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1 INTRODUCTION

This paper surveys the historical development of Bayesian networks, summarizes their seman-
tical basis and assesses their properties and applications vis a vis those of neural networks.

Bayesian networks are directed acyclic graphs (DAGs) in which the nodes represent
variables of interest (e.g., the temperature of a device, the gender of a patient, a feature of
an object, the occurrence of an event) and the links represent causal influences among the
variables. The strength of an influence is represented by conditional probabilities that are
attached to each cluster of parents-child nodes in the network.

Figure 1 illustrates a simple yet typical Bayesian network. It describes the causal re-
lationships among the season of the year (X7), whether rain falls (X3) during the season,
whether the sprinkler is on (X3) during that season, whether the pavement would get wet
(X4), and whether the pavement would be slippery (X;5). All variables in this figure are
binary, taking a value of either true or false, except the root variable X; which can take one
of four values: Spring, Summer, Fall, or Winter. Here, the absence of a direct link between
X; and X5, for example, captures our understanding that the influence of seasonal variations
on the slipperiness of the pavement is mediated by other conditions (e.g., the wetness of the
pavement).

As this example illustrates, a Bayesian network constitutes a model of the environment
rather than, as in many other knowledge representation schemes (e.g., rule-based systems
and neural networks), a model of the reasoning process. It simulates, in fact, the causal
mechanisms that operate in the environment, and thus allows the investigator to answer a
variety of queries, including: associational queries, such as “Having observed A, what can we
expect of B?”; abductive queries, such as “What is the most plausible explanation for a given
set of observations?”; and control queries; such as “What will happen if we intervene and
act on the environment?”. Answers to the first type of query depend only on probabilistic
knowledge of the domain, while answers to the second and third types rely on the causal
knowledge embedded in the network. Both types of knowledge, associative and causal, can
effectively be represented and processed in Bayesian networks.
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Figure 1: A Bayesian network representing causal influences among five variables.

The associative facility of Bayesian networks may be used to model cognitive tasks such
as object recognition, reading comprehension, and temporal projections. For such tasks,
the probabilistic basis of Bayesian networks offers a coherent semantics for coordinating
top-down and bottom-up inferences, thus bridging information from high-level concepts and
low-level percepts. This capability is important for achieving selective attention, that is,
selecting the most informative next observation before actually making the observation. In
certain structures, the coordination of these two modes of inference can be accomplished by
parallel and distributed processes that communicate through the links in the network.

However, the most distinctive feature of Bayesian networks, stemming largely from their
causal organization, is their ability to represent and respond to changing configurations.
Any local reconfiguration of the mechanisms in the environment can be translated, with
only minor modification, into an isomorphic reconfiguration of the network topology. For
example, to represent a disabled sprinkler, we simply delete from the network all links
incident to the node “Sprinkler”. To represent a pavement covered by a tent, we simply
delete the link between “Rain” and “Wet”. This flexibility is often cited as the ingredient
that marks the division between deliberative and reactive agents, and that enables the former
to manage novel situations instantaneously, without requiring retaining or adaptation. Thus,
Bayesian networks can model a wide spectrum of cognitive activities, ranging from low-level
perception (reaction) to planning and explaining (deliberation).

2 HISTORICAL BACKGROUND

Networks employing directed acyclic graphs (DAGs) have a long and rich tradition, which
began with the geneticist Sewall Wright [Wright 1921]. He developed a method called path
analysis, which later became an established representation of causal models in economics, so-
ciology, and psychology. Recursive models is the name given to such networks by statisticians
seeking meaningful and effective decompositions of contingency tables. Influence diagrams
represent another application of DAG representation developed for decision analysis. The
primary role of a DAG in these applications is to provide an efficient description of the prob-
ability functions; once the network is configured, all subsequent computations are pursued
by symbolic manipulation of probability expressions.

The potential for the network to work as a computational architecture, and hence as
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a model of cognitive activities, was noted in [Pearl 1982], where a distributed scheme was
demonstrated for probabilistic updating on tree-structured networks. The motivation behind
this particular development was the modeling of distributed processing in reading compre-
hension, where both top-down and bottom-up inferences are combined to form a coherent
interpretation. This dual mode of reasoning is at the heart of Bayesian updating, and in fact
motivated Reverend Bayes’s original 1763 calculations of posterior probabilities (represent-
ing explanations), given prior probabilities (representing causes), and likelihood functions
(representing evidence).

Bayesian networks have not attracted much attention in cognitive modeling circles, but
they did in expert systems. The ability to coordinate bi-directional inferences filled a void in
expert systems technology of the late 1970s, and it is in this area that Bayesian networks truly
flourished. Over the past ten years, Bayesian networks have become a tool of great versatility
and power, and they are now the most common representation scheme for probabilistic
knowledge [Shafer 1990, Shachter 1990]. They have been used to aid in the diagnosis of
medical patients and malfunctioning systems, to understand stories, to filter documents,
to interpret pictures, to perform filtering, smoothing, and prediction, to facilitate planning
in uncertain environments, and to study causation, nonmonotonicity, action, change, and
attention. Some of these applications are described in a tutorial article by [Charniak 1991];

others can be found in [Pear]l 1988] and [Shafer 1990].

3 FORMAL SEMANTICS

3.1 Bayesian Networks as Carriers of Probabilistic Information

Given a DAG I' and a joint distribution P over a set X = {X7,..., X,;} of discrete variables,
we say that I' represents P if there is a one-to-one correspondence between the variables in
X and the nodes of I', such that P admits the recursive product decomposition

P(zq,...,x,) = HP(.TEZ | pa,;) (1)

where pa; are the direct predecessors (called parents) of X; in I'. For example, the DAG in
Figure 1 induces the decomposition

P(x1, 72,23, 24, 75) = P(x1) P(22]|21) Px3|z1) P(as|zs, v3) Pos|zs) (2)

The recursive decomposition in Eq. (1) implies that, given its parent set pa;, each variable
X; is conditionally independent of all its other predecessors { X7, X5, ..., X;_1}\pa,. Using
Dawid’s notation [Dawid 1979], we can state this set of independencies as

Xi H {X17X27"'7Xi—1}\pai | pa; 1= 27"'7” (3)

Such a set of independencies is called Markovian, since it reflects the Markovian condition
for state transitions: each state is rendered independent of the past, given its immediately
preceding state. For example, the DAG of Figure 1 implies the following Markovian inde-
pendencies:

Xo || {0} [ Xa, X3 || Xo| X, Xy || Xo [ {Xo, X}, X5 || {X0, Xo, Xa} | Xy (4)
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In addition to these, the decomposition of Eq. (1) implies many more independencies,
the sum total of which can be identified from the DAG using the graphical criterion of
d-separation [Pearl 1988]:

Definition 3.1 (d-separation) If X,Y, and Z are three disjoint subsets of nodes in a DAG
I', then Z is said to d-separate X from Y, denoted d(X, Z, Y )r, if and only if there is no path
from a node in X to a node in Y along which the following two conditions hold: (1) every
node with converging arrows either is or has a descendant in Z, and (2) every other node is
outside Z. A path satisfying these two conditions is said to be active; otherwise, it is said to

be blocked (by Z). By path we mean a sequence of consecutive edges (of any directionality)
in the DAG.

In Figure 1, for example, X = {X;} and Y = {X;3} are d-separated by Z = {X;}; the
path X; «— X; — X3 is blocked by X; € Z, while the path X; — X; «— X3 is blocked
because X4 and all its descendants are outside Z. Thus d(X3, X1, X3) holds in I'. However,
X and Y are not d-separated by Z’ = { X;, X5}, because the path X; — X, « X3 is rendered
active by virtue of X5, a descendant of Xy, being in Z’. Consequently, d( Xz, { X1, X5}, X3)
does not hold in I'; in words, learning the value of the consequence X5 renders its causes X,
and X3 dependent, as if a pathway were opened along the arrows converging at Xj.

The d-separation criterion has been shown to be both necessary and sufficient rela-
tive to the set of distributions that are represented by a DAG I' (see Geiger et al. in
[Shachter 1990]). In other words, there is a one-to-one correspondence between the set
of independencies implied by the recursive decomposition of Eq. (1) and the set of triples
(X, Z,Y) that satisfy the d-separation criterion in I'. Furthermore, the d-separation crite-
rion can be tested in time linear in the number of edges in I'. Thus, a DAG can be viewed
as an efficient scheme for representing Markovian independence assumptions and for deduc-
ing and displaying all the logical consequences of such assumptions. Additional properties
of DAGs and their applications to evidential reasoning in expert systems are discussed in

[Pearl 1988, Shachter 1990, Spiegelhalter et al. 1993].

3.2 Bayesian Networks as Carriers of Causal Information

The interpretation of DAGs as carriers of independence assumptions does not necessarily
imply causation and will in fact be valid for any set of Markovian independencies along any
ordering (not necessarily causal or chronological) of the variables. However, the patterns of
independencies portrayed in a DAG are typical of causal organizations and some of these
patterns can only be given meaningful interpretation in terms of causation. Consider, for
example, two independent events, F; and FEj, that have a common effect F3. This triple
represents an intransitive pattern of dependencies: F; and F3 are dependent, F3 and F;
are dependent, yet F; and FE, are independent. Such a pattern cannot be represented
in undirected graphs because connectivity in undirected graphs is transitive. Likewise, it
is not easily represented in neural networks, because F; and F,; should turn dependent
once Fj3 is known. The DAG representation provides a perfect language for intransitive
dependencies via the converging pattern £y — F3 < FE,, which implies the independence
of K1 and F, as well as the dependence of £; and F3 and of F3; and E3. The distinction
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between transitive and intransitive dependencies is the basis for the causal discovery systems
of [Pearl & Verma 1991] and [Spirtes et al. 1993] (see Section 5).

However, the Markovian account still leaves open the question of how such intricate
patterns of independencies relate to the more basic notions associated with causation, such
as influence, manipulation, and control, which reside outside the province of probability
theory. The connection is made in the mechanism-based account of causation.

The basic idea behind this account goes back to H. Simon and it was adapted in
[Pearl & Verma 1991] for defining probabilistic causal theories, as follows. Each child-parents
family in a DAG I represents a deterministic function

X; = fi(pa;, €;) (5)

where pa; are the parents of variable X; in I', and ¢;, 0 <: < n, are mutually independent,
arbitrarily distributed random disturbances. Characterizing each child-parent relationship
as a deterministic function, instead of the usual conditional probability P(x; | pa;), imposes
equivalent independence constraints on the resulting distributions and leads to the same re-
cursive decomposition that characterizes DAG models (see Eq. (1)). However, the functional
characterization X; = fi(pa,,¢;) also specifies how the resulting distributions would change
in response to external interventions, since each function is presumed to represent a stable
mechanism in the domain and therefore remains constant unless specifically altered. Thus,
once we know the identity of the mechanisms altered by the intervention and the nature
of the alteration, the overall effect of an intervention can be predicted by modifying the
appropriate equations in the model of Eq. (5) and using the modified model to compute a
new probability function of the observables.

The simplest type of external intervention is one in which a single variable, say X, is
forced to take on some fixed value z!. Such atomic intervention amounts to replacing the
old functional mechanism X; = f;(pa,;, ¢;) with a new mechanism X; = z! governed by some
external force that sets the value z!. If we imagine that each variable X; could potentially be
subject to the influence of such an external force, then we can view each Bayesian network as
an efficient code for predicting the effects of atomic interventions and of various combinations
of such interventions, without representing these interventions explicitly.

This function-replacement operation yields a simple and direct transformation between
the pre-intervention and the post-intervention distributions:

P(zy,....xn if T; = $/_

which reflects the removal of the term P(z; | pa;) from the product decomposition of Eq.
(1), since pa; no longer influence X; [Goldszmidt & Pearl 1992]. Graphically, the removal of
this term is equivalent to removing the links between pa; and X; while keeping the rest of
the network intact [Spirtes et al. 1993]. Transformations involving conjunctive actions can
be obtained by straightforward generalization of Eq. (6).

The transformation in Eq. (6) exhibits all the properties we normally associate with
actions, and it was therefore proposed as a solution to the frame problem and its two
satellites, the ramification problem and the concurrency problem [Darwiche & Pearl 1994,
Pearl 1994a]. For example, to represent the intervention “turning the sprinkler ON” in the
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network of Figure 1, we delete the link X; — X3 and fix the value of X3 to ON. The resulting
joint distribution on the remaining variables will be

P($1,$2,I4,.175) = P(Il) P($2|.171) P(.I?4|$2,X3 = ON) P(:C5|.174) (7)

Note the difference between the action do(X3 = ON) and the observation X3 = ON. The
latter is encoded by ordinary Bayesian conditioning, while the former by conditioning a
mutilated graph, with the link X; — X3 removed. This mirrors indeed the difference between
seeing and doing: after observing that the sprinkler is ON, we wish to infer that the season
is dry, that it probably did not rain, and so on; no such inferences should be drawn in
evaluating the effects the contemplated action “turning the sprinkler ON”.

4 PROPERTIES AND ALGORITHMS

By providing graphical means for representing and manipulating probabilistic knowledge,
Bayesian networks overcome many of the conceptual and computational difficulties of rule-
based systems [Pearl 1988]. Their basic properties and capabilities can be summarized as
follows:

1. Graphical methods make it easy to maintain consistency and completeness in proba-
bilistic knowledge bases. They also prescribe modular procedures of knowledge acqui-
sition which significantly reduce the number of assessments required.

2. Independencies can be dealt with explicitly. They can be articulated by an expert,
encoded graphically, read off the network, and reasoned about, yet they forever remain
robust to numerical imprecision.

3. Graphical representations uncover opportunities for efficient computation. Distributed
updating is feasible in knowledge structures that are rich enough to exhibit intercausal
interactions (e.g., “explaining away”). And, when extended by clustering or condi-
tioning, tree-propagation algorithms are capable of updating networks of arbitrary

topology [Pearl 1988, Shafer 1990].

4. The combination of predictive and abductive inferences resolves many problems en-
countered by first-generation expert systems and renders belief networks a viable model
for cognitive functions requiring both top-down and bottom-up inferences.

5. The causal information encoded in Bayesian networks facilitates the analysis of ac-
tion sequences, their consequences, their interaction with observations, and their ex-
pected utilities, and hence the synthesis of plans and strategies under uncertainty

[Dean & Wellman 1991, Pearl 1994a].

6. The isomorphism between the topology of Bayesian networks and the stable mecha-
nisms that operate in the environment facilitates modular reconfiguration of the net-
work in response to changing conditions, and permits deliberative reasoning about
novel situations.
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The first algorithms proposed for probability updating in Bayesian networks used message-
passing architecture and were limited to trees [Pearl 1982] and singly connected networks
[Kim 1983]. The idea was to assign each variable a simple processor, forced to communicate
only with its neighbors, and to permit asynchronous back-and-forth message-passing until
equilibrium was achieved. Coherent equilibrium can indeed be achieved this way, but only
in singly connected networks, where an equilibrium state occurs in time proportional to the
diameter of the network.

Many techniques have been developed and refined to extend the tree-propagation method
to general, multiply connected networks. Among the most popular are Shachter’s method of
node elimination, Lauritzen and Spiegelhalter’s method of clique-tree propagation, and the
method of loop-cut conditioning (see [Pear]l 1988, Shafer 1990]).

Clique-tree propagation, the most popular of the three methods, works as follows. Start-
ing with a directed network representation, the network is transformed into an undirected
graph that retains all of its original dependencies. This graph, sometimes called a Markov
network, is then triangulated to form local clusters of nodes (cliques) that are tree-structured.
Evidence propagates from clique to clique by ensuring that the marginal probability of their
intersection set is the same, regardless of which of the two cliques is marginalized. Finally,
when the propagation process subsides, the posterior probability of an individual variable
is computed by projecting (marginalizing) the distribution of the hosting clique onto this
variable.

While the task of updating probabilities in general networks is NP-hard, the complexity
for each of the three methods cited above is exponential in the size of the largest clique found
in some triangulation of the network. It is fortunate that these complexities can be estimated
prior to actual processing; when the estimates exceed reasonable bounds, an approximation
method such as stochastic simulation [Pear]l 1988] can be used instead. Learning techniques
have also been developed for systematic updating of the conditional probabilities P(x;|pa;)
so as to match empirical data (see Spiegelhalter and Lauritzen in [Shachter 1990]).

5 RECENT DEVELOPMENTS

Causal Discovery. One of the most exciting prospects in recent years has been the possi-
bility of using Bayesian networks to discover causal structures in raw statistical data. Sev-
eral systems have been developed for this purpose [Pearl & Verma 1991, Spirtes et al. 1993].
Technically, such discovery is feasible only if one is willing to accept weaker forms of guaran-
tees weaker than those obtained through controlled randomized experiments: minimality and
stability [Pearl & Verma 1991]. Minimality guarantees that any other structure compatible
with the data is necessarily less specific, and hence less falsifiable and less trustworthy, than
the one(s) inferred. Stability ensures that any alternative structure compatible with the
data must be less stable than the one(s) inferred; namely, slight fluctuations in experimental
conditions will render that structure no longer compatible with the data. With these forms
of guarantees, the theory provides criteria for identifying genuine and spurious causes, with
or without temporal information, and yields algorithms for recovering causal structures with
hidden variables from empirical data.
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Plain Beliefs. In mundane decision making, beliefs are revised not by adjusting nu-
merical probabilities but by tentatively accepting some sentences as “true for all practi-
cal purposes”. Such sentences, often named plain beliefs, exhibit both logical and prob-
abilistic character. As in classical logic, they are propositional and deductively closed;
as in probability, they are subject to retraction and to varying degrees of entrenchment
[Goldszmidt & Pearl 1992].

Bayesian networks can be adopted to model the dynamics of plain beliefs by replacing
ordinary probabilities with non-standard probabilities, that is, probabilities that are infinites-
imally close to either zero or one. This amounts to taking an “order of magnitude” approxi-
mation of empirical frequencies, and adopting new combination rules tailored to reflect this
approximation. The result is an integer-addition calculus, very similar to probability calcu-
lus, with summation replacing multiplication and minimization replacing addition. A plain
belief is then identified as a proposition whose negation obtains an infinitesimal probability
(i.e., an integer greater than zero).

This combination of infinitesimal probabilities with the causal information encoded by the
structure of Bayesian networks facilitates linguistic communication of belief commitments,
explanations, actions, goals, and preferences, and serves as the basis for current research on
qualitative planning under uncertainty [Darwiche & Pearl 1994, Goldszmidt & Pearl 1992,
Pearl 1994b].

6 DISCUSSION

The most distinctive characteristics of Bayesian networks are their ability to faithfully rep-
resent causal relationships, to combine top-down and bottom-up inferences, and to adapt to
changing conditions by updating the probability measures attached to the links. Although
Bayesian networks can model a wide spectrum of cognitive activity, their greatest strength is
in causal reasoning, which, in turn, facilitates reasoning about actions, explanations, counter-
factuals, and preferences. Such capabilities are not easily implemented in neural networks,
whose strengths lie in quick adaptation of simple motor-visual functions. Except for the
common ability to perform distributed inferencing, the relation between Bayesian networks
and neural networks is rather tenuous. For example, there are very few neural features
in Bayesian networks: weights, sums, and sigmoids play no significant role; all computa-
tional units represent familiar linguistic notions; and deployment of bi-directional messages
in acyclic structures has no known biological bias.

Some questions arise: Does an architecture resembling that of Bayesian networks exist
anywhere in the human brain? If not, how does the brain perform those cognitive functions
in which Bayesian networks excel? The answer is, | speculate, that nothing resembling
Bayesian networks actually resides permanently in the brain. Instead, fragmented structures
of causal organizations are constantly being assembled on the fly, as needed, from a stock
of functional building blocks. Each such building block is specialized to handle a narrow
context of experience and is probably embodied in an architecture of a neural network.
For example, the network of Figure 1 may be assembled from several neural networks, one
specializing in the experience surrounding seasons and rains, another in the properties of
wet pavements, and so forth. Such specialized networks are probably stored permanently in
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some mental library, from which they are drawn and assembled into the structure shown in
Figure 1 only when a specific problem presents itself, for example, to determine whether an
operating sprinkler could explain why a certain person slipped and broke a leg in the middle
of a dry season.

I believe the properties of Bayesian networks will be useful to scientists studying higher
cognitive functions, where the problem of organizing and supervising large assemblies of
specialized neural networks becomes important.
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