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Abstract

We present a symbolic machinery that admits both probabilistic and causal infor-
mation about a given domain, and produces probabilistic statements about the effect of
actions and the impact of observations. The calculus admits two types of conditioning
operators: ordinary Bayes conditioning, P(y|X = z), which represents the observation
X = z, and causal conditioning, P(y|do(X = z)), read: the probability of Y = y con-
ditioned on holding X constant (at z) by deliberate action. Given a mixture of such
observational and causal sentences, together with the topology of the causal graph,
the calculus derives new conditional probabilities of both types, thus enabling one to
quantify the effects of actions and observations.

1 Introduction

Probabilistic methods, especially those based on graphical models have proven useful in tasks
of predictions, abduction and belief revision [Pearl 1988, Heckerman 1990, Goldszmidt 1992,
Darwiche 1993]. Their use in planning, however, remains less popular' partly due to the
unsettled, strange relationships between probability and actions. In principle, actions are
not part of standard probability theory, and understandably so —— probabilities captures
normal relationships in the world, while actions represent interventions that perturb those
relationships. It is no wonder, therefore, that actions are treated as foreign entities in
traditional probability calculus; they do not serve as arguments of probability expressions
nor as events for conditioning such expressions. Whenever an action is given a formal
symbol, that symbol serves merely as an index for distinguishing one probability function
from another, but not to convey any information about the purpose or effect of the action.

The peculiar status of actions in probability theory can be seen most clearly in comparison
to the status of observations. By specifying a probability function P(s) on the possible states
of the world, we automatically specify how probabilities would change with every conceivable
observation e, since P(s) permits us to compute (using Bayes rule) the posterior probabilities
P(FEle) for every pair of events £ and e. However, specifying P(s) tells us nothing about
how our probabilities should be revised as a response to an external action A. In general, if
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an action A is to be described as a function that takes P(s) and transforms it to P4(s), then
Bayesian conditioning is clearly inadequate for encoding this transformation. For example,
consider the statements: “I have observed the barometer reading to be 7 and “I intervened
and set the barometer reading to z” If processed by Bayes conditioning on the event “the
barometer reading is x”, these two reports would have the same impact on our current
probability function, yet we certainly do not consider the two reports equally informative
about an incoming storm.

Philosophers [Lewis, 1974] studied another probability transformation called “imaging”
(to be distinguished from “conditioning”) which was deemed useful in the analysis of sub-
junctive conditionals and which more adequately represent transformations associated with
actions. Whereas Bayes conditioning P(s|e) transfers the entire probability mass from states
excluded by e to the remaining states (in proportion to their current P(s)), imaging works
differently; each excluded state s transfers its mass individually to a select set of states
S*(s), which are considered “closest” to s. While providing a more adequate and general
framework for actions, imaging leaves the precise specification of the selection function S*(s)
totally unconstrained. The task of formalizing and representing these specifications can be
viewed as the probabilistic version of the infamous frame problem. and its two satellites, the
ramification and concurrent actions problems.

An assumption commonly found in the literature is that the effect of an elementary action
do(q) is merely to change —¢ to ¢ in case the current state satisfies =¢, but, otherwise, to
leave things unaltered?. We can call this assumption the “delta” rule, variants of which are
embedded in STRIPS as well as in probabilistic planning systems. In BURIDAN [Kushm-
erick et al, 1993], for example, every action is specified as a probabilistic mixture of several
elementary actions, each operating under the delta rule.

The problem with the delta rule and its variants is that they do not take into account
the indirect ramifications of an action such as, for example, those triggered by chains of
causally related events. To handle such ramifications we must construct a causal theory
of the domain, specifying which event chains are likely to be triggered by a given action
(the ramification problem) and how these chains interact when triggered by several actions
(the concurrent action problem). Elaborating on the works of Dean and Wellman [Dean &
Wellman 1991], this paper shows how the frame, ramification and concurrency problem can
be handled effectively using the language of causal graphs.

The key idea is that causal knowledge can efficiently be organized in terms of just a few
basic mechanisms, each involving a relatively small number of variables, and each encoded as
a set of functional constraints perturbed by random disturbances. Each external elementary
action overrules just one mechanism while leaving the others unaltered. The specification
of an action then requires only the identification of the mechanisms which are overruled by
that action. Once this is identified, the effect of the action (or combinations thereof) can be
computed from the constraints imposed by the remaining mechanisms.

The semantics behind causal graphs and their relations to actions and belief networks
have been discussed in prior publications [Pearl and Verma 1991, Druzdzel & Simon 1993,
Goldszmidt & Pearl 1992, Pearl 1993a, Spirtes et al 1993 and Pearl 1993b]. In Spirtes

et al [1993] and Pearl [1993b], for example, it was shown how complex information about

2This assumption corresponds to Dalal’s [1988] database update, which uses the Hamming distance to
define the “closest world” in Lewis’ imaging.



external interventions can be organized and represented graphically and, conversely, how
the graphical representation can be used to facilitate quantitative predictions of the effects
of interventions, including interventions that were not contemplated during the network
construction®. Section 2 reviews this aspect of causal networks, following the formulation in
[Pearl 1993b].

The problem addressed in this paper is to quantify the effect of interventions when the
causal graph is not fully parameterized, that is, we are given the topology of the graph but
not the conditional probabilities on all variables. Numerical probabilities will be given to only
a subset of variables, in the form of unstructured conditional probability sentences. This is a
more realistic setting in Al applications, where the user/designer might not have either the
patience or the knowledge necessary for the specification of a complete distribution function.
Some combinations of variables may be too esoteric to be assigned probabilities, and some
variables may be too hypothetical (e.g., “life style” or “attitude”) to even be parametrized
numerically.

To manage this problem, this paper introduces a calculus which operates on whatever
probabilistic and causal information is available, and, using symbolic transformations on the
input sentences, produces probabilistic assessments of the effect of actions. The calculus
admits two types of conditioning operators: ordinary Bayes conditioning, P(y|X = ), and
causal conditioning, P(y|do(X = z)), that is, the probability of ¥ = y conditioned on
holding X constant (at ) by deliberate external action. Given a causal graph and an input
set of conditional probabilities, the calculus derives new conditional probabilities of both the
Bayesian and the causal types, and, whenever possible, generates probabilistic formulas for
the effect of interventions in terms of the input information.

2 The Manipulative Reading of Causal Networks:
Review

The connection between the probabilistic and the manipulative readings of directed acyclic
graphs is formed through Simon’s [1977] mechanism-based model of causal ordering®. In this
model, each child-parent family in a DAG G represents a deterministic function

X; = filpa;, &), (1)

where pa; are the parents of variable X; in GG, and ¢;, 0 < ¢z < n, are mutually independent,
arbitrarily distributed random disturbances. A causal theoryis a pair < P,G >, where GG is
a dag and P is the probability distribution that results from the functions f; in (1).

Characterizing each child-parent relationship as a deterministic function, instead of the
usual conditional probability P(x; | pa,), imposes equivalent independence constraints on
the resulting distributions and leads to the same recursive decomposition

Py, ... x,) = HP(”CZ | pa;) (2)

3Influence diagrams, in contrast, require that actions be considered in advance as part of the network

4This mechanism-based model was adopted in [Pearl & Verma 1991] for defining probabilistic causal
theories. It has been elaborated in Druzdzel & Simon [1993] and is also the basis for the “invariance”
principle of [Spirtes et al, 1993].



that characterizes Bayesian Networks [Pearl, 1988]. This is so because each ¢; is independent
on all non-descendants of X;. However, the functional characterization
X; = fi(pa,, €) also specifies how the resulting distribution would change in response to
external interventions, since, by convention, each function is presumed to remain constant
unless specifically altered. Moreover, the non-linear character of f; permits us to treat
changes in the function f; itself as a variable, F;, by writing

X; = fi(pa;, I, &) (3)

where
fi/(aa b, C) = fi(a,c) whenever b = f;.

Thus, any external intervention F; that alters f; can be represented graphically as an added
parent node of X;, and the effect of such an intervention can be analyzed by Bayesian
conditionalization, that is, by simply setting this added parent variable to the appropriate
value f;.

The simplest type of external intervention is one in which a single variable, say X, is
forced to take on some fixed value, say, . Such intervention, which we call atomec, amounts
to replacing the old functional mechanism X; = f;(pa,, ¢;) with a new mechanism X; = 2!
governed by some external force F; that sets the value 2. If we imagine that each variable X;
could potentially be subject to the influence of such an external force Fj, then we can view
the causal network GG as an efficient code for predicting the effects of atomic interventions
and of various combinations of such interventions.

Figure 1: Representing external intervention F; by an augmented network

G/ = GU {FZ —>XZ}

The effect of an atomic intervention do(X; = x!) is encoded by adding to G a link
F;, — X, (see Figure 1), where F; is a new variable taking values in {do(z!), idle}, z!
ranges over the domain of X, and zdle represents no intervention. Thus, the new parent set
of X; in the augmented network is pa} = pa, U{F};}, and it is related to X; by the conditional
probability

P(”EZ | pai) if Fi = 1dle

P(z; | pa)) =< 0 if F;=do(z!) and z; # ! (4)
1 it F;=do(z}) and z; = !
The effect of the intervention do(z}) is to transform the original probability function
P(zi,...,z,) into a new function Py (z1,...,2,), given by
Po(z1, .y 2,) = P21, .y 2 | Fi = do(z})) (5)
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where P’ is the distribution specified by the augmented network ' = G U {F; — X;} and
Eq. (4), with an arbitrary prior distribution on F;. In general, by adding a hypothetical
intervention link F; — X; to each node in G, we can construct an augmented probability
function P'(x1,...,&n; F1,..., F,,) that contains information about richer types of interven-
tions. Multiple interventions would be represented by conditioning P’ on a subset of the F;’s
(taking values in their respective do(x!)), while the pre-intervention probability function P
would be viewed as the posterior distribution induced by conditioning each F; in P’ on the
value idle.

This representation yields a simple and direct transformation between the pre-intervention
and the post-intervention distributions:

le‘ (:[j17 ceey ;En) = (])j($z | paz) f # ; (6)
! i x; x;

This transformation reflects the removal of the term P(z; | pa;) from the product decom-
position of Eq. (2), since pa; no longer influence X;. Graphically, the removal of this term
is equivalent to removing the links between pa, and X;, while keeping the rest of the net-
work intact. Transformations involving conjunctive and disjunctive actions can be obtained
by straightforward applications of Eq. (5) [Spirtes etal. 1993, Goldszmidt & Pearl 1992,
Goldszmidt 1992]

The transformation (6) exhibits the following properties:

1. An intervention do(z;) can affect only the descendants of X; in G.

2. For any set S of variables, we have
Py, (S | pa;) = P(S | i, pay). (7)

In other words, given X; = z; and pa,, it is superfluous to find out whether X; = z;
was established by external intervention or not. This can be seen directly from the
augmented network G’ (see Figure 1), since {X;} U pa; d-separates F; from the rest of
the network, thus legitimizing the conditional independence S || F; | (Xi, pa,).

3. A sufficient condition for an external intervention do(X; = z;) to have the same effect
on X; as the passive observation X; = z; is that X; d-separates pa; from Xj;, that is,
P/(ajldofei) = Pla; | @) 1 X; || pa; | Xe. )

The immediate implication of Eq. (6) is that, given the structure of the causal network

(G, one can infer post-intervention distributions from pre-intervention distributions; hence,
we can reliably estimate the effects of interventions from passive (i.e., non-experimental)
observations. However, the use of Eq. (6) is limited for several reasons. First, the formula
was derived under the assumption that the pre-intervention probability P is given by the
product of Eq. (2), which represents general domain knowledge prior to making any specific
observation. Second, the formulain Eq. (6) is not very convenient in practical computations,
since the joint distribution P(x1,...,x,) is not represented explicitly, but implicitly, in the
form of probabilistic sentences from which it can be computed. Finally, the formula in
Eq. (6) presumes that we have sufficient information at hand to define a complete joint
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distribution function. In practice, a complete specification of P is rarely available, and we
must predict the effect of actions from a knowledge base containing unstructured collection
of probabilistic statements, some are observational and some causal.

The first issue is treated in [Pearl 1993a], where assumptions about persistence were
added to distinguish properties that terminate as a result of an action from those that persist
despite that action. This paper addresses the latter two issues, and offers a set of sound (and
possibly complete) inference rules by which probabilistic sentences involving actions and
observations can be transformed to other such sentences, thus providing a syntactic method
of deriving (or verifying) claims about actions and observations. We will assume, however,
that the knowledge base contains the topological structure of the causal network G, some of
its links are annotated with conditional probabilities while others remain unspecified. Given
such partially specified causal theory, our main problem will be to facilitate the syntactic
derivation of expressions of the form P(z;|do(x;)).

3 A Calculus of Actions

3.1 Preliminary Notation

Let X,Y,Z W be four arbitrary disjoint sets of nodes in the dag (G. We say that X and Y
are independent given Z in GG, denoted (X || Y|Z)g, if the set Z d-separates all paths from
X to Y in . We denote by Gy (G, resp;tively) the graph obtained by deleting from G
all arrows pointing to (emerging from, respectively) nodes in X.

Finally, we replace the expression P(y|do(x),z) by a simpler expression P(y|Z,z), using
the * symbol to identify the variables that are kept constant externally. In words, the
expression P(y|Z, z) stands for the probability of Y = y given that Z = z is observed and X
is held constant at z.

3.2 Inference Rules

Armed with this notation we are now able to formulate the three basic inference rules of the
proposed calculus.

Theorem 3.1 Given a causal theory < P,G >, for any sets of variables X, Y, Z, W we have:
Rule 1 Insertion/deletion of Observations (Bayes conditioning)
P(ylz, z,w) = P(y|&,w) if (Y || Z|X,W)e (9)

Rule 2 Action/observation Fzchange

Plylé, 2 w) = Pyl zw) if (V| 21X, W)as, (10)
Rule 3 Insertion/deletion of actions
Pyl 2,w) = P(yli,w) if (VI 21X, W)a (11)



Each of the inference rules above can be proven from the basic interpretation of the
“do(z)” operation as a replacement of the causal mechanism which connects X to its parent
prior to the action by a new mechanism X = z introduced by the intervening force (as in

Egs. (4) - (5)).

Rule 1 reaffirms d-separation as a legitimate test for Bayesian conditional independence in
the distribution determined by the intervention do(X = ), hence the graph G.

Rule 2 provides conditions for an external intervention do(Z = z) to have the same effect on
Y as the passive observation Z = z. It is equivalent to Eq. (8), also named the “back-door”

criterion [Pearl, 1993b].

Rule 3 provides conditions for introducing (or deleting) an external intervention do(Z = z)
without affecting the probability of ¥ = y. The validity of this rule stems, again, from
simulating the intervention do(Z = z) by severing all relations between Z and its parent
(hence the graph Gx).

3.3 Example

We will now demonstrate how these inference rules can be used to quantify the effect of
actions, given partially specified causal theories. Consider the causal theory < P(z,y,z),G >
where (G is the graph given in Figure 2 below, and P(x,y,z) is the distribution over the

Q U (Unobserved)

- -
X Z Y
Figure 2

observed variables X,Y., Z. Since U is unobserved, the theory is only partially specified; it
will be impossible to infer all required parameters such as P(u), or P(y|z,u). We will see
however that this structure still permits us to quantify, using our calculus, the effect of every
action on every observed variable.

The applicability of each inference rule requires that certain d-separation conditions hold
in some graph, the structure of which would vary with the expressions to be manipulated.
Figure 3 displays the graphs that will be needed for the derivations that follow.

Task-1, compute P(z|%)
This task can be accomplished in one step, since (G satisfies the applicability condition for

Rule 2, namely X || Z in Gx (because the path X « U — Y « Z is blocked by the
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collider at Y') and we can write

i) = P(z|z) (12)

Task-2, compute P(y|Z)

Here we cannot apply Rule 2 to exchange Z by z, because GGz contains a path from Z to
Y (so called a “back-door” path [Pearl, 1993b]). Naturally, we would like to “block” this
path by conditioning on variables (such as X) that reside on that path. Symbolically, this
operation involves conditioning and summing over all values of X,

P(ylz) = 3 Plyle, 2)P(]2) (13)

We now have to deal with two expressions involving Z, P(y|z, 2) and P(x
can be readily computed by applying Rule 3 for action deletion.

z). The latter

Pz

5 =P(e) if (Z | X)op (14)

noting that, indeed, X and Z are d-separated in G. (This can be seen immediately from
Figure 2; manipulating Z will have no effect on X.) To reduce the former quantity, P(y|z, 2),
we consult Rule 2

Plyle, 2) = P(ylz,z) it (Z || Y|X)a, (15)
and note that X d-separates Z from Y in Giz. This allows us to write Eq. (13) as
Pl2) = 3 P(yle, 2)P(2) = E.P(ylz, 2) (16)

which is a special case of the “back-door” formula [Pearl, 1993b, Eq. (14)] with S = X. This

formula appears in a number of treatments on causal effects (see for example [Rosenbaum
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& Rubin, 1983; Rosenbaum, 1989; Pratt & Schlaifer, 1988]) where the legitimizing condi-
tion, (Z || Y|X)g, was given a variety of names, all based on conditional-independence
judgments of one sort or another. Action calculus replaces such judgments by formal tests
(d-separation) on a single graph (G) which represents the domain knowledge.

We are now ready to tackle a harder task, the evaluation of P(y|Z), which cannot be
reduced to an observational expression by direct application of any of the inference rules.

Task-3, compute P(y|z)

Writing
P(yl) =3 Plylz, 2)P(z|2) (17)

we see that the term P(z|Z) was reduced in Eq. (12) while no rule can be applied to eliminate
the manipulation symbol * from the term P(y|z, ). However, we can add a "~ symbol to
this term via Rule 2

P(ylz, &) = P(y

) (18)

since Figure 3 shows:

Y I 2[X)

Gz,

We can now delete the action & from P(y
Thus, we have

2,%) using Rule 3, since Y || X|Z holds in Gx7.

P(ylz, %) = P(yl?) (19)

which was calculated in Eq. (16). Substituting, (16), (19), and (12) back in (17), finally
yields

P(ylz) =Y P(zlz) X Pyla’, 2)P(a') (20)

In contrast to the “back-door” formula of (16), Eq. (20) computes the causal effect of X on
Y using an intermediate variable Z.

Task-4, compute P(y, z|z)

P(y,2|2) = P(yl,2)P(=]3) (21)

The two terms on the r.h.s. were derived before in Eqs. (12) and (19), from which we obtain

P(y,z|z) = P(y|2)P(z]v)
= P(z|x) X Plyla', 2) P(2')

3.4 Discussion

In this example we were able to compute answers to all possible queries of the form P(y|z, &)
where Y, Z, and X are subsets of observed variables. In general, this will not be the case.
For example, there is no general way of computing P(y|Z) from the observed distribution
whenever the causal model contains the subgraph shown in Figure 4, where X and Y are
adjacent, and the dashed line represents a path traversing unobserved variable®. Similarly,
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our ability to compute P(y|Z) for every pair of singleton variables does not ensure our ability
to compute joint distributions, e.g. P(y1,y2|Z). Figure 5, for example, shows a causal graph
where both P(y1|2) and P(yz|%) are computable, but P(y1,y2|Z) is not. Consequently, we
cannot compute P(z|Z). Interestingly, the graph of Figure 5 is the smallest graph which
does not contain the pattern of Figure 4 and still presents an uncomputable causal effect.
Another interesting feature demonstrated by the network in Figure 5 is that it is often
easier to compute the effect of a joint action than the effects of its constituent singleton
actions®. In this example, it is possible to compute P(z|#,4;), yet there is no way of com-
puting P(z|z). For example, the former can be evaluated by invoking Rule 2, giving

P(z

i’a;‘fz) = ZP(2|y17i7;lf2)P(y1|5fayA2)

Y1

= EP(Z|;‘/1,$1,;U2)P(LU1|$)
Y1
On the other hand, Rule 2 cannot be applied to the computation of P(y;|&,y2) because, con-
ditioned on Y5, X and Y; are d-connected in G'x (through the dashed lines). We conjecture,
however, that whenever P(y|&;) is computable for every singleton z;, then P(y|Z1, Z2,...21)
is computable as well, for any subset of variables {Xi,...X;}.

Computing the effect of actions from partial theories in which probabilities are specified
on a select subset of (observed) variables is an extremely important task in statistics and
socio-economic modeling, since it determines when a parameter of a causal theory are (so
called) “identifiable” from non-experimental data, hence, when randomized experiments are
not needed. The calculus proposed above, indeed uncovers possibilities that have remained
unnoticed by economists and statisticians. For example, the structure of Figure 3 uncovers
a class of observational studies in which the causal effect of an action (X) can be determined
by measuring a variable (Z) that mediates the interaction between the action and its effect
(Y). The relevance of such structures in practical situations can be seen, for instance, if we
identify X with smoking, Y with lung cancer, Z with the amount of tar deposits in one’s lung
and U with an unobserved carcinogenic genotype which, according to the tobacco industry

®One can calculate upper and lower bounds on P(y|#) and these bounds may coincide for special dis-
tributions, P(z,y, z) [Balke & Pearl, 1993] but there is no way of computing P(y|Z) for every distribution
P(x,y,z).

6The fact that the two tasks are not equivalent was brought to my attention by James Robins who has
worked out many of these computations in the context of sequential treatment management [Robins 1989].
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also induces an inborn crave for nicotine. Eq. (20) would provide us in this case with the
means for quantifying, from non-experimental data, the causal effect of smoking on cancer.
(Assuming, of course, that the data P(z,y,z) is made available, and that we believe that
smoking does not have a direct effect on lung cancer except that mediated by tar deposits).

However, our calculus is not limited to the derivation of causal probabilities from non-
causal probabilities; we can reverse the role, and derive conditional and causal probabilities
from causal expressions as well. For example, given the graph of figure 3 together with the
quantities P(z|Z) and P(y|Z), we can derive an expression for P(y|Z),

P(y|t) =>_ P(y|2)P(z]2) (22)

using the steps that led to Eq. (19). Note that the derivation is still valid when we add a
common cause to X and Z, which is the most general condition under which the transitivity
of causal relationships holds.
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