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Abstract

Given an arbitrary causal graph, some of whose nodes are observable and some
unobservable, the problem is to determine whether the causal effect of one variable on
another can be computed from the joint distribution over the observables and, if the
answer is positive, to derive a formula for the causal effect. We introduce a calculus
which, using a step by step reduction of probabilistic expressions, derives the desired

formulas.



1 Introduction

Networks employing directed acyclic graphs (DAGs) can be used to provide either

1. an economical scheme for representing conditional independence assumptions and joint

distribution functions, or

2. a graphical language for representing causal influences.

Although the professed motivation for investigating such models lies primarily in the sec-
ond category, [Wright, 1921, Blalock, 1971, Simon, 1954, Pearl 1988], causal inferences have
been treated very cautiously in the statistical literature [Lauritzen & Spiegelhalter 1988, Cox
1992, Cox & Wermuth 1993, Spiegelhalter etal. 1993], as well as in the literature on influence
diagrams [Howard, 1987, Shachter, 1986] and expert systems applications [Heckerman, 1990,
Neapolitan, 1990]. The causal interpretation of the directed arcs has been de-emphasized in
favor of the safer interpretation in terms of “relevance” and “dependence”. This limited in-
terpretation is deficient in several respects. First, causal associations are the primary source
of judgments about dependence and relevance; they should therefore guide the process of
knowledge elicitation [Pearl, 1988, page 123]. Second, rejecting the causal interpretation
of directed arcs prevents us from using graphical models for making predictions about the
effects of actions, unless actions have been considered in advance as part of the network. In
other words, a joint distribution tells us how probable events are and how probabilities would
change with subsequent observations, but a causal model also tells us how these probabilities
would change as a result of external interventions in the system, including interventions that
were not contemplated during the network construction. Such predictions are indispensable

in most decision making applications, including policy analysis and treatment management.



In recent publications, the causal reading of belief networks has regained emphasis [Pearl
and Verma 1991, Druzdzel & Simon 1993, Lemmer 1993, Goldszmidt 1992, Pearl 1993a
Spirtes et al 1993 and Pearl 1993b]. In Spirtes et al [1993] and Pearl [1993b], for example,
it was shown how complex information about external interventions can be organized and
represented graphically and, conversely, how the graphical representation can be used to
facilitate quantitative predictions of the effects of interventions. Section 2 reviews this aspect
of causal networks, following the formulation in [Pearl 1993b].

The problem addressed in this paper is to quantify the effect of interventions when the
causal network cannot be fully parameterized. In other words, we are given the topology
of the network but not the conditional probabilities on all variables. The only probabilities
available are those defined on a subset of the variables which are observed. To manage
this problem, this paper introduces a calculus which integrates both statistical and causal
information in a uniform symbolic machinery. The calculus admits two types of conditioning
operators: ordinary Bayes conditioning, P(y|X = z), and causal conditioning, P(y|set(X =
z)), that is, the probability of Y = y conditioned on holding X constant (at ) by external
intervention. Given a causal graph and a joint distribution on a subset of its variables, the
calculus derives conditional probabilities of both the Bayesian and the causal types, and,
whenever possible, generates probabilistic formulas for the effect of interventions in terms of

the observed distribution function.



2 The Manipulative Reading of Causal Networks:

A Review

The connection between the probabilistic and the manipulative readings of directed acyclic
graphs is formed through Simon’s [1977] mechanism-based model of causal ordering!. In this

model, each child-parent family in a DAG T" represents a deterministic function
X; = fi(paiv 6i)7 (1)

where pa; are the parents of variable X; in I', and ¢;, 0 < i < n, are mutually independent,
arbitrarily distributed random disturbances. Characterizing each child-parent relationship
as a deterministic function, instead of the usual conditional probability P(z; | pa;), imposes
equivalent independence constraints on the resulting distributions and leads to the same

recursive decomposition

Py, ... x,) = I_IP(J;Z | pa;) (2)
that characterizes Bayesian Networks [Pearl, 1988]. This is so because each ¢; is independent
on all non-descendants of Xj. However, the functional characterization
X; = fi(pa;, &) also specifies how the resulting distribution would change in response to
external interventions, since, by convention, each function is presumed to remain constant
unless specifically altered. Moreover, the non-linear character of f; permits us to treat
changes in the function f; itself as a variable, F;, by writing

X; = fi(pa;, I, &) (3)

!This mechanism-based model was adopted in [Pearl & Verma 1991] for defining probabilistic causal

theories. It has been elaborated in Druzdzel & Simon [1993] and is also the basis for the “invariance”

principle of [Spirtes et al, 1993].



where

fi(a,b,¢) = fi(a,c) whenever b = f;.

Thus, any external intervention F; that alters f; can be represented graphically as an added
parent node of X;, and the effect of such an intervention can be analyzed by Bayesian
conditionalization, that is, by simply setting this added parent variable to the appropriate
value f;.

The simplest type of external intervention is one in which a single variable, say X, is
forced to take on some fixed value, say, . Such intervention, which we call atomic, amounts
to replacing the old functional mechanism X; = f;(pa;, ¢;) with a new mechanism X; = 2/
governed by some external force F; that sets the value 2. If we imagine that each variable X;
could potentially be subject to the influence of such an external force Fj;, then we can view
the causal network I' as an efficient code for predicting the effects of atomic interventions

and of various combinations of such interventions.

Figure 1: Representing external intervention F; by an augmented network

F’ZFU{FZ' —>XZ}

The effect of an atomic intervention set(X; = z!) is encoded by adding to I' a link
F;, — X, (see Figure 1), where F; is a new variable taking values in {set(z!), idle}, 2!

ranges over the domain of X, and #dle represents no intervention. Thus, the new parent set



of X; in the augmented network is pa} = pa, U{F};}, and it is related to X; by the conditional

probability

P(z; | pa)) =< o if F; =set(z}) and z; # ! (4)

1 if F; =set(z)) and z; = !
The effect of the intervention set(z!) is to transform the original probability function

P(zy,...,z,) into a new function Py (z1,...,2,), given by
Pzg(:l:l, vy Ty) = P(x1, 00y 2y | F; = set(x))) (5)

where P’ is the distribution specified by the augmented network I' = ' U {F; — X} and
Eq. (4), with an arbitrary prior distribution on F;. In general, by adding a hypothetical
intervention link F; — X; to each node in I', we can construct an augmented probability
function P'(x1,...,&n; F1,..., F,,) that contains information about richer types of interven-
tions. Multiple interventions would be represented by conditioning P’ on a subset of the F}’s
(taking values in their respective set(x!)), while the pre-intervention probability function P
would be viewed as the posterior distribution induced by conditioning each F; in P’ on the
value idle.

This representation yields a simple and direct transformation between the pre-intervention

and the post-intervention distributions:

Po(@y, ..y zy) = P(zi | pay) o

This transformation reflects the removal of the term P(z; | pa;) from the product decom-

position of Eq. (2), since pa; no longer influence X;. Graphically, the removal of this term



is equivalent to removing the links between pa, and X;, while keeping the rest of the net-
work intact. Transformations involving conjunctive and disjunctive actions can be obtained
by straightforward applications of Eq. (5) [Spirtes etal. 1993, Goldszmidt & Pearl 1992,

Goldszmidt 1992]

The transformation (6) exhibits the following properties:

1. An intervention set(x;) can affect only the descendants of X; in I'.

2. For any set S of variables, we have

Pz’,,(s | pai) = P(S | xivpai)' (7)

In other words, given X; = z; and pa,, it is superfluous to find out whether X; = z;
was established by external intervention or not. This can be seen directly from the
augmented network 1" (see Figure 1), since {X;} U pa; d-separates F; from the rest of

the network, thus legitimizing the conditional independence S || F; | (Xi, pa,;).

3. A sufficient condition for an external intervention set(X; = ;) to have the same effect

on X; as the passive observation X; = z; is that X; d-separates pa; from Xj;, that is,

Plajlset(z:)) = P(x; [ ;) iff X; || pa; [ X:. (8)

The immediate implication of Eq. (6) is that, given the structure of the causal network
I', one can infer post-intervention distributions from pre-intervention distributions; hence,
we can reliably estimate the effects of interventions from passive (i.e., non-experimental)
observations. Of course, Eq. (6) does not imply that we can always substitute observational
studies for experimental studies, as this would require an estimation of P(z; | pa;). The
mere identification of pa; (i.e., the direct causal factors of X;) requires substantive causal
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knowledge of the domain which is often unavailable. Moreover, even when we have sufficient
substantive knowledge to structure I', some members of pa, may be unobservable, or latent.
Fortunately, there are conditions for which an unbiased estimate of P(x;|set(z;)) can be
obtained even when the pa, variables are latent and, moreover, simple graphical criteria
can tell us when these conditions are satisfied. The characterization of those conditions and

the symbolic derivation of expressions of the form P(z;|set(x;)) are the main topics of this

paper.

3 A Causal Calculus

3.1 Preliminary Notation

Let X,Y, Z, W be four arbitrary disjoint sets of nodes in the dag (G. We say that X and Y
are independent given Z in 7, denoted (X || Y|Z)g, if the set Z d-separates all paths from
X to Y in . We denote by Gy (Gx, respectively) the graph obtained by deleting from ¢
all arrows pointing to (emerging from, respectively) nodes in X.

Finally, we replace the expression P(y|set(z),z) by a simpler expression P(y|&,z), using
the ~ symbol to identify the variables that are kept constant externally. In words, the

expression P(y|Z, z) stands for the probability of Y = y given that Z = z is observed and X

is held constant at z.

3.2 Inference Rules

Armed with this notation we are now able to formulate the three basic inference rules of the

proposed causal calculus.



Theorem 3.1 Guven a causal theory < P,G >, for any sets of variables X, Y, Z, W we have:

Rule 1 Insertion/deletion of Observations (Bayes conditioning)

Pylz, z,w) = P(ylz,w) o (Y | Z]X, W)ag (9)

Rule 2 Action/observation Fzchange

P(y i727w):P(y|t727w) lf (YLZ|X7W)G7£ (10)
Rule 3 Insertion/deletion of actions
Pyl 2,w) = P(yli,w) if (Y Il ZIX,W)a (11)

Each of the inference rules above can be proven from the basic interpretation of the
“set(x)” operation as a replacement of the causal mechanism which connects X to its parent

prior to the action by a new mechanism X = z introduced by the intervening force (as in

Egs. (4) - (5)).

Rule 1 reaffirms d-separation as a legitimate test for Bayesian conditional independence in

the distribution determined by the intervention set(X = ), hence the graph G.

Rule 2 provides conditions for an external intervention set (Z = z) to have the same effect on
Y as the passive observation Z = z. It is equivalent to Eq. (8), also named the “back-door”

criterion [Pearl, 1993b].



Rule 3 provides conditions for introducing (or deleting) an external intervention set (Z = z)
without affecting the probability of ¥ = y. The validity of this rule stems, again, from
simulating the intervention set(Z = z) by severing all relations between Z and its parent

(hence the graph Gx).

3.3 Example

We will now demonstrate how these inference rules can be used to quantify the effect of
actions, given partially specified causal theories. Consider the graph G given in Figure 2

below. It represents the theory < P(z,y,z),G > where X,Y, 7 are the observed variables.

Q U (Unobserved)

- -
X Z Y
Figure 2

Since U is unobserved, the theory is only partially specified; it will be impossible to infer all
required parameters such as P(u), or P(y|z,u). We will see however that this structure still
permits us to quantify, using causal calculus, the effect of every action on every observed
variable.

The applicability of the three inference rules depends on d-separation conditions holding
in various graphs, the structure of which varies with the expressions to be manipulated.

Figure 3 displays the graphs that will be needed for the derivations that follow.
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Figure 3

Task-1, compute P(z|%)
This task can be accomplished in one step, since (G satisfies the applicability condition for

Rule 2, namely X || Z in Gx (because the path X « U — Y « Z is blocked by the

collider at Y') and we can write

i) = P(z|r) (12)

Task-2, compute P(y|Z)

Here we cannot apply Rule 2 to exchange Z by z, because GGz contains a path from Z to
Y (so called a “back-door” path [Pearl, 1993b]). Naturally, we would like to “block” this
path by “adjusting for” covariates (such as X) that reside on that path. Symbolically, the

“adjustment” operation involves conditioning and summing over all values of X,

P(ylz) = 3 Plyle, 2)P(]2) (13)
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We now have to deal with two expressions involving z, P(y|z,2) and P(z|Z). The latter

can be readily computed by applying Rule 3 for action deletion.

Pz

5 =Pe) if (Z | X)op (14)

noting that, indeed, X and Z are d-separated in G. (This can be seen immediately from
Figure 2; manipulating Z will have no effect on X.) To reduce the former quantity, P(y|z, 2),
we consult Rule 2

Plylz,2) = Plyle,z) it (7 || Y[X)a, (15)

and note that X d-separates Z from Y in G/z. This allows us to write Eq. (13) as

P(ylz) = ZP(‘yll’,Z)P(fﬁ) = E:P(y|z, 2) (16)

which is a special case of the “back-door” formula [Pearl, 1993b, Eq. (14)] with S = X. This
formula appears in a number of treatments on causal effects (see for example [Rosenbaum &
Rubin, 1983; Rosenbaum, 1989; Pratt & Schlaifer, 1988]) where the legitimizing condition,

(Z || Y|X)g, was given a variety of names, all based on conditional-independence judg-
ments of one sort or another. The causal calculus replaces such judgments by formal tests
(d-separation) on a single graph (G) which represents the domain knowledge.

We are now ready to tackle a harder task, the evaluation of P(y|Z), which cannot be

reduced to an observational expression by direct application of any of the inference rules.

Task-3, compute P(y|z)

12



Writing
P(yld) =3 P(ylz, &) P(z|%) (17)
we see that the term P(z|Z) was reduced in Eq. (12) while no rule can be applied to eliminate
the manipulation symbol " from the term P(y|z,2). However, we can add a "~ symbol to

this term via Rule 2

y|2, ) (18)

since Figure 3 shows:

Y I 2[X)

Gxy
We can now delete the action & from P(y|2,%) using Rule 3, since Y || X|Z holds in Gx7.
Thus, we have

P(yl|z,2) = P(y

Z) (19)
which was calculated in Eq. (16). Substituting, (16), (19, and (12) back in (17), finally

yields
P(yle) =Y P(zlx) X Pyla’, 2)P(a') (20)
Eq. (20) was named the Mediating Variable formula in [Pearl, 1993c|, where it was derived

by algebraic manipulation of the joint distribution and taking the expectation over U.

Task-4, compute P(y, z|2)

Ply,2|2) = P(ylz&)P(=]2) (21)
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The two terms on the r.h.s. were derived before in Eqs. (12) and (19), from which we obtain
Ply, z|&) = P(y[2)P(z]z)
= P(z|z) > P(y|a', z) P(a")
3.4 Discussion

In this example we were able to compute answers to all possible queries of the form P(y|z, &)
where Y, Z, and X are subsets of observed variables. In general, this will not be the case. For
example, there is no general way of computing P(y|Z) from the observed joint distribution
whenever the causal model contains the subgraph shown in Figure 4, where X and Y are

adjacent, and the dashed line represents a path traversing unobserved variable?. Similarly,

> .‘
< @=""

Figure 4

our ability to compute P(y|Z) for every pair of singleton variables does not ensure our ability
to compute joint distributions, e.g. P(y1,y2|2). Figure 5, for example, shows a causal graph
where both P(y1]|2) and P(yz|%) are computable, but P(y1,y2|Z) is not. Consequently, we
cannot compute P(z|z). Interestingly, the graph of Figure 5 is the smallest graph which

does not contain the pattern of Figure 4 and still presents an uncomputable causal effect.

20One can calculate upper and lower bounds on P(y|#) and these bounds may coincide for special dis-
tributions P(z,y, z) [Balke & Pearl, 1993] but there is no way of computing P(y|z) for every distribution

P(x,y,z).
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Another interesting feature demonstrated by the network in Figure 5 is that it is often easier
to compute the effect of a joint action than the effects of its constituent singleton actions®. In
this example, it is possible to compute P(z|Z, 1), yet there is no way of computing P(z|Z).

For example, the former can be evaluated by invoking Rule 2, writing

P(z

i’a;‘fz) = EP(Z|y1,i,;j2)P(y1|:%,;1j2)

s

= Z P(z|y1, x1,y2) P(y1|x)

Y1

On the other hand, Rule 2 cannot be applied to the computation of P(y;|&,y2) because, con-
ditioned on Y5, X and Y; are d-connected in G'x (through the dashed lines). We conjecture,
however, that whenever P(y|&;) is computable for every singleton x;, then P(y|Z1, Z2,...21)

is computable as well, for any subset of variables {Xi,...X;}.
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