, as the arguments of each f;. However, if the theory is
represented implicitly in a form of a function F: Actions x U — V, (as is often assumed in
decision theory [Savage, 1954, Heckerman and Shachter, 1995]), then Lemma 4 can be used
to identify, given F, the unique set of direct causes for each variable X;.?

We see that the distinctive characteristic of structural equations, which sets them apart
from ordinary algebraic equations, is that meaning is attached to any subset of equations
from T'. Mathematically, this characteristic does not show up explicitly in the equations, but
rather implicitly, in the understanding that 7" stands for not one but 2" sets of equations.
This restricts, of course, the type of algebraic transformations admissible on 7' to those that
preserve the solution of not one but each of the 2" sets.

The framework provided by Definitions 5 and 6 permits the coherent formalization of
many nuances and subtle concepts found in causal conversation, including causal influence,
causal effect, causal relevance, average causal effect, identifiability, counterfactuals, and ex-
ogeneity. Examples are:

°Likewise, the local operator do(X; = z;) can be identified from F' as the unique action A for which the
equality F'(A,u); = F(A and B,u); holds for every action B compatible with A. In words, do(X; = ;) is
the only action which keeps the value of X; invariant to any other action that can be implemented at the
same time.
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e X influences Y in context u if there are two values of X, x and z’, such that
Y(z;u) # Y(a';u). In other words, the solution for ¥ under U = u and do(X = z) is
different from the solution under U = v and do(X = z').

We say, for example, that the weather (X3) influences the wetness of the pavement
(X4) in a context u where the pavement is uncovered, and the sprinkler controller is
at off position, because a change in weather from not-rain to rain is accompanied with
a change in pavement condition from dry to wet. This definition interprets causal
influence as the transference of change from X to Y triggered by the local intervention
do(X = z). Although the word “influence” is sometimes used with no intervention in
mind (as in the case of the weather), the hypothetical operator do(X = x) ensures that
the change in Y is attributable only to changes in X, and not to spurious side effects
(e.g., strange people who turn their sprinklers on whenever they see clouds in the sky.)

e X can potentially influence Y in context U = u if there exists a subtheory T, of T
in which X influences Y.

The difference between influence and potential influence is that the latter requires
an additional intervention, do(Z = z), to reveal the effect of X on Y. In our earlier
example, we find it plausible to maintain that, although the weather does not influence
wetness in a context (u) where the sprinkler controller is stuck at ON position, it
nevertheless can potentially influence wetness, at u, as is revealed when the action
do(Sprinkler = OFF) is implemented, say, by manual intervention. Along the same
vein, we may say that seasonal variations (X;) have potential influence on wetness,
even though their influence through rain may perfectly cancel their influence through
sprinkler; This potential would surface when we hold Sprinkler fixed (at either ON or
OFF position).'°

e Event X = z is the (singular) cause of event Y =y if (i) X =z and Y =y are
true and (ii) in every context u compatible with X =z and Y = y, and for all 2’ # z,

we have Y (a';u) # y.

This definition reflects the counterfactual explication of a singular cause: “Y =y
" as used in Section 2.4. A separate analysis of
counterfactuals will be given in Section 4.5.

would be false if it were not for X =z,

4.2 Probabilistic causal effects and identifiability

The definitions above are deterministic. Probabilistic causality emerges when we define
a probability distribution P(u) for the U variables. Under the assumption that the set
of equations {f;} and every subset thereof has a unique solution, P(u) induces a unique
distribution Pr,(v) on the endogenous variables for each combination of atomic interventions
do(X = z). This leads to a natural probabilistic definition of causal effects.

10The standard example in the philosophical literature [Cartwright, 1989] involves the potential positive
influence of birth-control pills on thrombosis, which might be masked by its negative effect on pregnancy
(another cause of thrombosis). Cartwright proposal (rejected by Eells), that the influence of the pill be as-
sessed by considering separately the population of women that would get pregnant (or remain non-pregnant)
regardless of the pill, amounts to considering a subtheory 7, in which pregnancy (Z) is held fixed.
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Definition 7 (causal effect) Given two disjoint subsets of variables, X CV andY C V| the
causal effect of X on'Y, denoted Pr(y|do(z)) or Pr(y|Z), gives the distribution of Y induced
by the action do(X = z), that is,

Pr(y

&) = Pr,(y) (13)
for each realization x of X.

The probabilistic notion of causal effect is much weaker than its deterministic counter-
parts of causal influence and potential causal influence. For example (from Subsection 2.2), if
U is the outcome of a fair coin, X is my bet, and Y stands for winning a dollar iff X = U, then
the causal effect of X on Y is nil, because P(y|do(X = T'ail)) = P(y|do(X = Head) = 3.
At the same time, X will qualify as having an influence on Y in every possible context,
U = Head and U = Tail. Note that causal effects are defined relative to a given causal
theory 7', though the subscript 1" is often suppressed for brevity.

Definition 8 (identifiability) Let Q(T') be any computable quantity of a theory T. @Q is
identifiable in a class M of theories if for any pairs of theories Ty and Ty from M, Q(11) =
Q(T3) whenever Pp (v) = Pr,(v).

Identifiability is essential for integrating statistical data (summarized by P(v)) with in-
complete prior causal knowledge of {f;}, as it enables the reasoner to estimate quantities )
from P alone, without specifying the details of T', so that the general characteristics of the
class M suffice.!! For the purpose of our analysis, the quantity () of interest is the causal
effect Pr(y|&) which is certainly computable from a given theory 7' (using Eq. (13)), but
which we will now attempt to compute from incomplete specification of 7', in the form of
general characteristics such as the identities of the parent sets PA; and the independencies
embedded in P(u). We will therefore consider a class M of theories which have the following
characteristics in common:

(i) they share the same parent-child families (i.e., the same causal graph ),
(ii) they share the same set of independencies in P(u), and,
(iii) they induce positive distributions on the endogenous variables,'? i.e., P(v) > 0.

Relative to such classes we now define:

Definition 9 (causal-effect identifiability) The causal effect of X on Y is said to be iden-
tifiable in M if the quantity P(y|&) can be computed uniquely from the probabilities of
the observed variables, that is, if for every pair of theories Ty and Ty in M such that

Pry(v) = Pr,(v), we have Pr,(y|&) = Pr,(y|2).

1The notion of identifiability is central to much work in econometrics, where it has become synonymous
to the identification of the functions {f;} or some of their parameters [Koopman and Reiersol, 1950], mostly
under conditions of additive Gaussian noise. Definition 8, which does not assume any parametric represen-
tation of the functions {f;}, extends the notion of identifiability to quantities @} that do not require the
precision of parametric models. In particular, it permits one (see Definition 9) to dispose with the identifi-
cation of functional parameters altogether, and deal directly with causal effects P(y|Z) — the very purpose
of identifying parameters in policy-analysis applications.

12This requirement ensures that the disturbances U are sufficiently rich to simulate a “natural experiment”,
that is, an experiment in which conditions change by natural phenomena rather than a human experimenter.
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The identifiability of P(y|Z) ensures that it is possible to infer the effect of action
do(X = z)onY from two sources of information:

(i) passive observations, as summarized by the probability function P(v),

(ii) the causal graph, GG, which specifies, qualitatively, which variables make up the stable
mechanisms in the domain or, alternatively, which variables participate in the deter-
mination of each variable in the domain.

Simple examples of identifiability will be discussed in the next subsection.

4.3 Inferring consequences of actions from passive observations

The probabilistic analysis of actions becomes particularly simple when two conditions are
satisfied:

1. The theory is recursive, that is, there exists an ordering of the variables V = {X7,..., X, }
such that each X; is a function of a subset PA; of its predecessors

X, = fi(PA,,U;)  PA; C{Xy,....Xi1} (14)

2. The disturbances Uy, ..., U, are mutually independent, which implies (from the exo-
geneity of the U;’s)

Ui ” {X17"'7Xi—1} (15)

These two conditions, also called Markovian, are the basis of the independencies embodied
in Bayesian networks (Section 3.2), and they enable us to compute causal effects directly from
the conditional probabilities P(z;|pa;), without specifying either the functional form of the
functions f; or the distributions P(u;) of the disturbances [Pearl, 1993, Spirtes et al., 1993].
This is seen immediately from the following observations: On the one hand, the distribution
induced by any Markovian theory 7' is given by the product in Eq. (6),

Pr(zy,...,2,) = HP($i|P“i) (16)

where pa; are (values of) the parents of X, in the diagram representing 7'. On the other
hand, the subtheory 7./, representing the action do(X; = z’), is also Markovian; hence, it
also induces a product—fike distribution

Pr, (1, Pla e

r.) = Migs Plailpa;) = ezl if oy = (17)
J T 0 lf T]#,f;

where the partial product reflects the surgical removal of the equation X; = f;(pa;, U;)
from the theory of Eq. (14). Thus, we see that both the pre-action and the post-action
distributions depend only on observed conditional probabilities but are independent of the
particular functional form of {f;} and of the distributions P(u) that generate those proba-
bilities. This is the essence of identifiability as given in Definition 9, which stems from the
Markovian assumptions (14) and (15). Section 4.4 will demonstrate that certain, though
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not all, causal effects are identifiable even when the Markovian property is destroyed by
introducing dependencies among the disturbance terms.
In the example of Figure 1, the pre-action distribution is given by the product

PT(I17I2,$3,CC4,CC5) = P($1)P(CE2|$1)P(I3|$1)P(I4|$2,$3)P($5|I4) (18)

while the surgery corresponding to the action do(Xs; = ON) amounts to deleting the link
X; — X3 from the graph and fixing the value of X3 to ON, yielding the post-action distri-
bution

PT(I17$2,$4,$5|d0(X3 == ON)) == P(:Ifl) P(ZE2|$1) P($4|I27X3 == ON) P(ZE5|$4) (19)

Note the difference between the action do(X3; = ON) and the observation X3 = ON. The
latter is encoded by ordinary Bayesian conditioning,
P($1) P($2|fﬁ1) P(.I?g = ON|$1)P($4|$2,X3 = ON)P($5|$4)
P(X3 = ON)

PT(33173?27$4,$5|X3 = ON) =

The former is obtained by conditioning a mutilated graph, with the link X; — X3 removed.
This mirrors indeed the difference between seeing and doing: after observing that the sprin-
kler is ON, we wish to infer that the season is dry, that it probably did not rain, and so
on; no such inferences should be drawn in evaluating the effects of the deliberate action
“turning the sprinkler ON.” The excision of X3 = f5(X7,Us) from (10) ensures the suppres-
sion of any abductive inferences from the action, as well as from any of its consequences.

Generalization to multiple actions and conditional actions is straightforward. Multiple
actions do(X = z), where X is a compound variable, result in a distribution similar to (17),
except that all factors corresponding to the variables in X are removed from the product in
(16). Stochastic conditional strategies [Pearl, 1994] of the form

do(X; = x;) with probability P*(z;|pa’) (20)

where PA7 is the support set of the decision strategy, also result in a product decomposition
similar to (16), except that each factor P(x;|pa;) is replaced with P*(z;|pa}).

4.4 A calculus of acting and seeing

The identifiability of causal effects demonstrated in Section 4.3 relies critically on the Marko-
vian assumptions given in (14) and (15). If a variable that has two descendants in the graph
is unobserved, the disturbances in the two equations are no longer independent, the Marko-
vian property (14) is violated, and identifiability may be destroyed. This can be seen easily
from Eq. (17); if any parent of the manipulated variable X; is unobserved, one cannot
estimate the conditional probability P(z;|pa;), and the effect of the action do(X; = z;)
may not be predictable from the observed distribution P(z1,...,2,). Fortunately, certain
causal effects are identifiable even in situations where members of pa; are unobservable
[Pearl, 1993]. Moreover, polynomial tests are now available for deciding when P(z;|Z;) is
identifiable and for deriving closed-form expressions for P(x;|;) in terms of observed quan-

tities [Galles and Pearl, 1995].
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These tests and derivations are based on a symbolic calculus [Pearl, 1994b, 1995], to
be described in the sequel, in which interventions, side by side with observations, are given
explicit notation and are permitted to transform probability expressions. The transformation
rules of this calculus reflect the understanding that interventions perform “local surgeries” as
described in Definition 6, namely, they overrule equations that tie the manipulated variables
to their pre-intervention causes.

Let X,Y, and Z be arbitrary disjoint sets of nodes in a DAG . We say that X and
Y are independent given Z in G, denoted (X || Y|Z)q, if the set Z d-separates X from
Y in . We denote by G5 the graph obtained by deleting from G all arrows pointing to
nodes in X. Likewise, we denote by G’y the graph obtained by deleting from ' all arrows
emerging from nodes in X. To represent the deletion of both incoming and outgoing arrows,
&)/ P(z|%) stands for
the probability of Y = y given that Z = z is observed and X is held constant at z.

we use the notation Gx,. Finally, the expression P(y|z,z) 2 Py, z

Theorem 5 Let G be the DAG associated with a Markovian causal theory, and let P(-)
stand for the probability distribution induced by that theory. For any disjoint subsets of
variables X, Y, 7, and W we have:

Rule 1 Insertion/deletion of observations
Plylt, 5 w) = Plyla,w) it (Y | Z1X,W)ay 1)
Rule 2 Action/observation exchange

Py

£.5,0) = P(yla,z,w) i (Y || ZIX, W)y, (22)

Rule 3 Insertion/deletion of actions

Py

&, 5,w) = Plyld,w) if (Y | Z|X, W)e

L. X, Z(W)

(23)

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in Gx.

Each of the inference rules above follows from the basic interpretation of the & operator
as a replacement of the causal mechanism that connects X to its pre-action parents by a
new mechanism X = z introduced by the intervening force.

Corollary 1 A causal effect Q: P(y1, ..., Yr|Z1, ..., Tm) ts identifiable in a model characterized
by a graph G if there exists a finite sequence of transformations, each conforming to one of
the inference rules in Theorem 5, which reduces q into a standard (i.e., hat-free) probability
expression involving observed quantities.

Although Theorem 5 and Corollary 1 require the Markovian property, they can also be
applied to non-Markovian, recursive theories, because such theories become Markovian if we
consider the unobserved variables as part of the analysis and represent them as nodes in
the graph. To illustrate: Assume that variable X; in Figure 1 is unobserved, rendering the
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disturbances Us and U; dependent since these terms now include the common influence of
Xj. Theorem 5 tells us that the causal effect P(x4|3) is identifiable, because

P(aalis) = 3 P(ualis, 22) P(2a]ds) (24)

T2

Rule 3 permits the deletion
P(ZEQ

#3) = Play) (25)

because (X, || XS)G; , while Rule 2 permits the exchange
P(I4|C/é37f€2) = P(I4|$37$2) (26)

because (X4 l X3|X2)G£3. This gives

P(x4]23) = ZP(CE4|$3,CE2)P($2) (27)

T2

which is a hat-free expression, involving only observed quantities.

The reader might recognize Eq. (27) as the standard formula for covariate adjustment
(also called “stratification”), which is used in experimental design both for improving preci-
sion and for minimizing confounding bias. However, a formal, general criterion for deciding
whether a set of covariates Z (X, in our example) qualifies for adjustment has long been
wanting [Smith, 1957, Wainer, 1991, Shafer, 1995].'> Theorem 5 provides such a criterion
(called the “back-door criterion” in [Pearl, 1993]) which reads:

Definition 10 7 is an admissible set of covariates relative to the effect of X on'Y if:
(i) no node in 7 is a descendant of X, and

(ii) Z d-separates X from Y along any path containing an arrow into X (equivalently,

(Y || X[Z)cy)-

We see, for instance, that X, and X (or both) qualify as admissible covariates relative
the effect of X3 on X4, but X5 will not qualify. The graphical definition of admissible
covariates replaces statistical folklore with formal procedures, and should enable analysts
to systematically select an optimal set of observations, namely, a set Z that minimizes
measurement cost or sampling variability.

In general, it can be shown [Pearl, 1995] that:

1. The effect of interventions can often be identified (from nonexperimental data) without
resorting to parametric models.

13Most of the statistical literature is satisfied with informal warnings that “Z should be quite unaffected by
X7 [Cox, 1958, page 48], which is necessary but not sufficient, or that X should not precede Z [Shafer, 1995,
page 294], which is neither necessary nor sufficient. In some academic circles, a criterion called “ignorability”
is invoked [Rosenbaum and Rubin, 1983], which merely paraphrases the problem in the language of coun-
terfactuals. Simplified, it reads: Z is an admissible covariate relative to the effect of X on Y if, for every z,
the value that Y would obtain had X been z is conditionally independent of X, given Z.
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2. The conditions under which such nonparametric identification is possible can be de-
termined by simple graphical criteria.

3. When the effect of interventions is not identifiable, the causal graph may suggest non-
trivial experiments which, if performed, would render the effect identifiable.

While the ability to assess the effect of interventions from nonexperimental data has imme-
diate applications in the medical and social sciences, such assessments are also important
in psychological learning theory: they explain how agents can predict the effect of the next
action (e.g.,turning the sprinkler on) on the basis of past experience, where that action has
never been enacted out of free will, but only in response to environmental needs (e.g., dry
season) or to other agents’ requests.

4.5 Processing counterfactuals

A counterfactual sentence has the form
If A were true, then C would have been true, given O

where A, the counterfactual antecedent, specifies an event that is contrary to one’s real-world
observations O, and C', the counterfactual consequent, specifies a result that is expected to
hold in an alternative world where the antecedent is true. A typical example is “If Oswald
were not to have shot Kennedy, then Kennedy would still be alive,” which presumes the
factual knowledge of Oswald’s assassination of Kennedy, contrary to the antecedent of the
sentence.

The majority of the philosophers who have examined the semantics of counterfactual
sentences have resorted to some version of Lewis’ “closest world” approach: “C' if it were
A7 is true, if C is true in worlds that are “closest” to the real world yet consistent with
the counterfactual antecedent A [Lewis, 1973]. While the closest world approach leaves
the precise specification of the closeness measure almost unconstrained, causal knowledge
imposes very specific preferences as to which worlds should be considered closest to any given
world. For example, consider an array of domino tiles standing close to each other. The
manifestly closest world consistent with the statement “tile 2 is tipped to the right” would be
a world in which just tile 7 is tipped, while all the others remain erect. Yet, we all accept the
counterfactual sentence “Had tile ¢ been tipped to the right, tile ¢+ 1 would be tipped as well”
as plausible and valid. Thus, distances among worlds are not determined merely by surface
similarities but require a distinction between explained and unexplained dissimilarities. The
local surgery paradigm expounded in Section 4.1 offers a concrete explication of the closest-
world approach which respects such causal considerations. A world w; is “closer” to w than
a world wy is, if the set of atomic surgeries needed for transforming w into w; is a proper
subset of those needed for transforming w into w,. In the domino example, finding tile :
tipped and ¢ + 1 erect requires the alteration of two basic mechanisms (i.e., two unexplained
actions or “miracles” [Lewis, 1973]) compared with one altered mechanism for the world in
which all j tiles, 5 > ¢, are tipped. This paradigm conforms to our perception of causal
influences and lends itself to economical machine representation.

The structural equations framework, coupled with the surgical operator do(X = z), also
offers the syntactic machinery for counterfactual analysis, while leaving the closest-world
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interpretation implicit. The basis for this analysis is the potential response function Y (z;u)
invoked in Lemma 4, which we take as the formal explication of the English phrase “the
value that Y would obtain in context u, had X been z”.

Definition 11 (potential response) Given a causal theory T  the potential response of Y
to X in a context u, denoted Y (x;u) or Yy(u), is the solution for Y under U = u in the
subtheory T,. *

Note that this definition allows for the context U = u and the proposition X = z to be
incompatible in T'. For example, if 7' describes a logic circuit with input U, it may well be
reasonable to assert the counterfactual: “Given U = u, voltage Y would be high if current
X were low,” even though the input U/ = v may preclude X from being low. It is for this
reason that one must invoke some notion of intervention (alternatively, a theory change or a
“miracle” [Lewis, 1973]) in the definition of counterfactuals. This is further attested by the
suppression of abductive arguments in counterfactual reasoning; for example, the following
sentence would be deemed unacceptable: “Had I done my homework, I would have felt
miserable, because I always do my homework after my father beats me up.” The reason we
do not accept this argument is that it conflicts with the common understanding that the
counterfactual antecedent “done my homework” should be considered an external willful act,
totally free of normal inducements (e.g., beatings), as modeled by the surgical subtheory 7.

Counterfactual sentences rarely specify a complete context u. Instead they imply a partial
description of u in the form of a set o of (often implicit) facts or observations. Thus, a general
counterfactual sentence would have the format @ — yl|o, read “Given factual knowledge o, Y
would obtain the value y had X been z.” For example, the sentence “If Oswald were not to
have shot Kennedy, then Kennedy would still be alive” would be formulated:

~Shot(Oswald, Kennedy) — Alive(Kennedy) | Dead(Kennedy), Shot(Oswald, Kennedy)

The truth of such a sentence in a theory 7' can be defined in terms of the potential response
Y (z;u) as follows:

Definition 12 (counterfactual assertability) The sentence © — ylo is true in T if Y (z;u) =
y for every u compatible with o.

This definition parallels Lewis’s closest world approach, with u playing the role of a possible
world. Note the difference between the treatments of o and x; the former insists on direct
compatibility between u and o, while the latter tolerates a surgical face-lift where = and u
are incompatible.

If U is treated as a random variable, then the value of the counterfactual Y (z; u) becomes
a random variable as well, denoted Y (z) or Y. Moreover, the distribution of this random
variable is easily seen to coincide with the causal effect P(y|z):

P((Y(z) =y) = P(y|z)

1The term unit instead of context is often used in the statistical literature [Rubin, 1974], where it normally
stands for the identity of a specific individual in a population, namely, the set of attributes u that characterize
that individual. In general, u may include the time of day, the experimental conditions under study, and
so on. Practitioners of the counterfactual notation do not explicitly mention the notions of “solution” or
“Intervention” in the definition of Y (z;u). Instead, the phrase “the value that Y would take in unit u, had
X been z,” viewed as basic, is posited as the definition of Y (z; u).
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Thus, the probability of a counterfactual conditional  — y | 0 may be evaluated by the
following procedure:

e Use the observations o to update P(u), thus forming a revised causal theory

T°=<V,U{fi}, P(ulo) >

e Form the mutilated theory T2 (by deleting from T° the equation corresponding to
variables in X') and compute the probability Pro(y|z) that 7 induces on Y.

In Subsection 2.4 we have demonstrated that, unlike causal-effect queries, counterfactual
queries may not be identifiable in Markovian theories, but require that the functional form
of {f;} be specified. However, the example also shows that the counterfactual probabilities
computed under two different functional forms produced almost the same answer to a coun-
terfactual query. This is no coincidence. In [Balke and Pearl, 1994], a method is devised for
computing sharp bounds on counterfactual probabilities, and, under certain circumstances,
those bounds may collapse to point estimates. This method has been applied to the eval-
uation of causal effects in studies involving noncompliance and to determination of legal
liability.

Counterfactual reasoning is at the heart of many cognitive abilities, especially real-time
planning. For example, when a planner discovers that the current state of affairs deviates
from the one expected, a “plan repair” activity will be invoked to determine what went wrong
and how the error can be rectified. This activity amounts to an exercise in counterfactual
thinking, as it calls for rolling back the natural course of events and determining, based on
the factual observations at hand, whether the culprit resides in previous decisions or in some
unexpected, external eventualities. Moreover, in reasoning forward to determine whether
things would have been different, a new model of the world must be consulted, one that
embodies hypothetical changes in decisions or eventualities, hence, a breakdown of the old
model or theory. The surgical semantics expounded in this section offers a formal account
of such breakdown.

The capacity to mentally simulate theory breakdowns is required whenever one wishes to
evaluate the merit of actions on the basis of the past performance. The odd statement: “Had
I done my homework, I would have felt miserable, because I always do my homework after
my father beats me up” demonstrates the consequences of failing to exercise this capacity. A
person aware of the signals triggering the past actions, must devise a method for selectively
ignoring the influence of those signals from the evaluation process. In fact, the very essence
of evaluation is having the freedom to imagine and compare trajectories in various counter-
factual worlds, where each world or trajectory is created by a hypothetical implementation
of actions that are free of the very pressures that compelled the implementation of such
actions in the past.

The task of inferring singular causes (Subsection 2.4), also requires counterfactual rea-
soning. Finding the probability that X = x is the actual cause for effect E. also amounts to
answering a counterfactual query: “Given effect £ and observations O, find the probability
that £ would not have been realized, had X not been x.” The technique developed in Balke
and Pearl (1995) permits the evaluation of such queries in the framework of Definition 11.
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4.6 Historical remarks

An explicit translation of interventions to “striking out” equations from linear econometric
models was first proposed by Strotz and Wold (1960) and later used in Fisher (1970) and
Sobel (1990). Extensions to action representation in nonmonotonic reasoning and statistical
analysis were reported in [Goldszmidt and Pearl, 1992, Pearl, 1993]. Graphical ramifications
of this translation were explicated first in Spirtes et al. (1993) and later in Pearl (1993b).
A related formulation of causal effects, based on event trees and counterfactual analysis,
was developed by Robins (1986, pp. 1422-1425). Shafer (1995) offers a novel formulation
of probabilistic causation, based also on event trees. Calculi for actions and counterfactu-
als based on surgery semantics are developed in [Pearl, 1994] and [Balke and Pearl, 1994],
respectively.

5 Conclusions

Statistical contingency models of causal induction have had two major advantages over
their power-based rivals. First, statistics-based models are grounded in direct experience
and, hence, promise to explicate the evidence and the processes responsible for acquiring
cause-effect relationships from raw data. Second, statistics-based models enjoy the symbolic
machinery of probability calculus, which enables researchers to posit hypotheses, commu-
nicate ideas, and make predictions with mathematical precision. In comparison, as well as
skirting the issue of causal induction by presuming the pre-existence of a causal structure,
power-based theories have lacked an adequate formal language in which to cast assumptions,
claims, and predictions.

This chapter offers a formal setting, based on mechanisms, structures and surgeries,
which accommodates both the statistical and the power components of causal inference.
It has shown how pre-existing causal knowledge, cast qualitatively in the form of a graph,
can combine with statistical data to produce new causal knowledge, that is both qualitative
and quantitative in nature. It has also shown how the formal setting of structural causality
provides not only a semantics for distinguishing subtle nuances in causal discourse, but also
an inferential machinery for processing actions, observations, and counterfactuals.

Returning to the problem of induction, the question of how knowledge about mechanisms
is acquired in the first place remains unanswered. Mechanisms, however, are nothing but
ordinary physical laws, cast in the form of deterministic equations. Therefore, the acquisition
of causal relationships is no different from the acquisition, using controlled experimentation,
of physical laws such as Hooke’s law of suspended springs or Newton’s law of acceleration.
The asymmetry associated with causal relations, which is normally absent from physical
laws, is partly a by-product of the distinction we make between endogenous and exogenous
variables, namely, between variables we choose to analyze within the system and those we
prefer to take as given (see Simon, 1953), partly due to the distinction we perceive between
manipulable and nonmanipulable variables, and partly due to inherent asymmetries induced
when closed physical systems (described by symmetric equations) are placed in contact with
powerful external influences, e.g., wetting the ground does not make the sprinkler turn on,
moving cars do not turn ignition keys, and so on.

The explication of causal relationships in terms of mechanisms and physical laws is not
meant to imply that the induction of physical laws is a solved, trivial task. It implies,
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however, that the problem of causal induction, once freed of the mysteries and suspicions
that normally surround discussions of causality, can be formulated as part of the more
familiar problem of scientific induction.
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