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SUMMARY

The primary aim of this paper is to show how graphical models can be used as
a mathematical language for integrating statistical and subject-matter information.
In particular, the paper develops a principled, nonparametric framework for causal
inference, in which diagrams are queried to determine if the assumptions available
are sufficient for identifying causal effects from nonexperimental data. If so the dia-
grams can be queried to produce mathematical expressions for causal effects in terms
of observed distributions; otherwise, the diagrams can be queried to suggest addi-
tional observations or auxiliary experiments from which the desired inferences can be
obtained.
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1 INTRODUCTION

The tools introduced in this paper are aimed at helping researchers communicate
qualitative assumptions about cause-effect relationships, elucidate the ramifications
of such assumptions, and derive causal inferences from a combination of assumptions,
experiments, and data.

The basic philosophy of the proposed method can best be illustrated through the
classical example due to Cochran (Wainer, 1989). Consider an experiment in which
soil fumigants (X) are used to increase oat crop yields (Y') by controlling the eelworm
population (Z) but may also have direct effects (both beneficial and adverse) on yields
beside the control of eelworms. We wish to assess the total effect of the fumigants
on yields when this typical study is complicated by several factors. First, controlled
randomized experiments are infeasible — farmers insist on deciding for themselves
which plots are to be fumigated. Second, farmers’ choice of treatment depends on
last year’s eelworm population (Zp), an unknown quantity which is strongly corre-
lated with this year’s population — thus we have a classical case of confounding
bias, which interferes with the assessment of treatment effects, regardless of sample
size. Fortunately, through laboratory analysis of soil samples, we can determine the
eelworm populations before and after the treatment and, furthermore, because the



fumigants are known to be active for a short period only, we can safely assume that

they do not affect the growth of eelworms surviving the treatment. Insead, eelworms’

growth depends on the population of birds (and other predators) which is correlated,

in turn, with last year’s eelworm population and hence with the treatment itself.
The method proposed in this paper permits the investigator to translate complex

considerations of this sort into a formal language, thus facilitating the following tasks:
1. Explicate the assumptions underlying the model.

2. Decide whether the assumptions are sufficient for obtaining consistent estimates
of the target quantity: the total effect of the fumigants on yields.

3. If the answer to item (2) is affirmative, the method provides a closed-form ex-
pression for the target quantity, in terms of distributions of observed quantities.

4. If the answer to item (2) is negative, the method suggests a set of observations
and experiments which, if performed, would render a consistent estimate feasible.

The first step in this analysis is to construct a causal diagram such as the one given
in Figure 1 which represents the investigator’s understanding of the major causal
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Figure 1: A causal diagram representing the effect of fumigants (X) on yields (V).

influences among measurable quantities in the domain. For example, the quantities
71, Zy, and Zs represent, respectively, the eelworm population (both size and type)
before treatment, after treatment, and at the end of the season. Zy represents last
year’s eelworm population; because it is an unknown quantity, it is denoted by a
hollow circle, as is the quantity B, the population of birds and other predators.
Links in the diagram are of two kinds: those that connect unmeasured quantities are
designated by dashed arrows, those connecting measured quantities by solid arrows.
The substantive assumptions embodied in the diagram are negative causal assertions



which are conveyed through the links missing from the diagram. For example, the
missing arrow between Z; and Y signifies the investigator’s understanding that pre-
treatment eelworms can not affect oat plats directly; their entire influence on oat
yields is mediated by post-treatment conditions, namely Z; and Zs. The purpose of
the paper is not to validate or repudiate such domain-specific assumptions but, rather,
to test whether a given set of assumptions is sufficient for quantifying causal effects
from nonexperimental data, for example, estimating the total effect of fumigants on
yields.

The causal diagram in Figure 1 is similar in many respects to the path diagrams
devised by Wright (1921): both reflect the investigator’s subjective and qualitative
knowledge of causal influences in the domain, both employ directed acyclic graphs,
and both allow for the incorporation of latent or unmeasured quantities. The major
differences lie in the method of analysis. First, whereas path diagrams have been
analyzed mostly in the context of additive linear models, causal diagrams permit
arbitrary nonlinear interactions. In fact, the analysis of causal effects will be entirely
nonparametric, entailing no commitment to a particular functional form for equations
and distributions. Second, causal diagrams will be used not only as a passive language
to specify assumptions but also as an active computational device through which the
desired quantities will be derived. For example, the proposed method allows an
investigator to inspect the diagram of Figure 1 and conclude immediately that:

1. The total effect of X on Y can be estimated consistently from the observed
distribution of X, Z;, Z,, Z3, and Y.

2. The total effect of X on Y (assuming discrete variables throughout) is given by
the formulal

P(yl2) =D P(ylza, 23, x)P(2a]z1, x)Z:P(23|21, 29, @' )P(z1, 2') (1)

Z1 22 23 T

where P(y|Z) stands for the probability of achieving a yield level of Y = y given
that the treatment is set to level X = x by external intervention.

3. A consistent estimation of the total effect of X on Y would not be feasible if Y
were confounded with Zs3; however, confounding Z; and Y will not invalidate the
formula for P(y|z).

These conclusions can be obtained either by analyzing the graphical properties of
the diagram or by performing a sequence of symbolic derivations, governed by the
diagram, which gives rise to causal effect formulas such as Eq. (1).

The formal semantics of the causal diagrams used in this paper will be defined
in Section 2, following review of directed acyclic graphs (DAGs) as a language for
communicating conditional independence assumptions (Subsection 2.1). Subsection
2.2 introduces a causal interpretation of DAGs based on nonparametric structural

!The reader need not be intimidated if, at this point, the formula appears unfamiliar. After reading

Section 4, the reader should be able to derive such formulas with greater ease than solving a pair of algebraic
equations. Note that z’ is merely an index of summation that ranges over the values of X.



equations and demonstrates their use in predicting the effect of interventions. An
alternative formulation is then described where interventions are treated as variables
in an augmented probability space (shaped by the causal diagram) from which causal
effects are obtained by ordinary conditioning. Using either interpretation, it is pos-
sible to quantify how probability distributions will change as a result of external
interventions and to identify conditions under which randomized experiments are not
necessary. Section 3 will demonstrate the use of causal diagrams to control confound-
ing bias in observational studies. We will establish two graphical conditions ensuring
that causal effects can be estimated consistently from nonexperimental data. The
first condition, named the back-door criterion, is equivalent to the ignorability con-
dition of Rosenbaum & Rubin (1983). The second condition, named the front-door
criterion, involves covariates that are affected by the treatment, and thus introduces
new opportunities for causal inference. In Section 4, we introduce a symbolic calculus
that permits the stepwise derivation of causal effect formulas of the type shown in
Eq. (1). Using this calculus, Section 5 characterizes the class of graphs that per-
mit the quantification of causal effects from nonexperimental data or from surrogate
experimental designs.

2 GRAPHICAL MODELS AND THE MANIPULATIVE ACCOUNT
OF CAUSATION

2.1 Graphs and conditional independence

The usefulness of directed acyclic graphs (DAGs) as economical schemes for repre-
senting conditional independence assumptions is well acknowledged in the literature
(Pearl, 1988; Whittaker, 1990). This usefulness stems from the existence of graphical
methods for identifying the conditional independence relationships that are implied
by recursive product decompositions

Py, ...,x,) = HP(T?Z | pa,;) (2)

where pa; stands for the realization of any set of variables that precede X; in some
order (X1, Xy,..., X,,). If we construct a DAG in which the variables corresponding
to pa, are represented as the parents of X; (also called adjacent predecessors or direct
influences of X;) then the independencies implied by the decomposition (2) can be
read off the DAG using the following test:

DEFINITION 1. (d-separation) Let X, Y, and Z be three disjoint subsets of
nodes in a DAG (G, and let p be any path between a node in X and a node in Y.
(By a path we mean any succession of arcs, regardless of their directions.) Z is said
to block p if there is a node w on p satistying one of the following two conditions:

(i) w has converging arrows (along p) and neither w nor any of its descendants are
in Z, or,



(ii) w does not have converging arrows (along p) and wisin Z. Z is said to d-separate

X from Y, in G, denoted (X || Y|Z)g, iff Z blocks every path from a node in X to
a node in Y. a

It can be shown that there is a one-to-one correspondence between the set of condi-
tional independencies, X || Y|Z (Dawid, 1979), implied by the recursive decompo-
sition of Eq. (2) and the set of triples (X, Z,Y) that satisfy the d-separation criterion
in G (Geiger et al., 1990). For example, the DAG of Figure 1 represents the decom-
position

P(z0, 2,21, b, 22,23, y) = P(20) P(]20) P(21|20) P(b]20) P (22|, 21) P(23|22, b) P(y |2, 22, 23)

and it implies (among others) the d-separation condition (X | {B, Z3}|{Zo, Z22})c
because all paths between X and {B, Zs} are blocked by {Zy, Z;}. However, Gi does
not imply (X || {B, Zs}|{ %o, Z2,Y })c because the the path (X,Y, Zs) contains a
node (Y) drawing converging arrows which is also in the conditioning set {Zy, Z, Y'}.

An alternative test for d-separation has been devised by Lauritzen et al. (1990),
based on the notion of ancestral graphs. To test for (X | Y|Z)q, delete from G
all nodes except those in {X, Y, Z} and their ancestors, connect by an edge ev-
ery pair of nodes that share a common child, and remove all arrows from the arcs.
(X || Y|Z)c holds iff Z is a cutset of the resulting undirected graph, separating
nodes of X from those of Y. Additional properties of DAGs and their applications
to evidential reasoning in expert systems are discussed in Pearl (1988), Lauritzen &

Spiegelhalter (1988), Spiegelhalter et al. (1993), and Pearl (1993a).

2.2 Graphs as models of interventions

The interpretation of DAGs as carriers of independence assumptions does not
specifically mention causation, and DAGs displaying such assumptions can in fact
be constructed for any ordering (not necessarily causal or chronological) of the vari-
ables. However, the main use of DAGs lies in their ability to portray causal, rather
than statistical, associations. Causal models, assuming they are properly validated,
are more informative than probability models because they also encode effects of ac-
tions. In other words, a joint distribution tells us how probable events are and how
probabilities would change with subsequent observations, but a causal model also tells
us how these probabilities would change as a result of external interventions, such as
those encountered in policy analysis and treatment management.

The connection between the causal and associational readings of DAGs is formed
through the mechanism-based account of causation, which owes its roots to early
works in econometrics (Frisch, 1938; Haavelmo, 1943; Simon, 1953). In this account,
assertions about causal influences, such as those specified by the links in Figure 1,
stand for autonomous physical mechanisms among the corresponding quantities, and
these mechanisms are represented as functional relationships perturbed by random
disturbances. In other words, each child-parent family in a DAG G represents a
deterministic function

Xi :fi(pai,q), 1= 1,...,n (3)
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where pa, are the parents of variable X; in G, and ¢;, 1 < ¢ < n, are mutually
independent, arbitrarily distributed random disturbances (Pearl & Verma, 1991).
These disturbance terms represent independent exogenous factors that the investi-
gator chooses not to include in the analysis. If any of these factors is judged to be
influencing two or more variables (thus violating the independence assumption), then
that factor must enter the analysis as an unmeasured (or latent) variable, to be repre-
sented in the graph by a hollow node, such as Zy and B in Figure 1. For example, the
causal assumptions conveyed by the model in Figure 1 correspond to the following
set of equations:

Zo = foleo) Zy = fo X, Z1,€)
B = fB(ZoyﬁB) Zs = fS(B7Z2763) (4)
Zy = f1(20761) Yy = fY(Xv Z%Z376Y)

X = fx(Zo,ex)

The equational model in (3) is the nonparametric analogue of the so-called struc-
tural equations model (Wright, 1921; Goldberger, 1973), with one exception: the
functional form of the equations as well as the distribution of the disturbance terms
will remain unspecified. The equality signs in structural equations convey the asym-
metrical counterfactual relation of “is determined by”, thus forming a clear correspon-
dence between causal diagrams and Rubin’s model of potential outcome (Rubin, 1974;
Holland, 1988; Pratt & Schlaifer, 1988; Rubin, 1990). For example, the equation for
Y states that regardless of what we currently observe about Y, and regardless of any
changes that might occur in other equations, if (X, Z2, Zs, ey ) were to assume the
values (z, 22, z3, €y ), respectively, Y would take on the value dictated by the function
fy. Thus, the corresponding potential response variable in Rubin’s model Y{,) (read:
the value that Y would take if X were x) becomes a deterministic function of Z;, Z3
and €y and can be considered a random variable whose distribution is determined by
those of 73, Z3 and ey. The relation between graphical and counterfactual models is
further analyzed in Appendix Il and Pearl (1994a).

Characterizing each child-parent relationship as a deterministic function, instead
of the usual conditional probability P(z; | pa;), imposes equivalent independence
constraints on the resulting distributions and leads to the same recursive decompo-
sition that characterizes DAG models (see Eq. (2)). This occurs because each ¢; is
independent on all nondescendants of X;. However, the functional characterization
X, = fi(pa;, €) also provides a convenient language for specifying how the resulting
distribution would change in response to external interventions. This is accomplished
by encoding each intervention as an alteration on a select subset of functions, while
keeping the others intact. Once we know the identity of the mechanisms altered by
the intervention and the nature of the alteration, the overall effect of the intervention
can be predicted by modifying the corresponding equations in the model and using
the modified model to compute a new probability function.

The simplest type of external intervention is one in which a single variable, say
X, is forced to take on some fixed value x;. Such an intervention, which we call



atomic, amounts to lifting X; from the influence of the old functional mechanism
X, = fi(pa;, &) and placing it under the influence of a new mechanism that sets
the value x; while keeping all other mechanisms unperturbed. Formally, this atomic
intervention, which we denote by set(X; = ;), or set(x;) for short, amounts to
removing the equation X; = fi(pa;,¢;) from the model and substituting X; = z;
in the remaining equations. The new model thus created represents the system’s
behavior under the intervention set(X; = ;) and, when solved for the distribution of
X, yields the causal effect of X; on X;, denoted P(x;|%;). More generally, when an
intervention forces a subset X of variables to attain fixed values x, then a subset of
equations is to be pruned from the model given in Eq. (3), one for each member of
X, thus defining a new distribution over the remaining variables, which completely
characterizes the effect of the intervention.? We therefore define:

DEFINITION 2. (causal effect) Given two disjoint sets of variables, X and Y,
the causal effect of X on Y, denoted P(y|z), is a function from X to the space of
probability distributions on Y. For each realization x of X, P(y|Z) gives the proba-
bility of ¥ = y induced by deleting from the model (8) all equations corresponding
to variables in X and substituting X = z in the remaining equations. a

Clearly the graph corresponding to the reduced set of equations is an edge subgraph of
G from which all arrows entering X have been pruned. We will denote this subgraph
by GY

An alternative (but operationally equivalent) account of intervention treats the
force responsible for the intervention as a variable within the system (Pearl, 1993c).
This is facilitated by representing the identity of the function f; itself as a variable
F; and writing

Xi = ](pai,Fi,q) (5)

where [ is a 3-argument function defined by

I(a,b,c) = fi(a,c) whenever b = f;.

Thus, the impact of any external intervention that alters f; can be represented graph-
ically as an added parent node F; of X;, and the effect of such an intervention can be
analyzed by Bayesian conditionalization, that is, by conditioning our probability on
the added variable having attained the value f;.

The effect of an atomic intervention set(X; = z!) is encoded by adding to GG a link
F; — X, (see Figure 2), where F; is a new variable taking values in {set(z!), idle},
x! ranges over the domain of X;, and idle represents no intervention. Thus, the new
parent set of X; in the augmented network is pa} = pa, U {F}}, and it is related to

2An explicit translation of interventions to “wiping out” equations from the model was first proposed
by Strotz & Wold (1960)and later used in Fisher (1970) and Sobel (1990). Graphical ramifications of this

translation were explicated first in Spirtes et al. (1993) and later in Pearl (1993b). A related mathematical
model, using event trees has been introduced by Robins (1986, pp. 1422-1425).
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Figure 2: Representing external intervention F; by an augmented network G’ =

X; by the conditional probability

P(z; | pal)=< 0 if F;, =set(z}) and z; # ! (6)
1 if F;=set(z}) and z; = !
The effect of the intervention set(z!) is to transform the original probability function
P(z4,...,x,) into a new probability function P(zq,...,2,|2}), given by
P(xy,...,x,|20) = P'(xy, ..., x, | F; = set(x})) (7)

where P’ is the distribution specified by the augmented network G' = GU {F; — X,}
and Eq. (6), with an arbitrary prior distribution on F;. In general, by adding a
hypothetical intervention link F; — X; to each node in (G, we can construct an aug-
mented probability function P'(xq, ..., 2,; Fi, ..., F},) that contains information about
richer types of interventions. Multiple interventions would be represented by condi-
tioning P’ on a subset of the F;’s (taking values in their respective set(x})), while the
pre-intervention probability function P would be viewed as the posterior distribution
induced by conditioning each F; in P’ on the value idle.

Regardless of whether we represent interventions as a modification of an existing
model (Definition 2) or as a conditionalization in an augmented model (Eq. (7), the
result is a well-defined transformation between the pre-intervention and the post-
intervention distributions. In the case of an atomic intervention set(X; = z!), this
transformation can be expressed in a simple algebraic formula that follows immedi-
ately from Eq. (3) and Definition®:

P(zy,...,xn .
piitetal — [],; Plailpa;) if @=2
0 it x,#x

&) =

Py, ...,z

(3)

This formula reflects the removal of the term P(z; | pa;) from the product of Eq. (2),
since pa; no longer influence X;. Graphically, the removal of this term is equivalent to

®Eq. (8) can also be obtained from the G-computation formula of Robins (1986, p. 1423) and the Ma-
nipulation Theorem of Spirtes et al. (1993) (according to this source, such formula was “independently
conjectured by Fienberg in a seminar in 1991”). Additional properties of the transformation defined in
Eq. (8) are given in Pearl (1993b).



removing the links between pa; and X; while keeping the rest of the network intact.
Clearly, then, an intervention set(z;) can affect only the descendants of X; in G.

The immediate implication of Eq. (8) is that, given a causal diagram in which all
parents of intervened variables are observable, one can infer post-intervention distri-
butions from pre-intervention distributions; hence, under such assumptions we can
estimate the effects of interventions from passive (i.e., nonexperimental ) observations.
The aim of this paper, however, is to derive causal effects in situations such as Figure
1, where some members of pa, may be unobservable, thus preventing estimation of
P(z;|pa;). The next two sections provide simple graphical tests for deciding when
P(z;|%;) is estimable in a given model.

3 CONTROLLING CONFOUNDING BIAS

3.1 The back-door criterion

Assume we are given a causal diagram G together with nonexperimental data on a
subset V4 of observed variables in (G and we wish to estimate what effect the inter-
vention set(X; = x;) would have on some response variable X;. In other words, we
seek to estimate P(x;|Z;) from a sample estimate of P(Vg).

The variables in Vp\{X;, X}, are commonly known as concomitants (Cox, 1958,
p. 48). In observational studies, concomitants are used to reduce confounding bias
due to spurious correlations between treatment and response. The condition that
renders a set Z of concomitants sufficient for identifying causal effect, also known
as ignorability, has been given a variety of formulations, all requiring conditional
independence judgments involving counterfactual variables (Rosenbaum & Rubin,
1983; Pratt & Schlaifer, 1988). In Pearl (1993b) it is shown that such judgments are
equivalent to a simple graphical test, named the “back-door criterion”, which can be
applied directly to the causal diagram.?

DEFINITION 3. (back-door) A set of variables Z satisfies the back-door crite-
rion relative to an ordered pair of variables (X;, X;) in a DAG G if

(i) no node in Z is a descendant of X;, and
(ii) Z blocks every path between X; and X; which contains an arrow into X;.

Similarly, it X and Y are two disjoint subsets of nodes in (G, then 7 is said to satisfy
the back-door criterion relative to (X,Y") if it satisfies the criterion relative to any
pair (X;, X;) such that X; € X and X; €Y. O

The name back-door echoes condition (iz), which requires that only paths with
arrows pointing at X; be d-blocked; these paths can be viewed as entering X; through
the back door. In Figure 3, for example, the sets Z; = { X3, X4} and Z; = { X4, X5}
meet the back-door criterion, but Z; = { X4} does not because X, does not block the
path (X, X5, X1, X4, X2, X5, Xj).

*An equivalent, though more complicated, graphical criterion is given in Theorem 7.1 of Spirtes et
al. (1993). An alternative criterion, using a single d-separation test will be established in Section 4 (see

Eq. (25)).
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Figure 3: A diagram representing the back-door criterion; adjusting for variables

{ X3, X4} (or {X4, X5}) yields a consistent estimate of P(x;|z;).
We summarize this finding in a theorem, after formally defining “identifiability”.

DEFINITION 4. (identifiability) The causal effect of X on Y is said to be identi-
fiable if the quantity P(y|Z) can be computed uniquely from any positive distribution
of the observed variables. Identifiability means that P(y|Z) can be estimated consis-

tently from an arbitrarily large sample randomly drawn from the joint distribution.
O

Restricting identifiability to positive distributions substantially simplifies the analysis,
as it avoids pathological cases associated with deterministic relationships (e.g., zero
denominator in Eq. (8)). Extensions to some nonpositive distributions are feasible,
but will not be treated here. Note that, to prove nonidentifiability, it is sufficient
to present two sets of structural equations that induce identical distributions over
observed variables but different causal effects.

THEOREM 1. If a set of variables Z satisfies the back-door criterion relative to
(X,Y), then the causal effect of X on Y is identifiable and is given by the formula

P(yle) = Plylv, z)P(z) (9)

O

Eq. (9) represents the directly standardized adjustment for concomitants Z when
X is conditionally ignorable given Z (Rosenbaum & Rubin, 1983). Reducing ignor-
ability conditions to the graphical criterion of Definition 3 replaces judgments about
counterfactual dependencies with systematic procedures that can be applied to causal
diagrams of any size and shape. The graphical criterion also enables the analyst to

search for an optimal set of concomitants, namely, a set Z that minimizes measure-
ment cost or sampling variability.

3.2 The front-door criteria

Condition (z) of Definition 3 reflects the prevailing practice that “the concomitant
observations should be quite unaffected by the treatment” (Cox, 1958, p. 48). This

10



subsection demonstrates how concomitants that are affected by the treatment can be
used to facilitate causal inference. The emerging criterion, which we will name the
front-door criterion, will constitute the second building block of the general test for
identifying causal effects which will be formulated in Section 4.

Consider the diagram in Figure 4, which obtains from Figure 3 in case variables
Xi,..., X5 are unobserved. Although Z does not satisfy any of the back-door con-
ditions, measurements of Z can nevertheless enable consistent estimation of P(y|z).
This will be shown by reducing the expression for P(y|z) to formulae computable
from the observed distribution function P(z,y, z).

O U (Unobserved)

oz - o \’éo
X Z

Y

Figure 4: A diagram representing the front-door criterion.

The joint distribution associated with Figure 4 can be decomposed (Eq. (2)) into
P(z,y,z,u) = P(u)P(z|u)P(z|z) P(y|z, u) (10)

From Eq. (8), the intervention set(z) removes the factor P(z|u) and induces the
post-intervention distribution

Ply,z,ul&) = P(y|z,u) P(z|z) P(u) (11)
Summing over z and u gives

Py

#) = Y P(z]2) Y Plylz.u)P(u) (12)

To eliminate v from the r.h.s. of Eq. (12), we use the two conditional independence
assumptions encoded in the graph of Figure 4

P(ulz,z) = P(ulx) (13)
P(y|lz,z,u) = Pylz,u) (14)

which yields the equality
S POl P) = Y3 Pl w)Pluf) Pla)
= XZ:;P('}/M,Z,u)P(u|:E,z)P(x)
= 3 Plule.2)P(2) (15)
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and allows the reduction of Eq. (12) to the desired form:
P(yld) =3 _ P(zlz) ) Plyla’, z) P(a") (16)

Since all factors on the r.h.s. of Eq. (16) are consistently estimable from nonexperi-
mental data, it follows that P(y|z) is estimable as well. Thus, we are in possession of

an identifiable nonparametric estimand for the causal effect of an X on a Y whenever
we can find a mediating variable Z that meets the conditions of Eqgs. (13) and (14).

Eq. (16) can be interpreted as a two-step application of the back-door formula. In
the first step we find the causal effect of X on Z and, since there is no back-door path
from X to Z, we simply have

P(z|z) = P(z|z)

Next, we compute the causal effect of Z on Y, which we can no longer equate with the
conditional probability P(y|z) because there is a back-door path Z «— X «— U — Y
from Z to Y. However, since X blocks (d-separates) this path, X can play the role of
a concomitant in the back-door criterion, which allows us to compute the causal effect
of Z on Y in accordance with Eq. (9). Finally, we combine the two causal effects via

P(y|t) = > P(yl2)P(=]2)

which reduces to Eq. (16).
We summarize this result by a theorem, after formally defining the assumptions.

DEFINITION 5. A set of variables Z is said to satisfy the front-door criterion
relative to an ordered pair of variables (X,Y) if

(i) Z intercepts all directed paths from X to Y.
(i) There is no back-door path from X to Z.
(éii) All back-door paths from Z to Y are blocked by X. O

THEOREM 2. If Z satisfies the front-door criterion relative to (X, Y'), and P(z,z) >
0, then the causal effect of X on Y is identifiable and is given by the formula

Plylz) = ZP(ZII)ZP(Z/IICZ)P(JT’) (17)
O

The conditions stated in Definition 5 are overly restrictive; some of the back-door
paths excluded by conditions (i¢) and (¢:¢) can in fact be allowed, as long as they are
blocked by some concomitants. For example, the variable Z, in Figure 1 satisfies a
front-door-like criterion relative to (X, Z3) by virtue of Z; blocking all back-door paths
from X to Z, as well as those from Z; to Z3. To allow the analysis of such intricate
structures, including nested combinations of back-door and front-door conditions, a
more powerful symbolic machinery will be introduced in Section 5, one that will
sidestep algebraic manipulations such as those used in the derivation of Eq. (15).
But first let us look at an example illustrating possible applications of the front-door
condition.
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3.3 Example: Smoking and the Genotype Theory

Consider the century-old debate on the relation between smoking (X)) and lung cancer
(Y) (Spirtes et al., 291-203, 1993). According to many, the tobacco industry has
managed to stay anti-smoking legislation by arguing that the observed correlation
between smoking and lung cancer could be explained by some sort of carcinogenic
genotype (U/) which involves inborn craving for nicotine.

The amount of tar (Z) deposited in a person’s lungs is a variable that promises to
meet the conditions listed in Definition 5 above, thus fitting the structure of Figure
4. To meet condition (z), we must assume that smoking cigarettes has no effect on
the production of lung cancer except the one mediated through tar deposits. To meet
conditions (¢¢) and (¢7¢), we must assume that, even if a genotype is aggravating the
production of lung cancer, it nevertheless has no effect on the amount of tar in the
lungs except indirectly, through cigarette smoking. Finally, condition P(z,z) > 0
of Theorem 2 requires that we allow that high levels of tar in the lungs could be
the result not only of cigarette smoking but also of other means (e.g., exposure to
environmental pollutants) and that tar may be absent in some smokers (perhaps due
to an extremely efficient tar-rejecting mechanism). Satisfaction of this last condition
can be tested in the data.

To demonstrate how we can assess the degree to which cigarette smoking increases
(or decreases) lung cancer risk, we will assume a hypothetical study in which the three
variables, X,Y, and Z, were measured simultaneously on a large, randomly selected
sample from the population. To simplify the exposition, we will further assume that
all three variables are binary, taking on true (1) or false (0) values. A hypothetical
data set from a study on the relations among tar, cancer, and cigarette smoking is
presented in Table 1.

P(z,z) P(Y =1z, 2)
Group Type Group Size % of Cancer Cases
(% of Population) in Group
X =0, Z=0| Non-smokers, No tar 47.5 10
X =1, Z =0 Smokers, No tar 2.5 90
X =0, Z =1 | Non-smokers, Tar 2.5 5
X =1, Z=1| Smokers, Tar 47.5 85
Table 1

It shows that 95% of smokers and 5% of non-smokers have developed high levels of
tar in their lungs. Moreover, 81.51% of subjects with tar deposits have developed
lung cancer, compared to only 14% among those with no tar deposits. Finally, within
each of these two groups, tar and no tar, smokers show a much higher percentage of
cancer than non-smokers.

These results seem to prove that smoking is a major contributor to lung cancer.
However, the tobacco industry might argue that the table tells a different story — that
smoking actually decreases, not increases, one’s risk of lung cancer. Their argument
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goes as follows. If you decide to smoke, then your chances of building up tar deposits
are 95%, compared to 5% if you decide not to smoke. To evaluate the effect of tar
deposits, we look separately at two groups, smokers and non-smokers. The table
shows that tar deposits have a protective effect in both groups: in smokers, tar
deposits lower cancer rates from 90% to 85%; in non-smokers, they lower cancer rates
from 10% to 5%. Thus, regardless of whether I have a natural craving for nicotine, 1
should be seeking the protective effect of tar deposits in my lungs, and smoking offers
a very effective means of acquiring them.

To settle the dispute between the two interpretations, we now apply the front-door
formula (Eq. (17)) to the data in Table 1. We wish to calculate the probability that a
randomly selected person will develop cancer under each of the following two actions:
smoking (setting X = 1) or not smoking (setting X = 0).

Substituting the appropriate values of P(y|z), P(y|z,z), and P(x) gives

P(Y =1|set(X =1)) = .05(.10 x .50 4 .90 x .50) + .95(.05 x .50 + .85 x .50)
= .05 x .50 4 .95 x .45 = .4525

P(Y = 1|set(X = 0)) = .95(.10 x .50 4 .90 x .50) + .05(.05 x .50 + .85 x .50)
= .95 x .50 4 .05 x .45 = .4975 (18)

Thus, contrary to expectation, the data prove smoking to be somewhat beneficial to
one’s health.

The data in Table 1 are obviously unrealistic and were deliberately crafted so as
to support the genotype theory. However, the purpose of this exercise was to demon-
strate how reasonable qualitative assumptions about the workings of mechanisms,
coupled with nonexperimental data, can produce precise quantitative assessments of
causal effects. In reality, we would expect observational studies involving mediating
variables to refute the genotype theory by showing, for example, that the mediating
consequences of smoking, such as tar deposits, tend to increase, not decrease, the risk
of cancer in smokers and non-smokers alike. The estimand of Eq. (17) could then be
used for quantifying the causal effect of smoking on cancer.

4 A CALCULUS OF INTERVENTION

This section establishes a set of inference rules by which probabilistic sentences involv-
ing interventions and observations can be transformed into other such sentences, thus
providing a syntactic method of deriving (or verifying) claims about interventions.
We will assume that we are given the structure of a causal diagram G in which some
of the nodes are observable while the others remain unobserved. Our main problem
will be to facilitate the syntactic derivation of causal effect expressions of the form
P(y|z), where X and Y stand for any subsets of observed variables. By derivation
we mean step-wise reduction of the expression P(y|Z) to an equivalent expression
involving standard probabilities of observed quantities. Whenever such reduction is
feasible, the causal effect of X on Y is identifiable (see Definition 4).
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4.1 Preliminary notation

Let X,Y, and Z be arbitrary disjoint sets of nodes in a DAG . We denote by G
the graph obtained by deleting from G all arrows pointing to nodes in X. Likewise,
we denote by G'x the graph obtained by deleting from ' all arrows emerging from
nodes in X. To represent the deletion of both incoming and outgoing arrows, we use
the notation G, (see Figure 5 for illustration). Finally, the expression P(y|z, z) 2

P(y, z|2)/ P(z|%) stands for the probability of Y = y given that Z = z is observed
and X is held constant at x.

4.2 Inference rules

The following theorem states the three basic inference rules of the proposed calculus.
Proofs are provided in the appendix.

THEOREM 3. Let GG be the directed acyclic graph associated with a causal
model as defined in Eq. (3), and let P(-) stand for the probability distribution induced
by that model. For any disjoint subsets of variables X,Y, Z, and W we have:

Rule 1 Insertion/deletion of observations

P(yl#, z.w) = P(ylé,w) if (Y || 21X, W)o (19)

Rule 2 Action/observation exchange

Rule 3 Insertion/deletion of actions

P(ylz, 2,w) = P(y|z,w) if (Y || Z|X, W)g

L X, Z(W)

(21)

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in G'x.

Each of the inference rules above follows from the basic interpretation of the “z”

operator as a replacement of the causal mechanism that connects X to its pre-action
parents by a new mechanism X = x introduced by the intervening force. The result
is a submodel characterized by the subgraph G (named “manipulated graph” in
Spirtes et al. (1993)) which supports all three rules.

Rule 1 reaffirms d-separation as a valid test for conditional independence in the dis-
tribution resulting from the intervention set(X = ), hence the graph G+. This rule
follows from the fact that deleting equations from the system does not introduce any
dependencies among the remaining disturbance terms (see Eq. (3)).

Rule 2 provides a condition for an external intervention set(Z = z) to have the same

effect on Y as the passive observation Z = z. The condition amounts to {X U W}
blocking all back-door paths from Z to Y (in Gx), since G, retains all (and only)
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such paths.

Rule 3 provides conditions for introducing (or deleting) an external intervention
set(Z = z) without affecting the probability of ¥ = y. The validity of this rule
stems, again, from simulating the intervention set(Z = z) by the deletion of all equa-
tions corresponding to the variables in Z (hence the graph G).

COROLLARY 1. A causal effect ¢: P(y1,...,yx|%1, ..., Z,) is identifiable in a
model characterized by a graph G if there exists a finite sequence of transforma-
tions, each conforming to one of the inference rules in Theorem 3, which reduces ¢
into a standard (i.e., hat-free) probability expression involving observed quantities.

O

Whether the three rules above are sufficient for deriving all identifiable causal effects
remains an open question. However, the task of finding a sequence of transformations
(if such exists) for reducing an arbitrary causal effect expression can be systematized
and executed by efficient algorithms [Galles 1994, unpublished report]. As the next
subsection illustrates, symbolic derivations using the hat notation are much more
convenient than algebraic derivations that aim at eliminating latent variables from
standard probability expressions (as in Section 3.2).

4.3 Symbolic derivation of causal effects: an example

We will now demonstrate how Rules 1-3 can be used to derive all causal effect esti-
mands in the structure of Figure 4 above. Figure 5 displays the subgraphs that will
be needed for the derivations that follow.

Task-1, compute P(z|%)

This task can be accomplished in one step, since (G satisfies the applicability condition

for Rule 2; namely, X || Z in G'x (because the path X « U — Y « Z is blocked

by the converging arrows at Y) and we can write
P(z|z) = P(z|z) (22)

Task-2, compute P(y|Z)

Here we cannot apply Rule 2 to exchange Z with z because Gz contains a back-door
path from ZtoY : Z «— X « U — Y. Naturally, we would like to block this path by
measuring variables (such as X) that reside on that path. This involves conditioning
and summing over all values of X,

P(ylz) =>_ Plylz, )P (x]2) (23)

We now have to deal with two expressions involving Z, P(y|z,2) and P(z|2). The
latter can be readily computed by applying Rule 3 for action deletion:

P(z|2) = P(x) if (Z || X)os (24)
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Figure 5: Subgraphs of G used in the derivation of causal effects.

since X and Z are d-separated in G-. (Intuitively, manipulating Z should have no
effect on X, because 7 is a descendant of X in G.) To reduce the former, P(y|z, 2),
we consult Rule 2:

Plyle,2) = P(ylz,z) it (Z || Y|X)e, (25)
noting that X d-separates Z from Y in Gz. This allows us to write Eq. (23) as
P(y|2) =Y P(ylz,z)P(z) = E.P(y|z, 2) (26)

which is a special case of the back-door formula (Eq. (9)). The legitimizing condi-
tion, (7 || Y|X)g,, offers yet another graphical test for the ignorability condition

of Rosenbaum & Rubin (1983).
Task-3, compute P(y|z)

Writing

P(y|t) =>_ P(ylz,#)P(z|2) (27)

we see that the term P(z|#) was reduced in Eq. (22) but that no rule can be applied
to eliminate the “hat” symbol * from the term P(y|z,%). However, we can add a
“hat” symbol to this term via Rule 2

P(y|z, &) = P(y

2,7) (28)
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since the applicability condition (Y || Z|X)g_ , holds true (see Figure 5). We can
%, &) using Rule 3, since Y I X|Z holds in G-

now delete the action & from P(y
Thus, we have

Plylz, &) = P(y|2) (29)
which was calculated in Eq. (26). Substituting Eqgs. (26), (29), and (22) back into
Eq. (27) finally yields

Plylz) = ZP(ZIJJ)ZP(!JIJ#Z)P(SE') (30)

which is identical to the front-door formula of Eq. (16).
Task-4, compute P(y, z|Z)

P(y, z|&) = P(y|z, ) P(z]2)
The two terms on the r.h.s. were derived before in Eqgs. (22) and (29), from which we
obtain
Ply,z|&) = P(y|2)P(z]z) (31)
= P(el) 50 Plyle!,2) Pl

Task-5, compute P(z,y|2)
P(z,y|2) = Plyle,2)P(x]2)
— Plyle,2)P(e) (3)

The first term on the r.h.s. is obtained by Rule 2 (licensed by Gz) and the second
term by Rule 3 (as in Eq. (24)).

that in all the derivations the graph GG has provided both the license for applying
the inference rules and the guidance for choosing the right rule to apply.

4.4 Causal inference by surrogate experiments

Suppose we wish to learn the causal effect of X on Y when P(y|z) is not identifiable
and, for practical reasons of cost or ethics, we cannot control X by randomized
experiment. The question arises whether P(y|Z) can be identified by randomizing
a surrogate variable Z, which is easier to control than X. For example, if we are
interested in assessing the effect of cholesterol levels (X) on heart disease (Y), a
reasonable experiment to conduct would be to control subjects’ diet (Z), rather than
exercising direct control over cholesterol levels in subjects’ blood.

Formally, this problem amounts to transforming P(y|Z) into expressions in which
only members of Z obtain the hat symbol. Using Theorem 3 it can be shown that
the following conditions are sufficient for admitting a surrogate variable Z: (i) X
intercepts all directed paths from Z to Y, and, (ii) P(y|z) is identifiable in G+. Indeed,
if condition (i) holds, we can write P(y|z) = P(y|2, Z), because (Y || Z|X)Gﬁ.
But P(y|#, %) stands for the causal effect of X on Y in a model governed by G
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which, by condition (i), is identifiable. Translated to our cholesterol example, these
condition require that there be no direct effect of diet on heart conditions and no
confounding effect between cholesterol levels and heart disease, unless we can measure
an intermediate variable between the two.

Figures 8(e) and 8(h) below illustrate models in which both conditions hold. For
Figure 8(e), for example, we obtain this estimand

Pylt) = Pylz, 2) = P(y, =|2)/P(z|Z) (33)
This can be established directly by first applying Rule 3 to add z,
P(y|z) = P(y|z, z) because (Y || Z|X)a

_ XZ

then applying Rule 2 to exchange & with z:
P(ylz, 2) = P(y|z, 2) because (Y || X|Z)g _

According to Eq. (33), only one level of Z suffices for the identification of P(y|z),
for any values of y and x. In other words, Z need not be varied at all, just held
constant by external means, and, if the assumptions embodied in G are valid, the
r.h.s. of Eq. (33) should attain the same value regardless of the level at which Z is
being held constant. In practice, however, several levels of Z will be needed to ensure
that enough samples are obtained for each desired value of X. For example, if we
are interested in the difference E(Y|2) — E(Y|2'), where z and 2’ are two treatment
levels, then we should choose two values z and 2’ of Z which maximize the number

of samples in x and z', respectively, and estimate

E(Y|3) — B(Y|#) = E(Y]|x,2) — B(Y|', %)

5 GRAPHICAL TESTS OF IDENTIFIABILITY

Figure 6 shows simple diagrams in which P(y|#) cannot be identified due to the
presence of a bow pattern, i.e., a confounding arc (dashed) embracing a causal link
between X and Y. A confounding arc represents the existence in the diagram of a
back-door path that contains only unobserved variables and has no converging arrows.
For example, the path X, Zy, B, Z3 in Figure 1 can be represented as a confounding
arc between X and Z3. A bow-pattern represents an equation Y = fy(X,U, ey)
where U is unobserved and dependent on X. Such an equation does not permit the
identification of causal effects since any portion of the observed dependence between
X and Y may always be attributed to spurious dependencies mediated by U.

The presence of a bow-pattern prevents the identification of P(y|Z) even when it is
found in the context of a larger graph, as in Figure 6(b). This is in contrast to linear
models, where the addition of an arc to a bow-pattern can render P(y|z) identifiable.
For example, if Y is related to X via a linear relation Y = bX + U, where U is an
unobserved disturbance possibly correlated with X, then b = %E(Yﬁ) is not identi-
fiable. However, adding an arc Z — X to the structure (that is, finding a variable Z
that is correlated with X but not with ') would facilitate the computation of F(Y|z)
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via the instrumental-variable formula (Bowden & Turkington, 1984; Angrist et al.,
1993):
0 E(Y|z) R
bE —E(Y|i) = == 34
5PV = 5x) T R (34)

In nonparametric models, adding an instrumental variable Z to a bow-pattern (Figure

6(b)) does not permit the identification of P(y|z). This is a familiar problem in the
analysis of clinical trials in which treatment assignment (Z) is randomized (hence, no
link enters Z), but compliance is imperfect. The confounding arc between X and Y
in Figure 6(b) represents unmeasurable factors which influence both subjects’ choice
of treatment (X) and subjects’ response to treatment (Y). In such trials, it is not
possible to obtain an unbiased estimate of the treatment effect P(y|#) without mak-
ing additional assumptions on the nature of the interactions between compliance and
response, as is done, for example, in the general approach to instrumental variables
developed in Angrist et al. (1993) and Imbens & Angrist (1994). While the added
arc Z — X permits us to calculate bounds on P(y|%) (Robins, 1989, Sec. 1g; Man-
ski, 1990) and the upper and lower bounds may even coincide for certain types of
distributions P(x,y,z) (Balke & Pearl, 1994), there is no way of computing P(y|z)
for every positive distribution P(z,y, z), as required by Definition 4.

In general, the addition of arcs to a causal diagram can impede, but never assist,
the identification of causal effects in nonparametric models. This is because such
addition reduces the set of d-separation conditions carried by the diagram and, hence,
if a causal effect derivation fails in the original diagram, it is bound to fail in the
augmented diagram as well. Conversely, any causal effect derivation that succeeds in
the augmented diagram (by a sequence of symbolic transformations, as in Corollary
1) would succeed in the original diagram.
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Figure 6: (a) A bow-pattern: a confounding arc embracing a causal link X — Y, thus
preventing the identification of P(y|Z) even in the presence of an instrumental variable
Z,as in (b). (c¢) A bow-less graph still prohibiting the identification of P(y|z).

Our ability to compute P(y|z) for pairs (z,y) of singleton variables does not en-
sure our ability to compute joint distributions, such as P(yi,y2|%). Figure 6(c), for
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example, shows a causal diagram where both P(z

&) and P(z2|%) are computable,
but P(z1,22|%) is not. Consequently, we cannot compute P(y|Z). Interestingly, this
diagram is the smallest graph that does not contain a bow-pattern and still presents
an uncomputable causal effect.

Another interesting feature demonstrated by Figure 5(c) is that computing the
effect of a joint intervention is often easier than computing the effects of its constituent

f, ZAI)J yet
there is no way of computing P(y|%). For example, the former can be evaluated by

singleton interventions.® Here, it is possible to compute P(y|Z, 73) and P(y

invoking Rule 2 in Gygz, giving

P(y|'%7ZA?) = EP(y|Zl7'%72A?)P(Zl ivéQ) = ZP(}/|217$722)P(21|$) (35)

Z1 Z1

However, Rule 2 cannot be used to convert P(z|%, z2) into P(z1|x, z2) because, when
conditioned on Z;, X and Z; are d-connected in G'x (through the dashed lines). A
general approach to computing the effect of joint interventions is developed in Pearl

& Robins (1995).

5.1 Identifying models

Figure 7 shows simple diagrams in which the causal effect of X on Y, is identi-
fiable. Such models are called identifying because their structures communicate a
sufficient number of assumptions (missing links) to permit the identification of the
target quantity P(y|Z). Latent variables are not shown explicitly in these diagrams;
rather, such variables are implicit in the confounding arcs (dashed). Every causal
diagram with latent variables can be converted to an equivalent diagram involving
measured variables interconnected by arrows and confounding arcs. This conversion
corresponds to substituting out all latent variables from the structural equations of
Eq. (3) and then constructing a new diagram by connecting any two variables X
and X; by (1) an arrow from X; to X; whenever X; appears in the equation for X;
and (2) a confounding arc whenever the same € term appears in both f; and f;. The
result is a diagram in which all unmeasured variables are exogenous and mutually
independent.

Several features should be noted from examining the diagrams in Figure 7.

1. Since the removal of any arc or arrow from a causal diagram can only assist the
identifiability of causal effects, P(y|%) will still be identified in any edge-subgraph
of the diagrams shown in Figure 7. Likewise, the introduction of mediating
observed variables onto any edge in a causal graph can assist, but never impede,
the identifiability of any causal effect. Therefore, P(y|z) will still be identified
from any graph obtained by adding mediating nodes to the diagrams shown in
Figure 7.

5This was brought to my attention by James Robins, who has worked out many of these computations

in the context of sequential treatment management. Eq. (35) for example, can be obtained from Robin’s
G-computation algorithm (Robins, p. 1423, 1986).
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Figure 7: Typical models in which the effect of X on Y is identifiable. Dashed arcs
represent confounding paths, and Z represents observed covariates.

2. The diagrams in Figure 7 are maximal, in the sense that the introduction of any
additional arc or arrow onto an existing pair of nodes would render P(y|#) no
longer identifiable.

3. Although most of the diagrams in Figure 7 contain bow-patterns, none of these
patterns emanates from X (as is the case in Figure 8(a) and (b) below). In
general, a necessary condition for the identifiability of P(y|%) is the absence of a
confounding arc between X and any child of X that is an ancestor of Y.

4. Diagrams (a) and (b) in Figure 7 contain no back-door paths between X and Y,
and thus represent experimental designs in which there is no confounding bias
between the treatment (X) and the response (Y) (i.e., X is strongly ignorable
relative to Y (Rosenbaum & Rubin, 1983); hence, P(y|z) = P(y|z). Likewise,
diagrams (c) and (d) in Figure 7 represent designs in which observed covariates,
7, block every back-door path between X and Y (i.e., X is conditionally ignorable
given Z (Rosenbaum & Rubin, 1983); hence, P(y|Z) is obtained by standard
adjustment for Z (as in Eq. (9)):

P(y|t) = > Plyle, z)P(2)
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5. For each of the diagrams in Figure 7, we can readily obtain a formula for P(y|z),
by using symbolic derivations patterned after those in Section 4.3. The derivation
is often guided by the graph topology. For example, diagram (f) in Figure 7
dictates the following derivation. Writing

P(y|‘%) = Z P(y|217227‘%)P(21722|‘%)
Z1,22

we see that the subgraph containing { X, Z;, Z5} is identical in structure to that
of diagram (e), with (71, Z3) replacing (Z,Y), respectively. Thus, P(z1, z2|%) can
be obtained from (23) and (30). Likewise, the term P(y|z1, 22, &) can be reduced
to P(y|z1, 22, %) by Rule 2, since (Y || X|Z1, Z2)Gx. Thus, we have

Plylt) = Y Plylerz.2) Plal) Y Plala.a) P)  (36)

21,22 !

Applying a similar derivation to diagram (g) of Figure 7 yields

Pyli) =223 Plylar, 22, @')P(¢')P(21]22, x)P(22) (37)
Note that the variable Z3 does not appear in the expression above, which means
that Zs need not be measured if all one wants to learn is the causal effect of X

on Y.

6. In diagrams (e), (f), and (g) of Figure 7, the identifiability of P(y|Z) is ren-
dered feasible through observed covariates, 7, that are affected by the treatment
X (i.e., Z being descendants of X). This stands contrary to the warning, re-
peated in most of the literature on statistical experimentation, to refrain from
adjusting for concomitant observations that are affected by the treatment (Cox,
1958; Rosenbaum, 1984; Pratt & Schlaifer, 1988; Wainer, 1989). It is commonly
believed that if a concomitant Z is affected by the treatment, then it must be
excluded from the analysis of the total effect of the treatment (Pratt & Schlaifer,
1988). The reason given for the exclusion is that the calculation of total effects
amounts to integrating out Z, which is functionally equivalent to omitting Z
to begin with. Diagrams (e), (f), and (g) show cases where one wants to learn
the total effects of X and, still, the measurement of concomitants that are af-
fected by X (e.g., Z, or Z;) is necessary. However, the adjustment needed for
such concomitants is nonstandard, involving two or more stages of the standard
adjustment of Eq. (9), (see Eqgs. (16), (36), and (37)).

7. In diagrams (b), (c), and (f) of Figure 7, ¥ has a parent whose effect on Y is
not identifiable yet the effect of X on Y is identifiable. This demonstrates that
local identifiability is not a necessary condition for global identifiability. In other
words, to identify the effect of X on Y we need not insist on identifying each and
every link along the paths from X to Y.
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5.2 Nonidentifying models
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Figure 8: Typical models in which P(y|%) is not identifiable.

Figure 8 presents typical diagrams in which the total effect of X on Y, P(y|Z), is not
identifiable. Noteworthy features of these diagrams are as follows.

1. All graphs in Figure 8 contain unblockable back-door paths between X and Y,
that is, paths ending with arrows pointing to X which cannot be blocked by
observed nondescendants of X. The presence of such a path in a graph is, indeed,
a necessary test for nonidentifiability (see Theorem 1). It is not a sufficient test,
though, as is demonstrated by Figure 7(e), in which the back-door path (dashed)
is unblockable and yet P(y|Z) is identifiable.

2. A sufficient condition for the nonidentifiability of P(y|Z) is the existence of a
confounding path between X and any of its children on a path from X to Y, as
shown in Figure 8(b) and (c). A stronger sufficient condition is that the graph
contain any of the patterns shown in Figure 8 as an edge-subgraph.

3. Graph (g) in Figure 8 (same as 6(c)) demonstrates that local identifiability is not
sufficient for global identifiability. For example, we can identify P(z|z), P(22|2),
P(y,|21), and P(y|Z2), but not P(y|z). This is one of the main differences be-
tween nonparametric and linear models; in the latter, all causal effects can be de-
termined from the structural coefficients, each coefficient representing the causal
effect of one variable on its immediate successor.
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6 DISCUSSION

The basic limitation of the methods proposed in this paper is that the results must
rest on the causal assumptions shown in the graph, and that these cannot usually
be tested in observational studies. In a related paper (Pearl, 1994a) we show that
some of the assumptions, most notably those associated with instrumental variables
(Figure 6 (b)) are subject to falsification tests.® Moreover, considering that any
causal inferences from observational studies must ultimately rely on some kind of
causal assumptions, the methods described in this paper offer an effective language for
making those assumptions precise and explicit, so they can be isolated for deliberation
or experimentation and, once validated, be integrated with statistical data.

A second limitation concerns an assumption inherent in identification analysis,
namely, that the sample size is so large that sampling variability may be ignored.
The mathematical derivation of causal-effect estimands should therefore be consid-
ered a first step toward supplementing these estimands with confidence intervals and
significance levels, as in traditional analysis of controlled experiments. We should re-
mark, though, that having obtained nonparametric estimands for causal effects does
not imply that one should refrain from using parametric forms in the estimation
phase of the study. For example, if the assumptions of Gaussian, zero-mean distur-
bances and additive interactions are deemed reasonable, then the estimand given in
Eq. (16) can be converted to the product E(Y|Z) = R,.B.,.¢ where [3,,., is the
standardized regression coefficient, and the estimation problem reduces to that of
estimating regression coefficients (e.g., by least-squares). More sophisticated estima-
tion techniques, can be found in Rubin (1978), Robins (1989, Sec. 17), and Robins et
al. (1992, pp. 331-333).

Several extensions of the methods proposed in this paper are noteworthy. First,

the analysis of atomic interventions can be generalized to complex policies in which
a set X of treatment variables is made to respond in a specified way to some set Z
of covariates, say through a functional relationship X = ¢(Z) or through a stochastic
relationship whereby X is set to x with probability P*(z|z). In Pearl (1994b) it
is shown that computing the effect of such policies is equivalent to computing the
expression P(y|z,z).

A second extension concerns the use of the intervention calculus (Theorem 3) in
nonrecursive models, that is, in causal diagrams involving directed cycles or feedback
loops. The basic definition of causal effects in term of “wiping out” equations from
the model (Definition 2) still carries over to nonrecursive systems (Strotz & Wold,
1960; Sobel, 1990), but then two issues must be addressed. First, the analysis of
identification must ensure the stability of the remaining submodels (Fisher, 1970).
Second, the d-separation criterion for DAGs must be extended to cover cyclic graphs
as well. The validity of d-separation has been established for nonrecursive linear mod-
els and extended, using an augmented graph, to any arbitrary set of stable equations

5The testable implications of the model of Figure 6 (b) can be expressed in a simple inequality (Pearl,
1994c): max, Ey max; P(y,z|z) < 1.

25



(Spirtes, 1994). However, the computation of causal effect estimands will be harder
in cyclic networks, because symbolic reduction of P(y|Z) to hat-free expressions may
require the solution of nonlinear equations.

Finally, a few comments regarding the notation introduced in this paper. Tradi-
tionally, statisticians have approved of only one method of combining subject-matter
considerations with statistical data: the Bayesian method of assigning subjective
priors to distributional parameters. To incorporate causal information within the
Bayesian framework, plain causal statements such as “Y is affected by X7 must be
converted into sentences capable of receiving probability values, e.g., counterfactuals.
Indeed, this is how Rubin’s model has achieved statistical legitimacy: causal judg-
ments are expressed as constraints on probability functions involving counterfactual
variables (see Appendix II).

Causal diagrams offer an alternative language for combining data with causal in-
formation. This language simplifies the Bayesian route by accepting plain causal
statements as its basic primitives. These statements, which merely identify whether
a causal connection between two variables of interest exists, are commonly used in
natural discourse and provide a natural way for scientists to communicate experience
and organize knowledge. It can be anticipated, therefore, that the language of causal
graphs will find applications in problems requiring substantial use of subject-matter
considerations.

The language is not new. The use of diagrams and structural equations models to
convey causal information has been quite popular in the social sciences and econo-
metrics. Statisticians, however, have generally found these models suspect, perhaps
because social scientists and econometricians have failed to provide an unambiguous
definition of the empirical content of their models, that is, to specify the experimental
conditions, however hypothetical, whose outcomes would be constrained by a given
structural equation. As a result, even such basic notions as “structural coefficients” or
“missing links” become the object of serious controversy (Freedman, 1987) and con-
flicting interpretations (Wermuth, 1992; Whittaker, 1990, p. 302; Cox & Wermuth,
1993).

To a large extent, this history of controversy and miscommunication stems from
the absence of an adequate mathematical notation for defining basic notions of causal
modeling. For example, standard probabilistic notation cannot express the empirical
content of the coefficient b in the structural equation ¥ = bX + ¢y even if one is
prepared to assume that ey (an unobserved quantity) is uncorrelated with X. Nor can
any probabilistic meaning be attached to the analyst’s excluding from the equation
certain variables that are highly correlated with X or Y.

The notation developed in this paper gives these notions a clear empirical interpre-
tation, because it permits one to specify precisely what is being held constant and
what is merely measured in a controlled experiment. (The need for this distinction
was recognized by many researchers, most notably Pratt & Schlaifer (1988) and Cox

)

(1992)). The meaning of b is simply 5-F(Y'|Z), namely, the rate of change (in z) of
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the expectation of Y in an experiment where X is held at x by external control. This
interpretation holds regardless of whether ey and X are correlated (e.g., via another
equation: X = aY + ex) and, moreover, the notion of randomization need not be
invoked. Likewise, the analyst’s decision as to which variables should be included in a
given equation can be based on a hypothetical controlled experiment: A variable Z is
excluded from the equation for Y if it has no influence on Y when all other variables,
Syz, are held constant, that is, P(y|Z,3yz) = P(y|Syz). Specifically, variables that
are excluded from the equation Y = bX + ¢y are not conditionally independent of Y

given measurements of X, but rather causally irrelevant to Y given settings of X. The
operational meaning of the so called “disturbance term”, ey, is likewise demystified:
ey is defined as the difference Y — FE(Y|3y); two disturbance terms, ex and ey, are
correlated if P(y|z, $xy) # P(y|z, $xy), and so on.

The distinctions provided by the “hat” notation clarify the empirical basis of

structural equations and should make causal models more acceptable to empirical
researchers. Moreover, since most scientific knowledge is organized around the op-
eration of “holding X fixed,” rather than “conditioning on X.,” the notation and
calculus developed in this paper should provide an effective means for scientists to
communicate subject-matter information, and to infer its logical consequences.

APPENDIX I: Proof of Theorem 3

1. Rule 1 follows from the fact that deleting equations from the model in Eq. (8)
results, again, in a recursive set of equations in which all € terms are mutually in-
dependent. The d-separation condition is valid for any recursive model, hence it is
valid for the submodel resulting from deleting the equations for X. Finally, since
the graph characterizing this submodel is given by G+, (Y || Z|X,W)gyx im-
plies the conditional independence P(y|#, z,w) = P(y|#,w) in the post-intervention
distribution.

2. The graph G, differs from G+ only in lacking the arrows emanating from Z,
hence it retains all the back-door paths from Z to Y that can be found in G-
The condition (Y || Z|X,W)q,, ensures that all back-door paths from Z to

Y (in Gy) are blocked by {X,W?}. Under such conditions, setting (Z = z) or
conditioning on Z = z has the same effect on Y. This can best be seen from
the augmented diagram G%, to which the intervention arcs Fz — Z were added,
where F), stands of the external intervention as in Figure 2. If all back-door paths
from Fz to Y are blocked, the remaining paths from Fz to ¥ must go through
the children of Z, hence these paths will be blocked by Z. The implication is
that Y is independent of Fz given Z, which means that the observation 7 = z
cannot be distinguished from the intervention Fz = set(z).

3. (After D. Galles) Consider the augmented diagram G% to which the intervention

arcs F, — Z are added. If (Fz || Y|W,X)g, then P(y|z,z,w) = P(y|z,w).
—_— X

Ity | Z|X, W)GY ,and (Fz [f Y|W, X)g, there must be an unblocked

Z(W) - X

27



path from a member Fyz of Fz to Y that passes either through a head-to-tail
junction at Z’, or a head-to-head junction at Z’. If there is such a path, let P be
the shortest such path. We will show that P will violate some premise, or there
exists a shorter path, either of which leads to a contradiction.

If the junction is head-to-tail, that means that (Y |f Z'|W, X)g_, but (Y || Z'|W, X)g .
M = A

X Z(W)

So, there must be an unblocked path from Y to Z’ that passes through some
member Z" of Z(W) in either a head-to-head or a tail-to-head junction. This is
impossible. If the junction is head-to-head, then some descendant of Z” must be
in W for the path to be unblocked, but then Z” would not be in Z(W). If the
junction is tail-to-head, there are two options : either the path from Z' to Z”
ends in a arrow pointing to Z”, or an arrow pointing away from Z”. If it ends
in an arrow pointing away from Z”, then there must be a head-to-head junction
along the path from Z’ to Z”. In that case, for the path to be unblocked, W
must be a descendant of Z”, but then Z” would not be in Z(W). If it ends in
an arrow pointing to Z”, then there must be an unblocked path from Z” to Y in
G'x that is blocked in G5 Z00)" If this is true, then there is an unblocked path
from Fz» to Y that is shorter than P, the shortest path.

If the junction through Z’ is head-to-head, then either Z’ is in Z(W), in which
case that junction would be blocked, or there is an unblocked path from Z’ to Y
in Gy Z00) that is blocked in G'x. Above, we proved that this could not occur.

So (Y || Z|X, W)G? o implies (Fz || Y|W,X)Gry, and thus P(y|z, 2, w) =
P(yl2, w).

APPENDIX II: Graphs, structural equations, and counterfactuals

This paper uses two representations of causal models: graphs and structural equa-
tions. By now, both representations have been considered controversial for almost
a century. On the one hand, economists and social scientists have embraced these
modeling tools, but they continue to debate the empirical content of the symbols
they estimate and manipulate; as a result, the use of structural models in policy-
making contexts is often viewed with suspicion. Statisticians, on the other hand,
reject both representations as problematic (if not meaningless) and instead resort
to the Neyman-Rubin counterfactual notation whenever they are pressed to commu-
nicate causal information. This appendix presents an explication that unifies these
three representation schemes in order to uncover commonalities, mediate differences,
and make the causal-inference literature more generally accessible.

The primitive object of analysis in Rubin’s counterfactual framework is the unit-
based response variable, denoted Y (z,u) or Y.(u), read: “the value that ¥ would
obtain in unit v, had X been x”. This variable has natural interpretation in structural
equations models. Consider a set T' of equations

Xi = fz(PAszz) 1= 1, Lo, (38)
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where the U; stand for latent exogenous variables (or disturbances), and the PA; are
the explanatory (observed) variables in the ith equation (pa; is a realization of PA;).
(38) is similar to (3), except we no longer insist on the equations being recursive or
on the U;’s being independent. Let U stand for the vector (Uy,...,U,), let X and YV
be two disjoint subsets of observed variables, and let T}, be the submodel created by
replacing the equations corresponding to variables in X with X = z, as in Definition
2. The structural interpretation of Y (x,u) is given by

Y (z,u) 2 Y, (u) (39)
namely, Y (z,u) is the (unique) solution of Y under the realization U = u in the sub-
model 7. of T'. While the term wunit in the counterfactual literature normally stands
for the identity of a specific individual in a population, a unit may also be thought of
as the set of attributes that characterize that individual, the experimental conditions
under study, the time of day, and so on, which are represented as components of the
vector u in structural modeling. Eq. (39) forms a connection between the opaque
English phrase “the value that Y would obtain in unit u, had X been z” and the
physical processes that transfer changes in X into changes in Y. The formation of
the submodel 7). represents a minimal change in model 7" needed for making = and
u compatible; such a change could result either from external intervention or from a
natural yet unanticipated eventuality.

Given this interpretation of Y'(x,u), it is instructive to contrast the methodologies
of causal inference in the counterfactual and the structural frameworks. If U is treated
as a random variable, then the value of the counterfactual Y (z, u) becomes a random
variable as well, denoted as Y (z) or Y;. The counterfactual analysis proceeds by
imagining the observed distribution P*(z1,...,z,) as the marginal distribution of an
augmented probability function P* defined over both observed and counterfactual
variables. Queries about causal effects, written P(y|Z) in the structural analysis, are
phrased as queries about the marginal distribution of the counterfactual variable of
interest, written P*(Y (z) = y). The new entities Y (z) are treated as ordinary random
variables that are connected to the observed variables via consistency constraints
(Robins, 1987) such as

X=zr = Y(z)=Y (40)
and a set of conditional independence assumptions which the investigator must sup-
ply to endow the augmented probability, P*, with causal knowledge, paralleling the
knowledge that a structural analyst would encode in equations or in graphs.

For example, to communicate the understanding that in a randomized clinical trial
(see Figure 7(b)) the way subjects react (Y) to treatments (X)) is statistically indepen-
dent of the treatment assignment (7), the analyst would write Y(z) || Z. Likewise,
to convey the understanding that the assignment processes is randomized, hence in-
dependent of any variation in the treatment selection process, structurally written
Ux || Ugz, the analyst would use the independence constraint X(z) || Z.

A collection of constraints of this type might sometimes be sufficient to permit a
unique solution to the query of interest, for example, P*(Y(z) = y); in other cases,
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only bounds on the solution can be obtained. Section 6 explains why this approach is
conceptually appealing to some statisticians, even though the process of eliciting judg-
ments about counterfactual dependencies has so far not been systematized. When
counterfactual variables are not viewed as by-products of a deeper, process-based
model, it is hard to ascertain whether all relevant judgments have been articulated,
whether the judgments articulated are redundant, or whether those judgments are
self-consistent. The elicitation of such judgments can be systematized using the fol-
lowing translation from graphs.

Graphs provide qualitative information about the structure of both the equations
in the model and the probability function P(u), the former is encoded as missing
arrows, the latter as missing dashed arcs. Each parent-child family (PA;, X;) in a
causal diagram G corresponds to an equation in the model (38). Hence, missing
arrows encode exclusion assumptions, that is, claims that adding excluded variables
to an equation will not change the outcome of the hypothetical experiment described
by that equation. Missing dashed arcs encode independencies among disturbance
terms in two or more equations. For example, the absence of dashed arcs between a
node Y and a set of nodes Zi,..., Z; implies that the corresponding error variables,
Uy,Ugz,.,...,Ug,, are jointly independent in P(u).

These assumptions can be translated into the counterfactual notation using two
simple rules; the first interprets the missing arrows in the graph, the second, the
missing dashed arcs.

1. Exclusion restrictions: For every variable Y having parents PA,, and for every

set of variables S disjoint of PA,, we have

Y?

Y(pa,) =Y(pa,,s) (41)

2. Independence restrictions: If Zy,..., Z; is any set of nodes not connected to Y
via dashed arcs, we have

Y(pay) |l {Zi(pay,),. .., Zx(pa,,)} (42)

Given a sufficient number of such restrictions on P*, it is possible to compute
causal effects P*(Y(z) = y) using standard probability calculus together with the
logical constraints (e.g., Eq. (40) that couple counterfactual variables with their mea-
surable counterparts. These constraints can be used as axioms, or rules of inference,
in attempting to transform causal effect expressions, P*(Y (z) = y), into expressions
involving only measurable variables. When such a transformation is found, the corre-
sponding causal effect is identifiable, since P* reduces then to P. The axioms needed
for such transformation are:

Degeneracy: Y(0)=Y (43)
Composition: Y(z)=Y(z,Z(z)) for any Z disjoint of {X, Y} (44)
Sure — thing : If Y(z,2) =Y (a',2) Va' # z, then Y(z,z) = Y(z) (45)
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Degeneracy asserts that the observed value of Y is equivalent to a counterfactual
variable Y (z) in which the conditional part: “had X been 2” is not enforced, that is,
X is the empty set.

The Composition axiom asserts:

If Y(z,2) =y and Z(z) = z, then Y(z) =y
and, conversely:
If Y(z)=y and Z(z) =z, then Y(z,2z) =y

In words: “The value that ¥ would obtain had X been z is the same as that obtained
had X been x and Z been z, where z is the value that Z would obtain had X been
z”.

The sure-thing axiom (named after Savage’s “sure-thing principle”) asserts that if
Y(x,z) = y for every value z of X, then the counterfactual antecedant X = z is
redundant, namely, we need not concern ourselves with the value that X actually
obtains.

Properties (44)-(45) are theorems in the structural interpretation of Y(x,u) as
given in Eq. (39). However, in the Neyman-Rubin model, where Y (z,u) is taken
as a primitive notion, these properties must be considered axioms which, together
with other such properties, defines the abstract counterfactual conditioning operator
“had X been z”.7 It is easy to verify that composition and degeneracy imply the
consistency rule of (40); substituting X = {0} in (47) yields Y = Y(2) if Z = z,
which is equivalent to (40).

As an example, let us compute the causal effects associated with the model shown
in Figure 5. The parents sets a given by:

PAX:{Q)}a PAz:{X}v PAY:{Z} (46)
Consequently, the exclusion restrictions translate into:
Z(z) = Z(y,z) (47)
Xy) = X(zy)=X(z)=X (48)
Y(z) = Y(z,2) (49)

The absence of a dashed arc between Z and {Y, X} translates into the independence
restrictions:

Z(z) || {Y(2), X} (50)

Task-1, compute P*(Z(z) = z) (Equivalently P(z|z))
From (50) we have Z(z) || X, hence
P (Z(z)=2)= P (Z(z) = z|z) = P*(z|x) = P(z|x) (51)
"The composition rule was communicated to me by James Robins (1995, in conversation) as a property

needed for defining graph models (called “finest fully randomized causal graphs” in (Robins pp. 1419-1423,
1986)); in Robins’ treatment of counterfactuals, Y (z,z) and Z(z) may not be defined.
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Task-2, compute P*(Y(z) = y) (Equivalently P*(y|2))

P (Y(2)=y) =) P(Y(z) = ylz)P*(2) (52)
From (50) we have
Y(z) | Z(x)|X (53)
hence
PY() = gl) = PV =gla 2 =) by (52)
= P*EY|(Z) )= yle, z) Ey 540;
= P*(yl|z,z y (40
= Plyla,?) (54

Substituting (54) in (52), gives
PrY() = 9) = X Plyle,2) Pla) (55)

which is the celebrated covariate-adjustment formula for causal effect, as in Eq. (9).

Task-3, compute P*(Y(z) = y) (Equivalently P(y|z))
For any arbitrary variable Z, we have (by composition)
Y(z) =Y(z, Z(z))
In particular, since Y(z,z) = Y (z) (from (49)), we have
Y(2) = Y(e, Z(2)) = Y(Z(2))

and

since Y(2) || Z(z).
P*(Y(z) = y) and P*(Z(z) = z) were computed in (55) and (51), respectively,

hence
PA(Y(e) = 9) = X Peke) X Pyl o) P(2)

In summary, the structural and counterfactual frameworks are complementary of
each other. Structural analysts can interpret counterfactual sentences as constraints
over the solution set of a given system of equations (39) and, conversely, counter-
factual analysts can use the constraints (over P*) given by Eqgs. (41) and (42) as a
definition of graphs, structural equations and the physical processes which they rep-
resent.
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