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Abstract

Evaluation of counterfactual queries (e.g., “If
A were true, would C have been true?”) is
important to fault diagnosis, planning, de-
termination of liability, and policy analysis.
We present a method for evaluating counter-
factuals when the underlying causal model is
represented by structural models — a nonlin-
ear generalization of the simultaneous equa-
tions models commonly used in econometrics
and social sciences. This new method pro-
vides a coherent means for evaluating poli-
cies involving the control of variables which,
prior to enacting the policy were influenced
by other variables in the system.

1 INTRODUCTION

A counterfactual sentence has the form
If A were true, then C' would have been true

where A, the counterfactual antecedent, specifies an
event that is contrary to one’s real-world observations,
and C, the counterfactual consequent, specifies a result
that is expected to hold in the alternative world where
the antecedent is true. A typical example is “If Oswald
were not to have shot Kennedy, then Kennedy would
still be alive,” which presumes the factual knowledge
that Oswald did shoot Kennedy, contrary to the an-
tecedent of the sentence.

Counterfactual reasoning is at the heart of every plan-
ning activity, especially real-time planning. When a
planner discovers that the current state of affairs de-
viates from the one expected, a “plan repair” activ-
ity need be invoked to determine what went wrong
and how it could be rectified. This activity amounts
to an exercise of counterfactual thinking, as it calls
for rolling back the natural course of events and de-
termining, based on the factual observations at hand,
whether the culprit lies in previous decisions or in some
unexpected, external eventualities. Moreover, in rea-
soning forward to determine if things would have been
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different a new model of the world must be consulted,
one that embodies hypothetical changes in decisions
or eventualities, hence, a breakdown of the old model
or theory.

The logic-based planning tools used in Al such as
STRIPS and its variants or those based on the situa-
tion calculus, do not readily lend themselves to coun-
terfactual analysis; as they are not geared for coherent
integration of abduction with prediction, and they do
not readily handle theory changes. Remarkably, the
formal system developed in economics and social sci-
ences under the rubric “structural equations models”
does offer such capabilities but, as will be discussed
below, these capabilities are not well recognized by
current practitioners of structural models.! The pur-
pose of this paper is both to illustrate to Al researchers
the basic formal features needed for counterfactual and
policy analysis, and to call the attention of economists
and social scientists to capabilities that are dormant
within structural equations models.

Counterfactual thinking dominates reasoning in polit-
ical science and economics. We say, for example, “If
Germany were not punished so severely at the end of
World War I, Hitler would not have come to power,”
or “If Reagan did not lower taxes, our deficit would be
lower today.” Such thought experiments emphasize an
understanding of generic laws in the domain and are
aimed toward shaping future policy making, for ex-
ample, “defeated countries should not be humiliated,”
or “lowering taxes (contrary to Reaganomics) tends to
increase national debt.”

Strangely, there is very little formal work on coun-
terfactual reasoning or policy analysis in the behav-
ioral science literature. An examination of a number
of econometric journals and textbooks, for example,
reveals an imbalance: while an enormous mathemat-

!These were clearly recognized though by the found-
ing fathers of structural models, as can be seen in the
publications of the Cowels Commission [Haavelmo, 1943]
[Marschak, 1950] [Simon, 1953] but, with the exception
of [Strotz and Wold, 1971], [Simon and Rescher, 1966] and
[Fisher, 1970], have all but disappeared from the economet-
rics literature.



ical machinery is brought to bear on problems of es-
timation and prediction, policy analysis (which is the
ultimate goal of economic theories) receives almost no
formal treatment. Currently, the most popular meth-
ods driving economic policy making are based on so-
called reduced-form analysis: to find the impact of a
policy involving decision variables X on outcome vari-
ables Y, one examines past data and estimates the
conditional expectation E(Y|X =), where z is the
particular instantiation of X under the policy studied.

The assumption underlying this method is that the
data were generated under circumstances in which the
decision variables X act as exogenous variables, that
is, variables whose values are determined outside the
system under analysis. However, while new decisions
should indeed be considered exogenous for the pur-
pose of evaluation, past decisions are rarely enacted in
an exogenous manner.” Almost every realistic policy
(e.g., taxation) imposes control over some endogenous
variables, that is, variables whose values are deter-
mined by other variables in the analysis. Let us take
taxation policies as an example. Economic data are
generated in a world in which the government is react-
ing to various indicators and various pressures; hence,
taxation is endogenous in the data-analysis phase of
the study. Taxation becomes exogenous when we wish
to predict the impact of a specific decision to raise or
lower taxes. The reduced-form method is valid only
when past decisions are nonresponsive to other vari-
ables in the system, and this, unfortunately, elimi-
nates most of the interesting control variables (e.g.,
tax rates, interest rates, quotas) from the analysis.?

?This distinction is often blurred in the literature.
[Druzdzel and Simon, 1993], for example, state: “A vari-
able is considered exogenous to a system if its value is de-
termined outside the system, either because we can control
its value externally (e.g., the amount of taxes in a macro-
economic model) or because we believe that this variable is
controlled externally (like the weather in a system describ-
ing crop yields, market prices, etc.)” Still, our ability to
externally control the value of a variable X does not render
X exogenous for the purpose of legitimizing the reduced
form analysis: for E[Y|X = z] to represent the impact of
X =z on Y, X must also be independent of all implicit
factors (disturbance terms) affecting Y.

While every economist knows that this disturbance-
independence is a necessary condition for consistent es-
timation of structural parameters, most economists as-
sume that disturbance-independence is a guaranteed prop-
erty of controllable policy variables. A popular textbook
[Intriligator, 1978], for example, mentions these two prop-
erties as if they were synonymous: “The exogenous vari-
ables are variables the values for which are determined out-
side the model but which influence the model. From a
formal standpoint the exogenous variables are assumed to
be statistically independent of all stochastic disturbance
terms of the model, while the endogenous variables are
not statistically independent of those terms. ...In general
the exogenous variables are either historically given, policy
variables, or determined by some separate mechanism.”

3This problem is unrelated to the celebrated Lucas’s
critique [Lucas, 1976] which concerns parameter changes

This difficulty is not unique to economic or social pol-
icy making; it appears whenever one wishes to evaluate
the merit of a plan on the basis of the past performance
of other agents. Even when the signals triggering the
past actions of those agents are known with certainty,
a systematic method must be devised for selectively
ignoring the influence of those signals from the evalu-
ation process. In fact, the very essence of evaluation is
having the freedom to imagine and compare trajecto-
ries in various counterfactual worlds, where each world
or trajectory is created by a hypothetical implementa-
tion of a policy that is free of the very pressures that
compelled the implementation of such policies in the
past.

A connection between counterfactuals and policy mak-
ing was formulated in [Balke and Pearl, 1994b] using a
simple device from action theory. In that formulation,
the counterfactual antecedent is interpreted as a hypo-
thetical minimal intervention that forces the counter-
factual antecedent to hold true. If a system is modeled
with structural equations (respectively, causal graphs),
an intervention is simulated by severing all equations
(causal edges) that correspond to (lead into) the an-
tecedent variables and setting their values to those
specified in the antecedent [Strotz and Wold, 1971]. A
calculus for working with interventions in causal the-
ories is given in [Pearl, 1994].

[Balke and Pearl, 1994b] provides background and
motivation for the evaluation of counterfactual con-
ditionals and briefly illustrates how the intervention
scheme would handle counterfactuals in models rep-
resented by linear structural equations. This paper
amends and expands the treatment of counterfactuals
and policy making in any structural model for which
the form of the equations is give. It also presents an
example of their use in the area of econometrics, where
apparently no adequate formalism for dealing with pol-
icy analysis has been proposed. In contrast to reduced-
form analysis, our method allows evaluation of the con-
sequences of intervening on economic attributes that
are endogenous in normal operation only to become
exogenous for the purpose of evaluation. For example,
after developing the general techniques in Section 3,
we will illustrate their use in Section 4 by evaluating
the effect on the demand for some commodity when a
government imposes price controls on that commodity
for the first time.

2 REVIEW OF
COUNTERFACTUAL ANALYSIS

In this section, the procedure for evaluating counter-
factual conditionals in the context of structural equa-

due to economic agents becoming aware of interventions.
The failure of reduced-form analysis extends to physical
systems as well, where there are no rational agents to speak
of, and where system parameters remain unaltered (except
those under direct control).



tion models will be reviewed. We will then demon-
strate this procedure on an example where the rela-
tionships among observed variables are deterministic,
followed by an example that demonstrates how excep-
tions and disturbances incorporated into the model af-
fect the analysis procedure.

Let V. = {Vi,Va,...,V,} represents the set of vari-
ables for which data may be observed in a system.
U={Uy,Us,...,Un} will represent the disturbances,
exceptions, and/or abnormalities influencing the ob-
servable variables V. For example, U could summa-
rize the influence of many exogenous factors, such as
the “price of tea in China” or “the local weather.” In
general, each observable variable V; is a deterministic
function of the form:

Vi = fi(Vi,Va,.. SUn) (1)

The structure of the model defined by these equations
may be depicted by a causal graph, where each vari-
able on the left hand side of a structural equation is
the child of those variables on the right hand side of
the equation. A probability distribution over the dis-
turbances, P(u1,us,...,un), embodies the nondeter-
minism in the model. In general, this distribution is
unconstrained; however, some classes of models, e.g.,
regression models, will assume that the disturbance
variables Uy are mutually independent.

':Vn:U1;U2;"

A counterfactual conditional will be written
a—clo (2)

and read as “Given that we have observed o, if a were
true, then ¢ would have been true.” The observations
o consists of a set of value assignments to variables
inV,eg., V; = v;, V& = v;. The counterfactual an-
tecedent a, consists of a conjunction of value assign-
ments to variables in V' that are forced to hold true by
external intervention. Typically, to justify being called
“counterfactual”, a conflicts with o. Finally, the coun-
terfactual consequent, ¢, stands for the proposition of
interest, usually the values attained by some variables
in the system.

The truth of a counterfactual conditional a — ¢ | o
may then be evaluated by the following procedure:

o Use the observations o to update the joint belief*
for all root nodes in the causal network. This joint
belief summarizes the state of the system, because
each non-root variable is a deterministic function
of its causal influences.

e Replace the structural equation for each variable
Vi referred to in the counterfactual antecedent
a with the equation Vi = a,, where a,, is the
value of Vi specified in a. This implements the
local intervention that forces the counterfactual
antecedent to hold true.

*Here we use the generic term “belief” to refer to either
truth assignments or probabilities.

a Captain’s signal
Bob’s firing e
e Traitor’s health

Figure 1: Causal structure reflecting the influence
that the Captain’s signal has on Bob’s firing and the
Traitor’s health, and the direct influence that Bob’s fir-
ing has on the Traitor’s health.

e Compute the solutions or belief of the consequent
proposition ¢ according to the modified set of
structural equations.

This procedure will work whenever we have the func-
tional form of the f;’s, in which case the model is called
parametric; otherwise, the model is called nonparamet-
ric. In particular, this paper concentrates on linear
and boolean functions (e.g., Noisy-OR gates). In the
case that the model is nonparametric, only bounds
may be calculated for the belief of a counterfactual
consequent [Balke and Pearl, 1994a].

To illustrate the intervention-based interpretation of
counterfactuals, consider a firing squad with several
riflemen (one called Bob) and a Captain who gives a
signal to either shoot or release a prisoner charged with
treason. The behavior of these agents is as follows:

e The Captain waits for the court decision.

o Bob typically fires his rifle if and only if the Cap-
tain gives the signal to shoot.

e The Traitor typically dies if and only if the Cap-
tain gives the signal to shoot or Bob fires his rifle.

Note that if the Captain gives the signal to shoot and
Bob does not fire, the traitor will typically die as a
result of the other riflemen shooting, but these inter-
mediate causes will not be made explicit in this story
in order to keep the model simple.

The generic causal structure that reflects this descrip-
tion is represented in Figure 1. The three variables C|
B, and T have the following domains:

0 = Captain gives the signal to release
¢ € the traitor.
1 = Captain gives the signal to shoot

the traitor.

Bob does not fire his rifle.
Bob fires his rifle.

0
1
¢ e { (1) i Traitor lives. }

Traitor dies.

The following subsections will demonstrate the evalu-
ation of counterfactual conditionals under two varia-



C ) Captain’s signal

Bob’s firing | 5=0

T ) Traitor’s health

Figure 2: Causal structure reflecting an external inter-
vention that forces the state of Bob’s firing despite its
normal causal influences, e.g., the Captain’s signal.

tions of this model. The first assumes that the behav-
iors of the characters in the story are deterministic,
while the second admits the occurrence of exceptions.

2.1 DETERMINISTIC ANALYSIS

A deterministic model is a special case of the general
structural equation model where the disturbance vari-
ables set the values of the root nodes in the causal
graph, i.e.,

Vi = fi(U) (3)

and the remaining observable variables (those that are
not root nodes) are deterministic functions of the set
of observable variables V| i.e.,

Vi = Vi, Ve, Vo) (4)

In a deterministic model, the firing-squad story may be
concisely expressed by the following structural equa-
tions

B = C (5)
T = BvVC (6)

Suppose that we observe Bob fire his rifle (b = 1) and
the traitor expires (¢t = 1). If Bob were not to have
fired (b = 0), would the traitor have lived (¢ = 0), i.e.,
does b=0 — t=0 | b=1,t=1 hold true? Following the
procedure previously outlined, the belief in the root
nodes of the causal structure are first evaluated; in this
case, did the captain give the order to fire? Applying
Eq. (5) allows us to abductively infer that the Captain
must have given the order to fire (¢ = 1).

The structural equations (and hence the causal struc-
ture) are then modified to reflect an external interven-
tion forcing Bob to have not fired (b = 0):

B = 0 (7)
T = BvC (8)

Figure 2 depicts the causal structure reflecting this
modified set of structural equations.

Finally, substituting our previously computed beliefs
for the root nodes in the causal structure, i.e., that the
Captain gave the order to fire (¢ = 1), evaluate our
belief in the traitor’s state of health. In our example

query, substitute ¢ = 1 and b = 0 from the intervention
into Eq. (8) to conclude that the traitor would still
have died (¢t = 1). Therefore, the analysis leads to
the statement, “given that Bob fired his rifle and the
traitor died, if Bob had not fired his rifle, the traitor
would still have died.”

This method for analyzing counterfactual conditionals
was developed with the goal of preventing reasoning
from the counterfactual antecedent variables to their
ancestors in the causal structure, e.g., to conclude that
the Captain would not have given the signal to shoot,
if Bob did not fire. Such abductive reasoning is legiti-
mate in an unchanged, typical world but does not re-
flect the subjucntive mood of the counterfactual which
invites unexpected eventualities (e.g., Bob failing to or
deciding not to fire), similar to eventualities that are
considered in decision making.

This solution is essentially the same as would be com-
puted by [Simon and Rescher, 1966], who suppress ab-
ductive inference by invoking only forward inferences.
Our method, which suppresses abduction by removing
equations from the model, has two advantages. In the
probabilistic analysis, our method permits the coun-
terfactual computation using ordinary evidence prop-
agation in a dual network [Balke and Pearl, 1994b].
Moreover, our proposal is also applicable to nonrecur-
sive theories as will be shown in Section 3.

2.2 ASSUMPTION-BASED ANALYSIS

In the previous subsection we assumed that there were
no exceptions to the normal behaviors of each of the
characters in the story. A more realistic model of the
story would be to incorporate assumptions and excep-
tions that effect how each observable variable is ef-
fected by its observable causal influences. For exam-
ple, in the firing-squad story, there may be exceptions
to Bob’s firing his rifle in accordance with the Cap-
tain’s signal: his rifle may become jammed preventing
him from firing, or he may have had an itchy trigger
finger. In addition, the traitor may have a cardiac
arrest and die without anyone firing, or all the rifle-
men may miss the target. In order to accommodate
these eventualities without explicating every possible
scenario, we will write the structural equations with
exception terms:

B = (C \Y abbl) A —abys (9)
T = (B V C) A —|abt1 V abtg (10)

abp; summarizes events that can cause Bob to fire even
though the Captain did not give the order to fire, while
abps summarizes those events that can prevent Bob
from firing his rifle. Likewise, aby; summarizes those
events that can cause the Traitor to die even though
Bob did not fire and the Captain did not give the or-
der to fire, while ab;; summarizes those events that
can prevent the Traitor from expiring even though the
riflemen fired. These abnormality variables correspond
to the set of disturbance variables U described in our
definition of structural equations models.



If we apply the previous query to this assumption-
based model, the same conclusion will be obtained,
because the most believable world consistent with the
observations contains no exceptions, which reduces
Egs. (9) and (10) to Egs. (5) and (6). Therefore, we
will work on a more complex query where abnormali-
ties make a difference in the conclusion. Suppose that
we observe the Captain give the signal to release the
traitor (¢ = 0) and the Traitor expires (t = 1). Given
this data there is a possibility that Bob’s firing was an
accident. Now we ask: If Bob were not to have fired
(b = 0), would the Traitor have lived (t = 0)%, i.e.,
doesb=0—1t=0]¢=0,t =1 hold true? As before,
we compute updated beliefs for each root variable in
the model given the observations. Our belief in C' is
already given by the observation, so we only need to
compute our belief in the abnormality variables, e.g.,
abbl.

Qualitatively, those states of the world that minimize
the number of abnormalities (exceptions) are to be as-
signed the highest belief. The fact that the Captain
gave the release signal and the Traitor expired, tells us
that there is at least one abnormal condition. Indeed,
there are exactly two assignments to the root variables
that satisfy the observations and only contain one ab-
normal condition:

(C = 0, abbl = 1, abe = 0, abﬂ = O,ath = 0) (11)
(C = 0, abbl = 0, abbz = 0, abﬂ = 0, ath = 1) (12)

The effect of the external intervention that forces Bob
not to fire his rifle is to be computed under these two
states of the system. First the structural equations are
modified to reflect the external intervention:

B = 0 (13)
T = (B \Y C) A —|abt1 \Y abn (14)

Substituting the values from Eq. (11) into these equa-
tions leads to the belief that the Traitor would be
alive. Intuitively, this particular state corresponds to
the case where Bob had an itchy trigger finger and
hence killed the Traitor; if Bob were prevented from fir-
ing, the mechanism responsible for the Traitor’s death
is disabled and the Traitor would have lived.

However, substituting the values from Eq. (12) into the
revised structural equations leads to the alternative
conclusion that the Traitor would still have died. In
this state, the Traitor died from fright, and would have
expired even if Bob were prevented from firing.

If the exceptions represented by abg; are more likely
than the exceptions represented by ab;s, then we

®This counterfactual conditional differs from most in
that no direct observation has been made for the variable
referred to in the counterfactual antecedent; hence, tech-
nically, the conditional may or may not be “counterfac-
tual.” The interpretation of a local-intervention on the
antecedent variable, though, is still clear, and the analysis
procedure can compute a meaningful belief for the coun-
terfactual consequent.

would choose to believe that the Traitor would have
lived. Otherwise, we would conclude that the Traitor
would still have expired.

3 LINEAR-NORMAL MODELS

The remainder of the paper will concentrate on mod-
els where the functions of Eq. (1) are linear and the
disturbances are normally distributed. Some notation
will be helpful for expressing background knowledge
and counterfactual queries in this class of models. Up-
per case letters (e.g., @}) represent variables and the
corresponding lower case letters (e.g., ¢) represent the
value of those variables. When referring to a set of
variables or values, we will use vector notation (e.g., X
and Z); however, the arrow will be dropped whenever
the variable is used as a subscript and its context is
known. The distribution of variables in a linear struc-
tural equation model with Gaussian disturbances is
fully specified by a mean vector (ji;) and a covariance
matrix (Xg ).

Counterfactual distributions will be notated by piex(a» o
and Y.« .x4= o which may be read as the “mean and
covariance of ¢ given the observations o, if a were true
(counterfactually).”

Assume that knowledge is specified by the linear
structural equation model (often used in economet-
rics and the social sciences, and originally established
by Sewall Wright in his development of path analysis
[Wright, 1921])

—

¥ = B¥+¢€

where B is a matrix (not necessarily triangular) corre-
sponding to a causal model (possibly cyclic), and we
are given the mean /i, and covariance X, . of the dis-
turbances € (assumed to be normal). The variables on
the right-hand side of a structural equation are inter-
preted as the causal influences of the variable on the
left-hand side of the equation. The mean and covari-

ance of the observable variables X are then given by
He = SHe (15)
Yoo = S5 (16)

where S = (I — B)~ 1.

Under such a model, there are well-known formulas
[Whittaker, 1990, p. 163] for evaluating the mean and

covariance of X conditioned on some observations o:
flo + e 0X50(0— o) (17)
Yoo — Tz,055 0 D0,w (18)

ﬁ:c|o =

Ex,x|o =

where, for every pair of subvectors, Z and W, of )?,
Y, w is the submatrix of ¥ , with entries correspond-
ing to the components of Z and W. Singularities of ¥

terms are handled by appropriate means.

Similar formulas apply for the mean and covariance of
X under an action a. For mathematical convenience,



let X be partitioned according to whether each vari-
able is referred to in a. The set of variables referred
to in a is denoted by Z, and the set of remaining vari-

ables in X is denoted by Y. Under this partition, the
matrix B can be partitioned into four submatrices:

B = [Byy Byz]
zy zz
B is replaced by the action-pruned matrix B = [Bij],
defined by
. - [0 ifxiea
A b;j otherwise
Equivalently,
> S Byy By,
o= [ ]

According to intervention semantics [Pearl, 1994], all

links from €, to 7 are severed and Z is forced to the
value @. Therefore, the modified structural equation

model for X when influenced by external actions is
given by

Given the mean and covariance of €,, the mean and

covariance of the observable variables X may be eval-
uated:

7 /jyld
Hz|a [ fizla :|

[ (I—Byy)—lé}y + By.d,) ] (19)

Ex,xm = Eyz,yzm
[ Yyyla yzla ]

z,yla z,z|a

|: (I_ Byy)_lzfyyéy((j_ Byy)_l)t 8 :|(20)

To evaluate the counterfactual distribution gz« |4+, and
Y= z+a, we first update the prior distribution of the
disturbances by their distribution conditioned on the
observations 0:

N B . L
/L: = Helo = He + 2570207})(0 — ,Uo)
= fle+ X SHSeX SN — i)
A —
ES,E = E5,6|o Ee,e - 26,0207220,5

= 25,5 - 25,552(5025,552)_15025,5

where S, is the submatrix of S containing all columns
of S but only those rows corresponding to the observed
variables in .

We then evaluate the means fiy«s+, and variances
Yiox z*|a=0 Of the variables in the counterfactual world

()?*) under the action a using Eqgs. (19) and (20), by
replacing the prior distribution on the disturbances

Ye,e, and p.  with the posterior distribution E‘E’yygy
and e,
I — Byy)"Y(ji° + By.a
Hz*la*o = [ ( yy) (2'7 v v Z) :| (21)
El‘*,x*|& =
[ (I_Byy)_lzgyyéy((I_Byy)_l)t 8 :| (22)

It is clear that this procedure can be applied to non-
triangular matrices, as long as S is nonsingular.

4 EXAMPLE

Consider the econometric structural equation model
described in [Goldberger, 1992]:

bzq + d2'w =+ u»s (24)

q =
p =
where ¢ is the quantity of household demand for prod-
uct A, p is the unit price of product A, i is household

income, w is wage rate for producing product A, u; is
demand shock, and usy is supply shock.

We extend this model by incorporating an additional
variable 7, the household demand for some substitute
product B, along with its structural equation

r = bsp+ us

Let B stand for tea and A for coffee.
following set of counterfactual queries:

Consider the

1. Find the expected demand for coffee (¢) had coffee
prices (p) been controlled, say at p = $7.007

2. Find the expected demand for coffee (¢) had coffee
prices (p) been controlled, say at p = $7.00, as-
suming the demand for tea subsequently reaches
r =47

3. Given that the current demand for tea (r) is r = 4,
find the expected demand for coffee (¢) had coffee
prices (p) been controlled, say at p = 7.007

Note the difference between queries 2 and 3. Query
2 states that the price intervention occurs prior to
our observation of product B’s demand, while query
3 states that we first make an observation of product
B’s demand and then intervene to force product A’s
price.

The above counterfactual queries only involve the vari-
ables X = [P, @, R]; therefore, we may marginalize out
all remaining variables in Eqs. (23) and (24), only re-
taining the distributions on P, ), and R’s disturbance
terms. Because I and W are exogenous (root) vari-
ables in the structural equations, we may combine [



and U; into one disturbance variable ¢,. Likewise, W
and Us may be combined into one disturbance variable
€p. The structural equations for analyzing the above
counterfactual queries may be reduced to

¥ = B¥+¢
p 0 by O p €p
q = by 0 0 g |+ | € | (25)
r bs 0 0 r €r

The causal structure for this model is shown in Fig-
ure 3.

Product A

Price

Product B
Demand

Product A

Demand

Figure 3: Causal structure of an econometric model

relating the demand for two products A and B and the

price of product A. The variables are related according

to the linear structural equations given in Eq. (25),

where the disturbances ¢, ¢4, and ¢, are independent
and normally distributed.

Because R and @) are d-separated ([Pearl, 1988]) by
P when the arrow ) — P is removed, the observa-
tion of R after P’s intervention has no impact on the
evaluation of )’s distribution. Therefore, the counter-
factual distribution of demand for coffee (@) will be
the same for queries 1 and 2.

Suppose that the parameters for this model are given

by

r 0 050 0

B = —~1.80 0 0

1.00 0 0

i = [0 19.00 3.00 ]

r1.00 0 0
Yee = 0 3.00 0]

L0 0 2.00

which reflects the following prior distribution on X =

[P, Q, R]:

L= [5.00 10.00 8.00 ]
048 —0.08 048

Sew = | —008 173 —0.08]
048 —0.08 2.48

The expected price of coffee is $5.00, while the average
demand for coffee and tea are 10 units and 8 units,
respectively.

Query 1 is interested in determining the distribution
of demand for coffee (@), given that no observations

have been made on the system, if we had intervened
to force the price of coffee to $7.00. Evaluating the
expressions in Eqgs. (21) and (22), we obtain:

flyeip=r = [7.00 6.40 10.00 ] (26)
0 0 0

U:c*|ﬁ:7 = 0 300 0
0 0 2.00

We conclude that the average household demand for
coffee and tea would be 6.4 units and 10 units, respec-
tively, if the price of coffee were $7.00.

Query 3 asks for the expected demand demand for
coffee (@) had the price of coffee been controlled at
$7.00, given that demand for tea is currently 4 units.
Applying the expressions in Eqgs. (21) and (22):

[7.00 5.13 6.78]  (27)

0 0 0
l 0 27 —-0.64 ]
0 —0.64 039

Note the importance of the observation of demand for
tea (R). In query 1, we found that forcing the price of
coffee (P) to $7.00 would reduce the expected demand
for coffee (@) from 10 units to 6.4 units. The observa-
tion of a 4 unit demand for tea changes the expected
demand for coffee to pig),=4 = 10.13 units; if we inter-
vene to force the price of coffee to $7.00, the expected
demand for coffee (@) will be reduced from 10.13 to
5.13 units. Therefore, we see that enforcing a $7.00
price control on coffee would have a more adverse af-
fect on the demand for coffee under the knowledge that
the demand for tea was only 4 units. In addition, the
expected demand for tea would increase to 6.78 units
from the observed 4 units.

it _
)u:c*|p‘:7,r:4 -

U:c*|ﬁ:7,r:4 =

If we believe that the disturbance on the demand for
coffee (¢,) changes slowly, or at least changes infre-
quently, then we can use the results of this counterfac-
tual distribution to determine whether price controls
should now be imposed to meet our needs. In other
words, the counterfactual distribution will tell us how
we expect variables’ distributions to change as a result
of an external intervention applied in the present.

It is important to note the difference between counter-
factual distributions (conditioned on observations and
external intervention) and distributions simply condi-
tioned on observations. Consider the distribution that
would be computed from observing the price of coffee
at $7.00 (p = 7) or from observing the demand for tea
at 4 units and the coffee price at $7.00 (r = 4,p=7):

fibyp=r = [7.00 9.66 10.00 ] (28)
[0 0 0
Og x|lp=7 = 0 171 0 (29)
L 0 0 2.00
fojpeaper = [ T.00 9.66 4.00]  (30)
[0 0 0
Og z|lr=4p=7 = 8 17(1) 8 (31)




Contrast the expected demand for coffee evaluated
from these conditional distributions with that ex-
pected had the price of coffee been fixed by exter-
nal intervention. In particular, compare Eq. (28) to
Eq. (26) and Eq. (30) to Eq. (27). One reason it is
incorrect to use distributions conditioned on observa-
tions for evaluating (economic) policies, is that such
distributions convey false information about the post-
intervention state of the disturbances. Accounting for
the pre-intervention value of the controlled variables,
which convey correct information about those distur-
bances, is important therefore for properly evaluating
the effect of the intervention.

5 CONCLUSION

This paper has addressed the inadequacy of current
techniques in econometrics and the social sciences for
evaluating the potential effects of economic and social
policies. Current techniques fail to correctly evalu-
ate policies that control endogenous variables, that is,
variables that are influenced by other variables in the
system prior to enacting the policy.

We have addressed this deficiency by developing and
applying a formalism for evaluating counterfactual
conditionals in structural equation models. This
method is applicable to the analysis of policies, even
when the policy dictates intervention on an endoge-
nous variable. An example was presented that demon-
strates the disparity between analyses based on coun-
terfactuals and reduced-form analysis which treats in-
tervention as an observation on controlled variables.

The technique developed in this paper should also be
applicable to Al problems in situations where a strat-
egy 1s to be evaluated on the basis of structural equa-
tions with a given functional form. Examples are pre-
sented for causal models using boolean functions, with
and without exceptions.
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