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Abstract

In this paper we study the identification of nonparametric models, that is, models
in which both the functional forms of the equations and the probability distributions
of the disturbances remain unspecified. Identifiability in such models does not
mean uniqueness of structural parameters but rather uniqueness of policy-related
predictions that such parameters would normally support.

We provide sufficient and necessary conditions for identifying predictions of the
type “Find the distribution of Y, assuming that X is controlled by external inter-
vention,” where Y and X are arbitrary variables of interest. Whenever identifiable,
such predictions can be expressed in closed algebraic form, in terms of observed
distributions. We also show how the identifying criteria can be tested qualitatively
using the graphical representation of the structural model, thus simplifying and gen-
eralizing the standard identifiability tests of linear models (e.g., rank and order).
Finally, we provide meaningful and precise definitions of effect decomposition for
both parametric and nonparametric models.



1 Introduction

In the literature on structural equation models, one usually asks whether or not certain or
all of the model parameters are identified, that is, does P(y; 6;) = P(y;6,) imply 6; = 67!
Implicit in such questions is the premise that a model is more useful when its parameters
are identified. This premise, coupled with the fact that parameter identification plays such
a central role in modeling, indicates that analysts attribute to parameters an important
metaprobabilistic meaning, one that cannot be expressed in distribution functions.

Indeed, if we adopt an orthodox statistical attitude? and pretend that the sole purpose
of models is to provide a compact representation for distribution functions, then we should
pay no attention to questions of identification. After all, if two distinct and equally
parsimonious models are observationally equivalent (i.e., P(y;6;) = P(y; 6,) while 6; # 65)
then they should yield the same statistical predictions and any one of the models can be
taken as a working hypothesis; whether the model chosen is unique need not concern us.
Most modelers, however, are driven by the understanding that the choice of parameters
is not arbitrary but has empirical implications that lie outside the distribution functions.
To such modelers, the issue of identifiability becomes one of crucial importance.

What are the empirical implications that give the parameters their distinct metaprob-
abilistic meaning and under what circumstances are those implications uncovered? The
standard literature on simultaneous equation models is remarkably vague on this issue.
The meaning of the parameters is sometimes described informally as “telling us how data
were generated” and sometimes as “measuring the average change in the response vari-
able per unit change in the explanatory variable.” Lacking formal definitions for the
notions of “generate” and “change” leaves the meaning of the parameters ambiguous and
is largely responsible for the long-standing confusion between structural parameters (e.g.,
path coefficients) and statistical parameters (e.g., regression coefficients).

The purpose of this paper is threefold. First, we will provide a formal definition
for the empirical content of structural parameters in terms of control queries, that is,
queries about the outcomes of hypothetical controlled experiments. Second, we will extend
the notion of identifiability from parametric to nonparametric models by requiring that
answers to such control queries, rather than the parameters per se, be identified uniquely
from the observed data. In this way, we capture the intent and the ultimate purpose
of parameter identification without ever dealing with parameters. Finally, we will devise
mathematical procedures for testing whether identifiability holds in a given nonparametric
model and show that, in many cases, identifiability can be tested by inspection of the
topological features of the diagram associated with the model.

Before moving on to the formal part of the paper (Section 2), it seems appropriate to
illustrate the agenda using a simple example.

IThe term “simultaneous equations” is often used in the literature, interchangeably with “structural
equations”. We prefer the latter and will define precisely what makes a set of equations “structural” (see
Subsections 1.2 and 2.1). We will also take the liberty of using the symbol P(-) to denote the probability
functions for both continuous and discrete variables.

2Unfortunately, most statisticians and some social scientists still adhere to this attitude.



1.1 Parametric vs. nonparametric models, an example

Consider the following set of structural equations:

X = fU) (1)
Z = fi(X,V) (2)
Y = f3(Z,U,W) (3)

where X, Z, and Y are observed variables, f;, f2, and f3 are unknown arbitrary functions,
and U, V, and W are unobservables that we can regard either as latent variables or as
disturbances. For the sake of this discussion, we will assume that U, V, and W are
mutually independent and arbitrarily distributed. Such a set of equations would obtain,
for example, when the modeler is not willing to commit to any particular functional
form but feels strongly about the qualitative nature of the data-generating process — for
example, that X is a factor determining 7, that X and Y are influenced by some common
factor U, and so on. Graphically, these influences can be represented by the path diagram
of Figure 1. Note that the arcs in Figure 1 should be labeled with the functions themselves,
not with coefficients as in traditional path analysis where all relationships are assumed
linear.
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Figure 1:

Path diagram corresponding to Eqs. (1)-(3), where {X,Z,Y} are observed
and {U,V, W} are unobserved.

The problem we pose is as follows:
We have drawn a long stream of independent samples of the process defined by Eqs. (1)-
(3) and have recorded the values of the observed quantities X, Z, and Y, and we now wish
to estimate the unspecified quantities of the model to the greatest extent possible.

To sharpen the scope of our problem, let us consider its solution in the case of a linear
version of the model, which is given by?

X =U (4)
Z = aX+V (5)
Y = bZ+cU+W (6)

3An equivalent version of this model would obtain by eliminating cU from the equation of Y and
allowing U and W to be correlated.



with {U,V, W} uncorrelated, zero-mean disturbances. It is not hard to show that all
three parameters, a,b and ¢, can be determined uniquely from the correlations among
the observed quantities X, Z and Y. In particular, multiplying Eq. (5) by X and taking
expectations gives
E(XZ)
= =) 7
Further multiplying Eq. (6) by X, then by Z, taking expectations and solving, gives

E(XZ) E(XY) — E(X?) E(ZY)

b= TR ) - B B(XY) (®)
_ E(XY) E(2%) — E(ZY)E(2X) .
T TE(X?) E(2?) - B2(ZX) )

Thus we see that, given the right set of assumptions on the disturbances, together with
the parametric form of the equations, it is possible to estimate all model parameters from
the observed distribution; such models are called “identifiable.”

Returning to our nonparametric model of Egs. (1)-(3), a natural generalization would
be to require that, for the model to be identifiable, the functions { fi, f2, f3} be determined
uniquely from the data. However, this prospect is doomed to failure from the start. When
the equations are in nonparametric form, we are generally unable to identify the form of
the functions, even when the disturbance distributions are known precisely. Consider the
simplest case of an equation containing just two variables, for example, Z = fo(X, V).
We are unable to determine the functional form of f, from the joint distribution P(z, z)
of X and Z, even if we are given the distribution P(v) and know that V' is independent of
X. In other words, there are many functions f; compatible with the given distributions,
each defining a different mapping from {X, V} to Z. Thus, it might appear that the
problem of identifying nonparametric models is hopeless and that nothing useful can be
inferred from such loosely specified model as the one given in Eqs. (1)-(3).

However, parametric and functional identification is not an end in itself, even in linear
models, but rather serves to answer practical questions of prediction and control. There-
fore, the right question to ask is not whether the data permit us to identify the form of the
equations but rather whether the data can constrain the equations to the extent of pro-
viding unambiguous answers to questions of interest, of the kind answered by traditional
parametric models.

If the model is used merely for probabilistic prediction (i.e., to determine the probabil-
ities of some variables given a set of observations on other variables), then such predictions
can be estimated directly from the observed distributions. Moreover, if dimensionality
reduction is needed (e.g., to improve estimation accuracy) these distributions can be en-
coded in a variety of simultaneous equation models, all of the same dimensionality. For
example, the correlations among X, Y and Z in the linear model, M, of Eqs. (4)-(6)
might as well be represented by the model M':

X =U (10)
Z = dX+V (11)
Y = VZ+dX+W (12)
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which is as compact as Eqs. (4)-(6). Although obviously the choice is not unique, it is
nevertheless compatible with the observations and, upon setting a’ = a,b = b and d = c,
will yield the same probabilistic predictions as would the model of Eqgs. (4)-(6) . Still,
when viewed as data-generating mechanisms, the two models are clearly not equivalent;
each tells a different story of the processes generating X, Y and Z and, naturally, each
predicts different changes that would result from subjecting these processes to external
interventions.

1.2 Causal effects: The structural interpretation of simultane-
ous equation models

The difference between the two models above illustrates precisely where the structural
reading of simultaneous equation models comes into play.* Model M’, defined by Egs. (10)-
(12), proclaims X to be a direct participant in the process which determines the value of
Y, while model M, defined by Egs. (4)-(6), views X as an indirect factor; its effect on Y’
is mediated by Z. This difference is not manifested in the data but only in the way the
data would change in response to outside interventions. For example, suppose we wish to
predict the expectation of Y after we intervene and fix the value of X to some constant
x, denoted E(Y |set(X = z)). Substituting X = z in Eq. (11) and (12), model M’ yields

E[Y|set(X =x)] = E[Wdz+bV +dz+ W] (13)
(V'a' +d)x (14)

while model M yields

EY|set(X =z)] = E[bax + bV + cU + W] (15)
= bax (16)

Equating o' = a, V' = b and d = ¢ (to match the data, as in Eqgs. (7)-(9)), we see clearly
that the two models assign different magnitudes to the (total) effect of X on Y; model
M predicts that a unit change in x will change E(Y) by an amount ba, while model M’
puts this amount at ba + c.

At this point, it is natural to ask whether we should not substitute the constant x for U
in Eq. (6) prior to taking expectations in Eq. (15). If we permit the substitution of Eq. (5)
in Eq. (6), so the argument goes, why not substitute Eq. (4) as well? After all, there is
no harm in upholding a mathematical equality, U = X = z, which the modeler deems
valid. This argument is fallacious. Structural equations are not meant to be treated
as immutable mathematical equalities. Rather, they are introduced into the model to
describe an equilibrium condition, only to be violated when that equilibrium is perturbed
by outside interventions. The power of structural models is that they also encode the

41 ask the reader to bear with me as I review concepts that might seem obvious. The reviewer of this
paper has commented: “Nor is it clear to me that structural equations do anything more than summarize
distributions” and has proposed specifically that the model in Eqgs. (4)-(6) be replaced with that of
Egs. (10)-(12). To me, these comments suggest that even renowned scholars and experienced modelers
do not find the interpretation of structural equations to be as obvious as one would expect; neither have
I found these issues addressed forthrightly in the standard literature. Subsection 3.4 discusses some of
the prevailing confusions and the reasons that they have not been resolved thus far.
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information necessary for determining the new equilibrium. If the intervention consists
merely of holding X constant, at x, then the equation X = U, which represents the pre-
intervention process determining X, should be overruled and replaced with the equation
X = z. The solution to the new set of equations then represents the new equilibrium.
Thus, the essential characteristic of structural equations, which sets them apart from
ordinary mathematical equations is that they do not stand for one, but for many sets
of equations, each corresponding to a subset of equations taken from the original model.
Every such subset represents some physical reality, one that is configured by overruling
all but the processes corresponding to the selected equations.

Taking the stand that the primary value of structural equations lies not in summa-
rizing distribution functions but in encoding causal information for predicting the effect
of interventions [Haavelmo 1943, Marschak 1953], it is natural to view such predictions
as the proper generalization of structural coefficients when dealing with nonparametric
model. For example, the proper generalization of the coefficient b in the linear model M
would be the answer to the control query: “What would be the change in the expected
value of Y if we were to intervene and change the value of Z from 2z to z + 1,” which is
different, of course, from the observational query “What would be the difference in the
expected value of Y if we were to find Z at level z+1, instead of z.” Observational queries
can be answered directly from the joint distribution P(z,y, z), while control queries re-
quire causal information, such as the one encoded in structural equations, as well. To
distinguish between the two types of queries, we use the “hat” symbol (") to indicate
externally controlled quantities. For example, we write

E(Y|z) = E[Y |set(X = z)] (17)
for the controlled expectation and
EY|z)=E(Y|X =x) (18)

for the standard conditional expectation. The inequality E(Y|2) # E(Y|z) can easily
be seen in the model of Eqgs. (4)-(6), where E(Y|Z) = abzx while E(Y|z) = (ab + ¢)z.
Indeed, the passive observation of X = z should not violate any of the equations, and
would justify substituting Eqgs. (4) and (5) in (6) before taking the expectation.

In the case of linear models, the answers to questions of direct control are encoded
in the so-called “path coefficients” or “structural coefficients,” and these can be used to
derive the total effect of any variable on another. For example, the value of E(Y|Z) in
the model defined by Eqs. (4)-(6) is abz, i.e., x times the product of path coefficients
along the path X — Z — Y. In the nonparametric case, the computation of E(Y|Z)
would naturally be more complicated, even when we know the functions f;, fo, and fs.
It is nevertheless well defined, and requires the solution (for the expectation of Y) of a
modified set of equations in which f; is “wiped out” and X is replaced by the constant z:

Z = folx,V) (19)
Y = f3(Z,UW) (20)

Thus, the computation of E(Y|Z) requires the evaluation of

6



E(Y‘j) = E{f3[f2($7 V)7 U’ W]}

where the expectation is taken over U, V, and W. This computation will be carried
out in Section (2.3). Similar modifications of the model are required for the compu-
tation of E(Z|z), E(X|Z), or E(X|J), and can easily be shown to yield E(Z|%) =
E(Z|z), E(X|2) = E(X), and E(X|g) = E(X), respectively.

What then would be an appropriate definition of “identifiability” for nonparametric
models? Consistent with our focus on control queries, a reasonable definition of identifia-
bility is that answers to such queries are unique. Accordingly, we will define a model to be
tdentifiable if there exists a consistent estimate for every control query of the type “Find
P(r|$) = P[R = r|set(S = s)],” where R and S are subsets of observables and r and s
are any realization of these variables. The set of probabilities P(r|$) is called the “causal
effect” of S on R, as it describes how the distribution of R varies when S is changed by
external control.® Naturally, we should allow for some queries to be identifiable while
the system as a whole is not. Hence, we say that P(r|3) is identifiable in model M if
every choice of model parameters (i.e., the functional forms and the distributions) that is
compatible with the observed distribution P would yield the same value for P(r|$).

For example, we might inquire whether the model defined by Eqs. (1)-(3) is identifiable.
The answer is yes; we will see that this model permits the identification of all control
queries. For example, the methods developed in Section 2 will enable one to conclude
immediately that:

1. Pzl ) = P(a),
consistent with the intuition that consequences can have no effect on their causes;
and

2. P(z|t) = P(z|x),
because V is independent of X, hence Z is not confounded with X; and

3. P(yl2) = ¥, P(ylz,z)P(z),
because x is an appropriate covariate for adjustment; and

for reasons to be explained in Section 2.

These answers are unique because all terms on the right-hand sides are functions of
the observable distribution P(z,y,z). Hence, any choice of functions (fi, f2, and f3)
and distributions (of U, V, and W) compatible with the observed distribution P would
necessarily yield the same answers to the control queries above.

Remarkably, many aspects of nonparametric identification, including tests for deciding
whether a given control query is identifiable, as well as formulas for estimating such
queries, can be determined graphically, almost by inspection, from the path diagram.
These aspects will be developed and demonstrated in the body of the paper.

5Technically, the adjective “causal” is redundant. It merely serves to emphasize, however, that the
changes in S are enforced by external control, and do not represent stochastic variations in the observed
value of S. The phrase “the effect of S on R” has improperly been applied to P(r|s), in which s stands
for uncontrolled statistical observations.



2 Computing Causal Effects

2.1 Definitions and Notation
2.1.1 Models, Graphs, and Theories

We consider models consisting of a set of n (recursive) equations

Xi = fi(X17 XQ, ceey Xz'—l; Ul, ceey Um); 7= 1, 2, ., n, (21)
where X1, ..., X, are observed variables, and Uy, ..., U, are unobserved (or latent) disturbances.®
The f; are unspecified deterministic functions with restricted sets of arguments, and the
distribution of the disturbances may be constrained by independence restrictions but is
otherwise unspecified.

Restrictions on the arguments of the equations’ can be represented by a directed graph
GG in which each node corresponds to an observed variable and an arrow from node X;
to node X indicates that X; is an argument of f;. The restrictions on the dependencies
among the U variables will also be represented graphically, by adding a “confounding
path” (a dashed curved arc with double arrows) between any two variables X; and X;
whenever a dependency exists between the U variables in f; and those in f;. Thus, for
example, the model described by Egs. (1)-(3) is completely specified by the graph of
Figure 2. Unlike the path diagram of Figure 1, G does not represent the disturbances
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Figure 2:
A graph G, representing the restrictions specified in the nonparametric

model of Egs. (1)-(3).

explicitly; only the dependencies induced by these disturbances are represented. Each
confounding path may represent several unobserved disturbances common to a given pair
of equations. In most cases, modelers prefer to specify the induced dependencies directly
without making the disturbances explicit. However, in order to read off the dependencies
embodied in a given graph, it sometimes may be convenient to restore the U variables. In

6The recursive nature of Eq. (21) corresponds to a lower triangular matrix B in linear models
[Bollen 1989] and therefore excludes feedback mechanisms. This restriction is not essential to the dis-
cussion of the basic concepts, though it simplifies the test for identifiability. The restriction that all
unobserved variables be exogenous (i.e., do not appear on the left-hand side of any equation) can easily
be relaxed: endogenous latent variables can always be eliminated by substitutions, thus restoring the
form of Eq. (21).

"In linear models, these correspond to the “zero-coefficient” restrictions, while independencies among
the U’s are specified by zero entries in the covariance matrix of the disturbances.
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such cases, we will add a “dummy” root node (hollow circle) for each dashed arc, as shown
by the node marked U in Figure 1. A theorem by [Pearl & Verma 1991] states that such
“dummy” root nodes can faithfully represent any pattern of dependencies among any set
of latent variables.

The structural model M defined by Eq. (21) (equivalently, by the corresponding
graph G(M)) delineates a set of grounded models which we call theories.® Each theory
T =< {fi}, P(u) > in M corresponds to a specific choice of function f; and a specific
choice of disturbance distribution P(u) = P(uq, ..., uy), both satisfying the restrictions
imposed by M. For each theory 7" of M, there is a corresponding unique probability
distribution Pr(x) = Pr(z1, ..., ), which we say to be “generated” by 7.

Definition 1 We say that P(z) is compatible with M iff there exists a theory T of M
that generates P(x), i.e.,
P(z) = Pr(z)

A model M is said to be universal if it is compatible with every arbitrary P(z); otherwise,
it 1s satd to be falsifiable. O

Clearly, every model whose corresponding graph is complete (i.e., every pair is con-
nected by an arrow) is universal, since such a model can generate any given P(x), using
mutually independent disturbances. Figure 2 is an example of a universal model which
will become falsifiable upon removing any of the arcs.

2.1.2 Queries and Identifiability

A query ¢ is any quantity that can be computed from a given theory; i.e., a functional of
T. For example, the queries

@: (X =1,V =3.06)=?

@: PU=1]Y =08) ="

G:  PX=1Y=3)=?

g : E,JPY =1X =1,u) =7 (22)

can be computed from any theory of the structural model described in Egs. (1)-(3),
because, once we choose the functions {fi, f2, fs} and the distribution P(u,v,w), the
answers to each of these queries is well defined. Note, moreover, that the answers to queries
q1 and ¢2 depend critically on the specific choice of theory, while g3 depends solely on the
distribution P(z,y, z). Query ¢4, which the reader may recognize as P(Y = 1|set(X = 1))
(Section 1), appears at first glance to depend on the choice of theory. We will see, however,
that, by virtue of the structural restrictions communicated by Figure 2, query ¢, will
have the same answer in all theories that generate a given distribution P(z,y, z). This
motivates the following definition of identifiability:

Definition 2 (identifiability) A query q is said to be identifiable in a model M iff, for
any two theories Ty and Ty of M,

q(T1) = q(T3), whenever Pr,(x) = Pr,(x) and Pr, (z) > 0

8Koopmann and Reiersol (1950) used the term “structure” for our “theory.”
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A model M s said to be identifiable relative to a set Q) of queries if every member of ()
1s identifiable in M. O

In other words, a model M is identifiable relative to a set ) of queries if every query in
@ can be computed uniquely from the pair { M, P}, where P is any positive distribution
over the observables that is compatible with M.

Technically, the reason for restricting the observed distributions to positive distribu-
tions is to avoid conditioning on events with zero probabilities. Conceptually, positivity
ensures that each function is perturbed by some stochastic disturbance; these disturbances
act like instrumental variables, or randomized experiments conducted by nature, in that
they help reveal the strength of causal effects of some variables while others are kept
constant.

It is clear, from the definition above, that every model is trivially identifiable relative
to queries, such as g3, which are addressed to the observed distribution P(z). As discussed
in the introduction, the focus of this paper is the set of control queries, like g4, that are
the primary (yet often forgotten) reason we use structural modeling [Haavelmo 1943].

2.1.3 Control Queries

Of special interest to us will be the set (02 of pairwise control queries, in which each query
is of the type “Find the distribution of X; given that X; is held fixed at z;”, where ¢ and
j are arbitrary. Answers to such queries are the nonparametric analogs to the so-called
“causal effects” or “total effects” in linear models, and in these models the answers can
be computed directly from the structural coefficients. To answer such queries, we need
to formalize the notion of “holding fixed” within the general framework of nonparametric
structural models.

Given a model M and a subset S of variables, define a submodel M, of M as the set of
equations that results if the |S| equations corresponding to the variables in S are deleted
from M and S = s is substituted in the remaining equations. For example, the model
specified in Eqs. (19)-(20) is the submodel M, of the model in Egs. (1)-(3). The theories
delineated by M; will be denoted by 7.

Definition 3 (control queries) A control query q = P(r|S) (read: the probability of R = r
given that S is held fixed at s) is a functional of the theories of M, defined by

Pr(r|8) = Pr,(r).

In other words, the value of P(r|3) in theory T is given by the probability P(r) induced
by the subtheory T of T. O

The notion of subtheories reflects the understanding that external interventions per-
turb the normal causal influences as represented by the structural equations. In particular,
the primitive intervention “holding X fixed” has sharp, local effect on those mechanisms,
that is, it totally neutralizes X from its normal influences and places it under a new in-
fluence (given by the intervention), while keeping all other influences unperturbed. This
interpretation of control queries is an integral part of viewing structural equations as
representing a set of autonomous, stable, or invariant mechanisms—a notion going back
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to [Frisch 1938, Haavelmo 1943, Marschak 1953] and later expanded by [Simon 1977] and
[Goldberger 1973].° An explicit translation of interventions to “wiping out” equations
from the model was first proposed by [Strotz & Wold 1960] and later used in [Fisher 1970]
and [Sobel 1990] for defining effects decomposition (see Section 3.4). Formal graphical
accounts of this notion are given in [Spirtes et al. 1993] and [Pearl 1993].

2.1.4 Graphs, Conditional Independence, and d-Separation

In this subsection, we review the properties of directed acyclic graphs (DAGs) as carriers
of conditional independence information [Pearl 1988]. Readers familiar with this aspect
of DAGs are advised to skip to Section 2.2.

Given a DAG @G and a joint distribution P over a set V = {X1,..., X;,} of variables,
we say that G represents P if there is a one-to-one correspondence between the variables
in X and the nodes of GG, such that P admits the product decomposition

P(xy, .y y) = l—IP(acZ | pa;) (23)
where pa; are the values of the direct predecessors (called parents), PA;, of X; in G. For

example, the DAG in Figure 3 induces the decomposition

P(xy,x9, T3, 24,25) = P(x1) P(x2|21) P(xs|z1) P(24|22,23) P(T5|74) (24)

pu

N
N

®
[
Xs

Figure 3:
A typical directed acyclic graph (DAG) representing the decomposition

of Eq. (24).

A convenient way of characterizing the set of distributions represented by a DAG G
is to list the set of (conditional) independencies that each such distribution must satisfy.
Clearly, the decomposition in Eq. (23) implies (using the chain rule) that, given its par-
ent set PA;, each variable X; is conditionally independent of all its other predecessors

9 As discussed briefly in Section 1, the notion of invariance, and its operational derivative of Definition 3
is, in fact, the defining feature of structural equations. We, therefore, depart from the views of [Sobel 1990]
and others and do not refer to invariance as an assumption that requires further justification or judgment.
In other words, invariance is what the investigator must already have in mind when he/she specifies the
arguments of each function f; in the model.
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{X1, Xo, ..., X;_1}\PA;. We call this set of independencies Markovian, because it reflects
the Markovian condition for state transitions: Each state is rendered independent of the
past, given its immediately preceding state. However, the decomposition of Eq. (23) im-
plies additional, less obvious independencies which can be read off the DAG by using a
graphical criterion called d-separation [Pearl 1988]. To test whether X is independent of
Y given Z in the distributions represented by G, we need to examine G' and test whether
the nodes corresponding to variables Z d-separate all paths from nodes in X to nodes in
Y. By path we mean a sequence of consecutive edges (of any directionality) in the DAG.

Definition 4 (d-separation) A path p is said to be d-separated (or blocked) by a set of
nodes Z iff:

(i) p contains a chaini — j — k or a fork i «— j — k such that the middle node
jisin Z, or,

(ii) p contains an inverted fork i — j <— k such that neither the middle node j nor
any of its descendants (in G) are in Z.

If X)Y, and Z are three disjoint subsets of nodes in a DAG G, then Z 1is said to
d-separate X from Y, denoted (X || Y)g, iff Z d-separates every path from a node in
X to anodeinyY .

The intuition behind d-separation is simple: In chains X — Z — Y and forks
X <« Z — Y, the two extreme variables are dependent (marginally) but become
independent of each other (i.e., blocked) once we know the middle variable. Inverted
forks X — Z < Y act the opposite way; the two extreme variables are independent
(marginally) and become dependent (i.e., unblocked) once the value of the middle vari-
able (i.e., the common effect) or any of its descendants is known. For example, finding
that the pavement is wet or slippery (see Figure 1) renders Rain and Sprinkler dependent,
because refuting one of these explanations increases the probability of the other.

In Figure 1, for example, X = {X,} and Y = {X;} are d-separated by Z = {X1};
the path X, « X; — X3 is blocked by X; € Z, while the path X — X; + X;
is blocked because X, and all its descendants are outside Z. Thus (X, | X3/X1)a
holds in G. However, X and Y are not d-separated by Z' = {Xi, X5}, because the
path Xy — X, < X3 is unblocked by virtue of X5, a descendant of X4, being in Z’.
Consequently, (Xo || X3/{X1, X5})c does not hold; in words, learning the value of the
consequence X renders its causes X, and X; dependent, as if a pathway were opened
along the arrows converging at X,.

Theorem 1 [Verma & Pearl 1990, Geiger et al. 1990]. For any three disjoint subsets of
nodes (X,Y,Z) in a DAG G, Z d-separates X fromY in G implies that X is independent

of Y conditional on Z in every probability distribution represented by G.

Thus, a DAG can be viewed as an efficient scheme for representing Markovian in-
dependence assumptions and for deducing and displaying all the logical consequences of
such assumptions. Note that the precise ordering of the nodes does not enter into the
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d-separation criterion; it is only the topology of the graph that determines the set of
independencies that the probability P must satisfy.

An important property that follows from the d-separation characterization is a cri-
terion for determining whether two given DAGs are observationally equivalent, that is,
whether every probability distribution that is represented by one of the DAGs is also
represented by the other.

Theorem 2 [Verma & Pearl 1990] Two DAGs are observationally equivalent iff they have
the same sets of edges and the same sets of v-structures, that is, two converging arrows
whose tails are not connected by an arrow.

Observational equivalence places a limit on our ability to infer the directionality of the
links directionality from probabilities alone. For example, reversing the direction of the
arrow between X; and X, in Figure 1 does not introduce any new v-structure. Therefore,
this reversal yields an observationally equivalent DAGs, and the directionality of the link
X1 — X, cannot be determined from probabilistic information. The arrows Xo — X, and
X4 — X5, however, are of different nature; there is no way of reversing their directionality
without creating a new v-structure. Thus, we see that some probability functions P can
constrain the directionality of some arrows in their DAG representation.

Additional properties of DAGs and their applications to evidential reasoning are dis-
cussed in [Geiger 1990, Lauritzen & Spiegelhalter 1988, Spiegelhalter et al. 1993, Pearl 1988,
Pearl 1993, Pearl et al. 1990].

2.2 A Causal Calculus

This subsection establishes a set of sound (and possibly complete) inference rules by
which probabilistic sentences involving actions and observations can be transformed to
other such sentences, thus providing a syntactic method for deriving (or verifying) claims
about actions and observations. Given the pair < M, P >, our main problem will be to
facilitate the syntactic derivation of expressions of the form P(xz;|set(x;)) from standard
probability expressions.

Let X, Y, and Z be arbitrary disjoint sets of nodes in a DAG G. We denote by
(X || Y|Z)g, the proposition “Z d-separates X from Y in G” (see Definition 4). We
denote by G (Gx, respectively) the graph obtained by deleting from G all arrows pointing
to (emerging from, respectively) nodes in X. In dealing with expressions involving both
observed and fixed variables, we will use P(y|Z, z), where the ~ symbol identifies the
variables that are kept constant externally. In words, the expression P(y|Z, z) will stand
for the probability of Y = y given that Z = z is observed and X is held constant at x.

Armed with this notation, we formulate the three basic inference rules of our calculus
in the following theorem [Pearl 1995al:

Theorem 3 Let G be a DAG characterizing a structural model M, and let P be a distri-
bution generated by some theory of M. Then, for any disjoint sets of variables X, Y, Z,
and W, we have:

Rule 1 Insertion/deletion of observations
P(y|z,z,w) = P(y|2,w) if (Y | Z|X,W)e. (25)
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Rule 2 Action/observation exchange

Rule 3 Insertion/deletion of actions
P(y|ia'2’w) = P(y|£‘aw) Zf (Y ” Z|Xa W)GY, Z00) (27)

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in G.

Each of the inference rules above can be proven [Pearl 1995a] from the basic interpre-
tation of the “set(x)” operation as a replacement of the causal mechanism that connects
X to its parents prior to the operation with a new mechanism X = z introduced by the
intervention (Definition 3). This results in a submodel M, which is characterized by the
subgraph G (named “manipulated graph” in [Spirtes et al. 1993]).

Rule 1 reaffirms d-separation as a valid test for Bayesian conditional independence in the
distribution determined by the intervention set(X = x), hence the graph G.

Rule 2 provides conditions for an external intervention set(Z = z) to have the same effect
on Y as the passive observation Z = z. The condition amounts to {X U W} blocking all
back-door paths from Z to Y (in Gx), since G, retains all (and only) such paths. Rule
2 is equivalent to the “back-door criterion”'? of [Pearl 1993] and can also be derived from
Theorem 7.1 in [Spirtes et al. 1993].

Rule 3 provides conditions for introducing (or deleting) an external intervention set(Z =
z) without affecting the probability of Y = y. The validity of this rule stems, again, from
simulating the intervention set(Z = z) by severing all relations between Z and its parents
(hence the graph Gx).

Corollary 1 A query q: P(y1, ..., Y|Z1, .., Tn) 1S identifiable in model M if there exists a
sequence of inference rules which transforms q into a standard (i.e., hat-free) probability
exTPTession.

2.3 Computing Causal Effects: An Example

We will now demonstrate how these inference rules can be used to evaluate all control
queries for the structural model specified in Egs. (1)-(3). The graphical characterization

10The back-door criterion states that, if there exists a set S of observed variables which are nonde-
scendants of X and which block every back-door path from X to Y (that is, paths ending with arrows
pointing to X), then P(y|%) is identifiable and is given by the formula

P(ylz) =) P(ylz,s)P(s) (28)
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of this model is given by the DAG G of Figure 4, which is identical to that of Figure 2
save for the explicit representation of the unobserved variable U. We will see that this
structure permits us to quantify, using the causal calculus of Section 2.2, the effect of
every action on every set of observed variables. Our task amounts to reducing expressions
involving actions to those involving only observations, that is, to eliminating the “hat”
symbol (") from the query expressions.

The applicability of the inference rules in Theorem 3 requires that the d-separation
conditions holds in various subgraphs of G, and the structure of each subgraph varies with
the expressions to be manipulated. Figure 4 displays the subgraphs that will be needed
for the derivations that follow.

e o 2o o o— o
X Z Y X Z Y
G Gz = Gy
A > A A
o oO———o o———o o O— 0
X Z Y X Z Y X Z
C33 G
XZ z Gy ;

Figure 4:
Subgraphs of G used in the derivation of causal effects.

Task-1, compute P(z|%)

This task can be accomplished in one step, since G satisfies the applicability condition
for Rule 2; namely, X | Z in Gx (because the path X <- U — Y < Z is blocked by
the collider at V') and we can write

P(2|#) = P(z|z) (29)

Task-2, compute P(y|2)

Here we cannot apply Rule 2 to replace £ with z, because Gz contains a path from Z to Y
(a so-called “back-door” path). Naturally, we would like to “block” this path by “adjusting
for” covariates (such as X) that reside on that path. Symbolically, the “adjustment”
operation involves conditioning and summing over all values of X, as follows:

P(y|2) =Y _ P(ylz,2)P(z|2) (30)
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We now have to deal with two expressions involving 2z, P(y|z,2) and P(x|2). The
latter can readily be reduced to an observational quantity by applying Rule 3 for action
deletion:

P(z|2) = P(z) if (Z || X)G7 (31)

noting that, indeed, X and Z are d-separated in G+. (This can also be seen immediately
from G: manipulating Z will have no effect on X.) To reduce the former, P(y|z, %), we
apply Rule 2, which yields

and note that X d-separates Z from Y in G». This allows us to write Eq. (30) as

P(y|2) =>_ P(ylz,2)P(z) = E.P(y|z,2) (33)

which is a special case of the “back-door” formula (see footnote 10, (28)) with S = X.
This formula appears in a number of treatments of causal effects (e.g., [Rosenbaum &
Rubin 1983, Rosenbaum 1989, Pratt & Schlaifer 1988]) in which the legitimizing condition
(Z || Y|X)g, is expressed in terms of conditional-independence judgments involving
counterfactual variables. The causal calculus facilitated by Theorem 3 replaces such
complicated judgments with formal tests (d-separation) on a graph (G) which represents
familiar processes.

We are now ready to tackle a harder task—the evaluation of P(y|Z), which cannot be
reduced to an observational expression by direct application of any of the inference rules.

Task-3, compute P(y|Z)

Writing
P(y|#) =) P(y|z, 2)P(2|%) (34)

we see that the term P(z|Z) was reduced in Eq. (29) but that no rule can be applied to
eliminate the manipulation symbol * from the term P(y|z,Z). However, we can add a ~
symbol to this term via Rule 2

P(ylz, &) = P(y|2, ) (35)

since Figure 3 shows
W | ZX)ay,

We can now delete the action & from P(y|2,%) using Rule 3, since Y || X|Z holds in
G- Thus, we have
P(y|z, %) = P(y[2) (36)

which was calculated in Eq. (33). Substituting Egs. (33), (36), and (29) back into Eq.
(34) yields
P(y|#) = 3 P(zlz) 3_ Pyla’, 2) P(a) (37)

Eq. (37) was named the “front-door” formula in [Pearl 1995b], as it involves a (nonstan-
dard) adjustment for a variable (Z) that stands between the cause (X) and the effect (V).
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Task-4, compute P(y, z|)

P(y, z|%) = P(ylz, &) P(2|%)

The two terms on the right-hand side were derived in Egs. (29) and (36), from which we
obtain

P
P(z]x) o P(yla', 2) P(2')

Task-5, compute P(z,y|2)

P(z,y|2) = P(ylz,2)P(x]2)

P(ylz, z)P(z) (39)
The first term on the right is obtained by Rule 2 (licensed by Gz) and the second term,
by Rule 3 (as in Eq. (31)).

3 Graphical Tests of Identifiability

In the example above, we were able to compute all expressions of the form P(r|$) where R
and S are subsets of observed variables. In general, this will not be the case. For example,
there is no general way of computing P(y|Z) from the observed distribution whenever the
causal model contains the bow-pattern shown in Figure 5, in which X and Y are connected
by both a causal link and a confounding arc. A confounding arc represents the existence
in the diagram of a back-door path that contains only unobserved variables and has no
converging arrows. A bow-pattern represents an equation

Y == fy(X, U)

where U is unobserved and dependent on X. Such an equation does not permit the
identification of causal effects since any portion of the observed dependence between X
and Y may always be attributed to spurious dependencies mediated by U.

The presence of a bow-pattern prevents the identification of P(y|Z) even when it is
found in the context of a larger graph, as in Figure 5 (b). This is in contrast to linear
models, where the addition of an arc to a bow-pattern can render P(y|Z) identifiable. For
example, if YV is related to X via a linear relation Y = bX + U, where U is a zero-mean
disturbance possibly correlated with X, then b 2 2 E(Y|#) is not identifiable. However,
adding an arc Z — X to the structure (that is, finding a variable Z that is correlated with
X but not with U) would facilitate the computation of b via the instrumental-variable
formula [Bowden & Turkington 1984, Bollen 1989]:

A O E(Y|z) Ry,

b2 L) = ppy = R (40)

In nonparametric models, adding an instrumental variable Z to a bow-pattern (Figure
5(b)) does not permit the identification of P(y|Z). This is a familiar problem in the
analysis of clinical trials in which treatment assignment (Z) is randomized (hence, no
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link enters Z), but compliance is imperfect [Pearl 1995b]. The confounding arc between
X and Y in Figure 5(b) represents unmeasurable factors which influence both subjects’
choice of treatment (X) and subjects’ response to treatment (Y'). In such trials, it is
not possible to obtain an unbiased estimate of the treatment effect P(y|Z) without mak-
ing additional assumptions on the dependence between compliance and response, as is
done, for example, by Angrist et al. (1993) and Imbens & Angrist (1994). While the
added arc Z — X permits us to calculate bounds on P(y|Z) [Robins 1989, Section
1g],[Manski 1990, Balke & Pearl 1994], and the upper and lower bounds may even co-
incide for certain types of distributions P(z,y, z) [Balke & Pearl 1993, Pearl 1995b] there
is no way of computing P(y|Z) for every positive distribution P(x,y, z), as required by
Definition 2. It is interesting to note that the noncompliance model of Figure 9(b) is
falsifiable whenever X is discrete, but has no testable implications when X is continuous
[Pearl 1995¢] .

A general feature of nonparametric models is that the addition of arcs to a causal
diagram can impede, but never assist, the identification of causal effects. This is because
such addition reduces the set of d-separation conditions carried by the diagram and,
hence, if a causal effect derivation fails in the original diagram, it is bound to fail in the
augmented diagram as well. Conversely, any causal effect derivation that succeeds in the
augmented diagram (by a sequence of symbolic transformations, as in Corollary 1) would
succeed in the original diagram.

X

@ (b)

Figure 5:
(a) A bow-pattern: a confounding arc embracing a causal link X —'Y,
thus preventing the identification of P(y|Z) even in the presence of an
instrumental variable Z, as in (b).

Our ability to compute P(y|z) for pairs (x, y) of singleton variables does not ensure our
ability to compute joint distributions, such as P(y1,y2|%). Figure 6, for example, shows
a causal diagram where both P(z;|Z) and P(z3|%) are computable, but P(z1, 20|Z) is not.
Consequently, we cannot compute P(y|z). Interestingly, the graph shown in Figure 6 is
the smallest graph that does not contain the bow-pattern of Figure 5 and still presents
an uncomputable causal effect.

Another interesting feature demonstrated by Figure 6 is that computing the effect of a
joint action is often easier than computing the effects of its constituent singleton actions.!!

"' This was brought to my attention by James Robins, who has worked out many of these computations
in the context of sequential treatment management. Eq. (41) for example, can be obtained from Robin’s
G-computation formula [Robins 1989, Robins et al. 1992].
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A graph not containing a bow, but still prohibiting the identification of P(y|z).

Here, it is possible to compute P(y|Z, Z2) and P(y|Z, 21), yet there is no way of computing
P(y|%). For example, the former can be evaluated by invoking Rule 2 in Gxg,, giving

P(y|i: ZA?) = Zp(y|zla£a52)P(zl|j522)

21

= Y P(yla, z, 2) P(2z) (41)

The computation of P(y|Z), on the other hand, requires the conversion of P(z|%, z5)
into P(z1|z, 22); Rule 2 is inapplicable because, when conditioned on Z,, X and Z; are
d-connected in Gx (through the dashed lines). A systematic procedure for identifying
causal effects of multiple actions is provided in [Pearl & Robins 1995].

3.1 Identifying Models

Figure 7 shows simple diagrams in which the causal effect of X on Y, P(y|z), is iden-
tifiable. Such structures are called identifying because their structures communicate a
sufficient number of assumptions (missing links) to permit the identification of the target
quantity P(y|z). Unobserved (or latent) variables are not shown explicitly in these dia-
grams; rather, such variables are implicit in the confounding arcs (dashed lines). Every
causal diagram with latent variables can be converted to an equivalent diagram involv-
ing measured variables interconnected by arrows and confounding arcs. This conversion
corresponds to substituting out all unobserved variables from the structural equations of
Eq. (21) and then constructing a new diagram by connecting any two variables X; and
X; by (1) an arrow from X, to X; whenever X; appears in the equation for X; and (2)
a confounding arc whenever the same U term appears in both f; and f;. The result is a
diagram in which all unmeasured variables are exogenous and mutually independent.
Several features should be noted from examining the diagrams in Figure 7.

1. Since the removal of any arc or arrow from a causal diagram can only assist the
identifiability of causal effects, P(y|Z) will still be identified in any edge-subgraph
of the diagrams shown in Figure 7.

19



] T
/ - /
Xe X @ “"-.: xl
\ 7 \
/ v V
Oy ... - Y
@ ® ¥ © @
x

Figure 7:
Typical models in which the total effect of X on Y is identifiable. Dashed
lines represent confounding paths, and Z represents observed covariates.

. Likewise, the introduction of mediating observed variables onto any edge in a causal
graph can assist, but never impede, the identifiability of any causal effect. Therefore,
P(y|z) will still be identified from any graph obtained by adding mediating nodes
to the diagrams shown in Figure 7.

. The diagrams in Figure 7 are maximal, in the sense that the introduction of any
additional arc or arrow onto an existing pair of nodes would render P(y|zZ) no longer
identifiable.

. Although most of the diagrams in Figure 7 contain bow-patterns, none of these
patterns emanates from X (as is the case in Figure 8 (a) and (b) below). In general,
a necessary condition for the identifiability of P(y|%) is the absence of a confounding
path between X and any of its children on any directed path from X to Y.

. Diagrams (a) and (b) in Figure 7 contain no back-door paths between X and Y, and
thus represent experimental designs in which there is no confounding bias between
the treatment (X) and the response (Y) (i.e., X is strongly ignorable relative to
Y [Rosenbaum & Rubin 1983]); hence, P(y|z) = P(y|z). Likewise, diagrams (c)
and (d) in Figure 7 represent designs in which observed covariates, Z, block ev-
ery back-door path between X and Y (i.e., X is conditionally ignorable given Z
[Rosenbaum & Rubin 1983]); hence, P(y|Z) is obtained by a standard adjustment
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for Z (as in Eq. (28)):
P(y|z) =3 P(ylz,2)P(2) (42)

. For each of the diagrams in Figure 7, we can readily obtain a formula for P(y|Z), by
using symbolic derivations patterned after those in Section 2.3. The derivation is
often guided by the graph topology. For example, diagram (f) in Figure 7 dictates
the following derivation. Writing
P(y|z) = Z P(ylz1, 22, 2) P(21, 22|2)
21,22

we see that the subgraph containing {X, 7, Z,} is identical in structure to that
of diagram (e), with (71, Z3) replacing (Z,Y), respectively. Thus, P(zy, z2|Z) can
be obtained from Eq. (38). Likewise, the term P(y|z1,29,2) can be reduced to
P(y|z1, 22,7) by Rule 2, since (Y || X|Z1, Z5)gy. Thus, we have

P(ylz) = 3 P(ylar, 2, 2) P(alz) 3 P(z|a,2') P(a') (43)

21,22 x/

Applying a similar derivation to diagram (g) of Figure 7 yields

P(y|z) = ZZZP(?A% 2y, o) P(x')P(21|22, x)P(22) (44)
21 22 g
Note that the variable Z3 does not appear in the expression above, which means

that Z3 need not be measured if all one wants to learn is the causal effect of X on
Y.

. In diagrams (e), (f), and (g) of Figure 7, the identifiability of P(y|Z) is rendered
feasible through observed covariates, Z, that are affected by the treatment X (i.e., Z
being descendants of X ). This stands contrary to the warning, repeated in most of
the literature on statistical experimentation, to refrain from adjusting for concomi-
tant observations that are affected by the treatment [Cox 1958, Rosenbaum 1984,
Pratt & Schlaifer 1988]. It is commonly believed [Pratt & Schlaifer 1988] that if a
concomitant Z is affected by the treatment, then it should be included in the anal-
ysis only if we want to learn the conditional effect given Z and must be excluded if
we want to learn the unconditional total effects. The reason given for the exclusion
is that the calculation of total effects often amounts to integrating out 7, which is
functionally equivalent to omitting 2z to begin with.

Diagrams (e), (f), and (g) show cases where one wants to learn the unconditional
total effects of X and, still, the measurement of concomitants that are affected by X
(e.g., Z, or Z) is necessary. However, the adjustment needed for such concomitants
is nonstandard, involving two or more stages of the standard adjustment of Eq. (42)
(see Egs. (37), (43), and (44)).

. Diagrams (b), (c), and (f) of Figure 7 deserve special attention. In each of these
graphs, Y has a parent whose effect on Y is not identifiable yet the effect of X on Y is
identifiable. This demonstrates that, contrary to linear analysis, local identifiability
is not a necessary condition for global identifiability. In other words, to identify the
effect of X on Y we need not insist on identifying each and every link of the paths
from X to Y.

21



3.2 Nonidentifying Models
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Figure 8:
Typical models in which P(y|Z) is not identifiable.

Figure 8 presents typical graphs in which the total effect of X on Y, P(y|Z), is not
identifiable. Noteworthy features of these graphs are as follows.

1. All graphs in Figure 8 contain unblockable back-door paths between X and Y, that
is, paths ending with arrows pointing to X which cannot be blocked by observed
nondescendants of X. The presence of such a path in a graph is, indeed, a necessary
test for nonidentifiability (see Theorem 3). It is not a sufficient test, though, as is
demonstrated by Figure 7 (e), in which the back-door path (dashed) is unblockable
and yet P(y|Z) is identifiable.

2. A sufficient condition for the nonidentifiability of P(y|%) is the existence of a con-
founding path between X and any of its children on a path from X to Y, as shown
in Figure 8 (b) and (c). A stronger sufficient condition is that the graph contain
any of the patterns shown in Figure 8 as an edge-subgraph.

3. With the exception of (c), all the graphs in Figure 8 are minimal, that is, P(y|%) is
rendered identifiable by removing any arc or arrow from any of these graphs.

4. Graph (g) in Figure 8 does not have any bow-patterns and, moreover, every other
causal effect is identifiable except that of X on Y. For example, we can identify
P(z|2), P(2|2), P(y,|21), and P(y|2s), but not P(y|z). Thus, local identifiability
is not sufficient for global identifiability. This is one of the main differences between
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nonparametric and linear models; in the latter, all causal effects can be determined
from the structural coefficients, each coefficient representing the direct causal effect
of one variable on its immediate successor (see Section 3.4).

3.3 Causal Inference by Surrogate Experiments

Suppose we wish to learn the causal effect of X on Y when X and Y are confounded and,
for practical reasons of cost or ethics, we cannot control X by randomized experiment.
In such situations, we naturally search for observed covariates that, if adjusted for, would
eliminate the confounding effect between X and Y. Such covariates may not always be
available, and the question arises whether P(y|Z) can be identified by randomizing a
surrogate variable Z, which is easier to control than X. More generally, we are interested
in a criterion by which a set Z of variables in the diagram can be identified and brought
to the investigator’s attention as potential surrogates for X.'? Formally, this problem
amounts to transforming P(y|Z) into expressions in which only members of Z obtain the
hat symbol.

Diagram (e) in Figure 8 illustrate a simple structure which admits a surrogate exper-
iment. The observed covariate Z is confounded with both X and Y, hence adjusting for
Z does not permit the identification of P(y|z) (i.e., X is not strongly ignorable condi-
tional on Z, by the back-door criterion of Eq. (28)). However, if Z can be controlled by
randomized trial, then we can measure P(z, y|Z), from which we can compute P(y|Z)
using

P(y|z) = P(y|z, 2) = P(y, =|2)/P(z|2) (45)
The validity of Eq. (45) can be established by first applying Rule 3 to add Zz,

P(y|z) = P(y|z, 2) because (Y || Z|X)

- Gxz

then applying Rule 2 to exchange & with x:

P(y|Z, 2) = P(y|z, 2) because (Y || X|Z)G£7
The auxiliary diagrams permitting these steps are given in Figure 9.

The use of surrogate experiments is not uncommon. For example, if we are interested
in assessing the causal effect of cholesterol levels (X) on heart disease (Y'), a reasonable
experiment to conduct would be to control subjects’ diet (Z), rather than exercising direct
control over cholesterol levels in subjects’ blood.

The derivation leading to Eq. (45) explicates a simple sufficient condition for qualifying
a proposed variable Z as a surrogate for X: there must be no direct link from Z to Y
and no confounding path between X and Y. Translated to our cholesterol example,
this condition requires that there be no direct effect of diet on heart conditions and no
confounding effect between cholesterol levels and heart disease.

12The main distinction between surrogate variables and instrumental variables as used in economics
[Bowden & Turkington 1984], is that instrumental variables act as though they were randomized while
surrogate variables are candidates for randomization. Additionally, the criterion for choosing surrogate
variables need not be limited to the standard setting of instrumental variables depicted in Figure 5 (b);
it includes any set of variables that would permit (if randomized) the identification of P(y|Z).
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A causal structure permitting the the identification of P(y|Z) by
controlling Z, instead of X.

Note that, according to Eq. (45), only one level of Z suffices for the identification of
P(y|z), for any values of y and x. In other words, Z need not be varied at all, just held
constant by external force, and, if the assumptions embodied in G are valid, the r.h.s.
of Eq. (45) should attain the same value regardless of the level at which Z is being held
constant. In practice, however, several levels of Z will be needed to ensure that enough
samples are obtained for each desired value of X. For example, if we are interested in the
difference E(Y'|%1) — E(Y|Z3), then we should choose two values z; and 2z, of Z which
maximize the number of samples in z; and z,, respectively, and write

E(Y|#1) — E(Y|Z9) = E(Y|z1,2) — E(Y |29, 22)
Not surprisingly, this expression is equal to the instrumental-variable formula [Angrist et al. 1996]

E(Y|z) - E(Y|z)

E(Yl]d1) — E(Y]2,) = E(Y|z,) — E(Y|z2)

when 7 is randomized.

Figure 10:
A more elaborate surrogate experiment; P(y|z) is identified by
controlling Z and measuring W .

Figure 10 illustrates a more general condition for admitting a surrogate experiment.
Unlike the condition leading to Eq. (43), randomizing Z now leaves a confounding arc

24



between X and Y. This arc can be neutralized through the mediating variable W as in
the derivation of Eq. (36), and yields the formula

P(y|#) =>_ P(wlz, 2) Z P(ylw,a', 2) P(a'|2)

Thus, the more general conditions for admitting a surrogate variable Z are:
1. X intercepts all directed paths from Z to Y, and,

2. P(y|z) is identifiable in G.

3.4 Total, Direct, and Indirect Effects

Path analysis is noted for allowing researchers to decompose the influence of one variable
on another into direct, indirect, and total effects [Bollen 1989, page 376]. Yet the path-
analytic literature has not been successful in communicating these notions unambiguously
to the rest of the scientific community. The standard definition of a total effect is expressed
algebraically, in terms of a matrix B of “structural coefficients” [Bollen 1989], and these
coefficients, circularly, are defined in terms of total effects when intervening variables are
“held constant”, [Alwin & Hauser 1975]. With the exception of [Sobel 1990], the notions
of “intervening variables”, “holding constant”, and “structural coefficients” have not been
given formal, operational definitions and have remained open to a variety of misinterpre-
tations. Wermuth [1993], for example, interprets “holding X fixed” as “conditioning on
X”, and finds contradictions in the standard definition of structural equations. Freedman
[1987] finds the notion of “fixing” an endogenous variable X to be “self-contradictory”,
as it conflicts with the assumption that the value of X is functionally determined by the
explanatory variables in the equation for X. [Freedman 1987] summarizes the confusion
in this area:

a path model represents the analysis of observational data as if it were the
result of an experiment. At points such as this, it would be helpful to know
more about the structure of such hypothetical experiments: What is to be
held constant, and what manipulated?

To explicate the structure of such hypothetical experiments we need a language in
which the notion of “holding constant” is given both formal notation and operational
interpretation. The mechanism-based interpretation of “holding constant” as an opera-
tion that deletes equations from the model (Definition 3), coupled with the set(x) (or Z)
notation introduced in Section 2, constitutes such a language and can be used to pro-
vide simple, unambiguous definitions of effect decomposition, for both parametric and
nonparametric models.

We start with the general notion of causal effect P(y|Z), as in Definition 3, which
applies to arbitrary sets of variables, X and Y. For singleton variables of interest, the
notion of causal effect can be specialized to define total and direct effects, as follows.

Definition 5 (total effect) The total effect of X on Y is given by P(y|%), namely, the
distribution of Y while X is held constant at x and all other variables are permitted to
run their natural course.
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Definition 6 (direct effect) The direct effect of X on 'Y is given by P(y|Z, $xvy) where
Sxvy s the set of all observed variables in the system, excluding X and Y .

This definition ascribes to the direct effect the properties of an ideal laboratory; the
scientist controls for all possible conditions Sxy. It is easy to show (e.g., by applying
Rule 3) that there is no need to actually hold all other variables constant, since holding
constant the direct parents of Y (excluding X)) would have the same effect on Y. Thus,
we obtain an equivalent definition for direct effect:

Corollary 2 The direct effect of X on'Y is given by P(y|Z, pay\x) where pay\x stands
for any realization of the variables appearing in the equation for'Y , excluding X.

Readers versed in linear analysis might find it a bit strange that the direct effect of X
on Y involves other variables beside X and Y. However, considering that we are dealing
with nonlinear interactions, the effect of X on Y should indeed depend on the levels at
which we hold the other variables (in the equation for Y'). Note also that causal effects are
not defined in terms of differences between two expectations, or the relative change in Y
with a unit change in X. Such differences can always be determined from the probability
distribution P(y|Z). In linear models, for example, the ratio

E(Y |z, pay x) — E(Y|#', pa 0
( | p Y\X) ( ‘ p Y\X) — _E(Y‘;f;) = const.
Tz —a Oz

reduces to the ordinary path coefficient between X and Y, regardless of the value taken
by pay\x. In general, if X does not appear in the equation for Y, then P(y|Z, pay x)
defines a constant distribution on Y, independent of x, which matches our understanding
of “having no direct effect”. Note also that if PAy are not confounded with Y, we can
remove the “hat” from the expressions above and define direct effects in terms of ordinary
conditional probabilities P(y|z, pay x)-

The definitions above explicate the operational meaning of structural equations and
path coefficients, and should end, I hope, an era of controversy and confusion regarding
these entities. Specifically, if G is the graph associated with a set of structural equations,
then the assumptions embodied in the equations can be read off G as follows: Every
missing arrow, say between X and Y, represents the assumption that X has no causal
effect on Y once we intervene and hold the parents of Y fixed. Every missing bi-directed
link between X and Y represents the assumption that there are no common causes for
X and Y, except those shown in G. Thus, the operational reading of the structural
equation Y = BX 4 € is: “In an ideal experiment where we control X to x and any
other set Z of variables (not containing X or Y) to z, Y is independent of z and is
given by Bz + €¢.” The meaning of ( is simply a%E (Y|%), namely, the rate of change (in
x) of the expectation of ¥ in an experiment where X is held at z by external control
This interpretation holds regardless of whether € and X are correlated (e.g., via another
equation X = aY +J.) Moreover, this interpretation provides an operational definition
for the mystical error-term, €, which is clearly a causal, rather than a statistical, entity.

In standard linear analysis, indirect effects are defined as the difference between the
total and the direct effects [Bollen 1989]. In nonlinear analysis, differences lose their sig-
nificance, and one must isolate the contribution of mediating paths in some alternative
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way. However, expressions of the form P(y|Z, %) cannot be used to isolate this contribu-
tion, because there is no physical means of selectively disabling a direct causal link from X
to Y by holding some variables constant. This suggests that the notion of indirect effect
indeed has no intrinsic operational meaning apart from providing a comparison between
the direct and the total effects. In other words, a policy maker who asks for that part
of the total effect transmitted by a particular intermediate variable or a group Z of such
variables is really asking for a comparison of the effects of two policies, one in which Z
is held constant, the other where it is not. The corresponding expressions for these two
policies are P(y|Z, 2) and P(y|Z), and this pair of distributions should therefore be taken
as the most general representation of indirect effects. Similar conclusions are expressed
in [Robins 1986] and [Robins & Greenland 1992].

3.5 Evaluating Conditional Policies

The interventions considered thus far were unconditional actions that merely force a vari-
able or a group of variables X to take on some specified value x. In general, interventions
may involve complex policies in which a variable X is made to respond in a specified
way to some set Z of other variables, say through a functional relationship X = ¢(Z) or
through a stochastic relationship whereby X is set to z with probability P*(z|z). We will
show that computing the effect of such policies is equivalent to computing the expression
P(ylz, z) .

Let P(y|set(X = g(Z))) stand for the distribution (of Y) prevailing under the policy
(X =g(Z)). To compute P(y|set(X = g(Z))), we condition on Z and write

P(y|set(X = g(2)))
= Y P(y|set(X = g(2)), 2) P(z|set(X = g(2)))

= 3 P(yl2, 2)la-g() P(2)
= E[P(Y|2, 2)]o—g(z)]

where the equality
P(z|set(X = g(2))) = P(2)

stems from the fact that Z cannot be a descendant of X, hence, whatever control one
exerts on X, it can have no effect on the distribution of Z. Thus, we see that the causal
effect of a policy X = ¢g(Z) can be evaluated directly from the expression of P(y|z, z),
simply by substituting g(z) for x and taking the expectation over Z (using the observed
distribution P(z)).

The identifiability condition for policy intervention is somewhat stricter than that for
a simple intervention. Clearly, whenever a policy set(X = g(Z)) is identifiable, the simple
intervention set(X = z) is identifiable as well, as we can always get the latter by setting
g(Z) = X. The converse, does not hold, however, because conditioning on Z might
create dependencies that will prevent the successful reduction of P(y|Z,z) to a hat-free
expression.

A stochastic policy, which imposes a new conditional distribution P*(z|z) for z, can be
handled in a similar manner. We regard the stochastic intervention as a random process
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in which the unconditional intervention set(X = x) is enforced with probability P*(z|z).
Thus, given Z = z, the intervention set(X = z) will occur with probability P*(z|z) and
will produce a causal effect given by P(y|Z, z). Averaging over z and z gives

P(y|P*(z[2)) = >_ ) P(yl2, 2)P*(x|2)P(2)

Since P*(z|z) is specified externally, we see again that the identifiability of P(y|z, z) is
a necessary and sufficient condition for the identifiability of any stochastic policy that
shapes the distribution of X by the outcome of Z.

It should be noted, however, that in planning applications the effect of an action
may be to invalidate its preconditions. To represent such actions, temporally indexed
causal networks may be necessary [Dean & Kanawaza 1989] or, if equilibrium conditions
are required, cyclic graphs can be used [Balke & Pearl 1995].

4 Discussion

This paper demonstrates that:

1. The effect of intervening policies often be identified (from nonexperimental data)
without resorting to parametric models.

2. The conditions under which such nonparametric identification is possible can be
determined by simple graphical criteria.

3. When the effect of interventions is not identifiable, the causal graph may suggest
non-trivial experiments which, if performed, would render the effect identifiable.

While the ability to assess the effect of interventions from nonexperimental data has
many applications in the social and health sciences, perhaps the most practical result
reported in this paper is the solution of the long standing problem of covariate adjustment.
The reader might recognize Eq. (42) as the standard formula for covariate adjustment (also
called “stratification”), which is used both for improving precision and for minimizing
confounding bias. However, a formal, general criterion for deciding whether a set of
covariates Z qualifies for adjustment has long been wanting. In the context of linear
regression models, the problem amounts to deciding whether it is appropriate to add
a set Z of variables to the regression of ¥ on X. Most of the statistical literature is
satisfied with informal warnings that “Z should be quite unaffected by X” [Cox 1958,
page 48], which is necessary but not sufficient (see Figure 8(d)) or that X should not
precede Z [Shafer 1996, page 326|, which is neither necessary nor sufficient. In some
academic circles, a criterion called “ignorability” is invoked [Rosenbaum & Rubin 1983],
which merely paraphrases the problem in the language of counterfactuals. Simplified,
ignorability reads: Z is an admissible covariate relative to the effect of X on Y if, for every
x, the value that Y would obtain had X been z is conditionally independent of X, given
Z (see appendix II for further discussion of counterfactual analysis). In contrast, Eq. (26)
provides an admissibility test which is both precise and meaningful, as it is applicable
directly to the elementary processes (i.e., linkages in the graph) around which scientific
knowledge is organized. This test (called the “back-door criterion” in [Pearl 1993]) reads:
Z is an admissible set of covariates relative to the effect of X on Y if:

28



(i) no node in Z is a descendant of X, and

(ii) Z d-separates X from Y along any path containing an arrow into X (equivalently,
Y I X[Z)ay)-

We see, for instance, that Z qualifies as admissible covariates relative the effect of
X on Y in Figure 7(d) but not in Figure 8(d). The graphical definition of admissible
covariates replaces statistical folklore with formal procedures, and should enable analysts
to systematically select an optimal set of observations, namely, a set Z that minimizes
measurement cost or sampling variability.

It is important to note several limitations and extensions of the method proposed
in this paper. First, the structural models discussed so far consist only of behavioral
equations; definitional equalities and equilibrium constraints are excluded, as these do
not respond to intervention in the manner described in Definition 3. One way of handling
mixtures of behavioral and equilibrium equations is to treat the latter as observational
events, on which to condition the probabilities [Strotz & Wold 1960]. For example, the
econometric equilibrium constraint g; = ¢, equating quantity demanded and quantity
supplied, would be treated by adding a “dummy” behavioral equation

S=¢qs—qq

(S connoting “stock growth”) and, then, conditioning the resulting probabilities on the
event S = 0. Such conditioning events tend to introduce new dependencies among the
variables in the graphs, as dictated by the d-separation criterion. Consequently, in ap-
plying the inferences rule of Theorem 3, one would have to consult graphs in which the
dummy variables have been permanently conditioned.

A second extension concerns the use of the causal calculus (Theorem 1) in cyclic
models. The subtheory interpretation of control queries (Definition 3) carries over to
cyclic systems [Strotz & Wold 1960, Sobel 1990], but then two issues must be addressed.
First, the analysis of identification is meaningful only when the resulting system is stable.
Therefore, we must modify the definition of identifiability by considering only the set of
stable theories for each structural model and for each submodel [Fisher 1970]. Second,
the d-separation criterion for DAGs must be extended to cover cyclic graphs as well. The
validity of d-separation has been established for non-recursive linear models and extended,
using an augmented graph to any arbitrary set of stable equations [Spirtes 1994]. However,
the computation of control queries will be harder in cyclic networks, because complete
reduction of control queries to hat-free expressions may require the solution of nonlinear
equations.

Having obtained nonparametric formulas for causal effects does not imply, of course,
that one should refrain from using parametric forms in the estimation phase of the study.
When data are scarce, prior information about shapes of distributions and the nature of
causal interactions can be extremely useful, and it can be incorporated into the analysis
by limiting the distributions in the estimand formulas to whatever parametric family of
functions are deemed plausible by the investigator. For example, if the assumptions of
Gaussian, zero-mean disturbances and additive interactions are deemed reasonable in a
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given problem, then nonparametric formulas of the type (see Eq. (33))
P(ylz) = 3_ P(ylz, 2)P(z) (46)
will be converted to

B(Y18) = [ [ ufGle, 2)f()dydz = Ryso (47)

and the estimation problem reduces to that of estimating (e.g., by least-squares) the
regression of Y on X and Z. Similarly, the estimand given in Eq. (37) can be converted
to a product

E(Y|%) = Ryp.fuya (48)

where 3,,., is the standardized regression coefficient. More sophisticated estimation tech-
niques, tailored specifically for causal inference can be found in [Robins 1992].

Finally, a few comments regarding the notation introduced in this paper. Traditionally,
statisticians have approved of only one method of combining subject-matter considerations
with statistical data: the Bayesian method of assigning subjective priors to distributional
parameters. To incorporate causal information within the Bayesian framework, plain
causal statements such as “Y is affected by X” must be converted into sentences capable
of receiving probability values, e.g., counterfactuals. Indeed, this is how Rubin’s model
has achieved statistical legitimacy: causal judgments are expressed as constraints on
probability functions involving counterfactual variables (see Appendix II).

Causal diagrams offer an alternative language for combining data with causal infor-
mation. This language simplifies the Bayesian route by accepting plain causal statements
as its basic primitives. These statements, which merely identify whether a causal connec-
tion between two variables of interest exists, are commonly used in natural discourse and
provide a natural way for scientists to communicate experience and organize knowledge.
It can be anticipated, therefore, that by separating issues of identification and parametric
form this article should serve to make the language of path analysis more accessible to
the scientific community (see discussions following [Pearl 1995a).
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APPENDIX I. Smoking and the Genotype Theory: An Illustration

To illustrate the usage of the causal effects computed in Subsection 2.3, we will as-
sociate the model of Figure 1 with a concrete example concerning the evaluation of the
effect of smoking (X) on lung cancer (V). According to many, the tobacco industry has
managed to stay anti-smoking legislation by arguing that the observed correlation be-
tween smoking and lung cancer could be explained by some sort of carcinogenic genotype
(U) which involves inborn craving for nicotine.®

The amount of tar (Z) deposited in a person’s lungs is a variable that promises to
meet the conditions specified by the structure of Figure 1. To justify the missing link
between X and Y, we must assume that smoking cigarettes (X) has no effect on the
production of lung cancer (V') except that mediated through tar deposits. To justify the
missing link between U and Z, we must assume that, even if a genotype is aggravating
the production of lung cancer, it nevertheless has no effect on the amount of tar in the
lungs except indirectly, through cigarette smoking.

To demonstrate how we can assess the degree to which cigarette smoking increases
(or decreases) lung cancer risk, we will construct a hypothetical study in which the three
variables, X, Y, and Z, were measured simultaneously on a large, randomly selected sample
from the population. To simplify the exposition, we will further assume that all three
variables are binary, taking on true (1) or false (0) values. A hypothetical data set from a
study on the relations among tar, cancer, and cigarette smoking is presented in Table 1.

P(z,2) P(Y =1|z,2)
Group Type Group Size % of Cancer Cases
(% of Population) in Group
X =0, Z =0 | Non-smokers, No tar 47.5 10
X =1, Z =0 | Smokers, No tar 2.5 90
X =0, Z =1 | Non-smokers, Tar 2.5 )
X =1, Z =1 | Smokers, Tar 47.5 85
Table 1

The table shows that 95% of smokers and 5% of non-smokers have developed high levels
of tar in their lungs. Moreover, 81.51% of subjects with tar deposits have developed lung
cancer, compared to only 14% among those with no tar deposits. Finally, within each of
the two groups, tar and no tar, smokers show a much higher percentage of cancer than
non-smokers do.

These results seem to prove that smoking is a major contributor to lung cancer. How-
ever, the tobacco industry might argue that the table tells a different story—that smoking
actually decreases, not increases, one’s risk of lung cancer. Their argument goes as follows.
If you decide to smoke, then your chances of building up tar deposits are 95%, compared
to 5% if you decide not to smoke. To evaluate the effect of tar deposits, we look sepa-
rately at two groups, smokers and non-smokers. The table shows that tar deposits have
a protective effect in both groups: in smokers, tar deposits lower cancer rates from 90%
to 85%; in non-smokers, they lower cancer rates from 10% to 5%. Thus, regardless of

13For an excellent historical account of this debate, see [Spirtes et al. 1993, pp. 291-302].
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whether I have a natural craving for nicotine, I should be seeking the protective effect of
tar deposits in my lungs, and smoking offers a very effective means of acquiring them.

To settle the dispute between the two interpretations, we note that, while both argu-
ments are based on stratification, the anti-smoking argument invokes an illegal stratifi-
cation over a variable (Z) that is affected by the treatment (X). The tobacco industry’s
argument, on the the hand, is made up of two steps, neither of which involves stratification
over treatment-affected variables: stratify over smoking to find the effect of tar deposit
on lung cancer, then average (not stratify) over tar deposits when we consider each of the
decision alternatives, smoking vs. non-smoking. This is indeed the intuition behind the
formula in Eq. (32) and, given the causal assumptions of Figure 7, the tobacco industry’s
argument is the correct one (see [Pearl 1995a, Pearl 1994] for formal derivation).

To illustrate the use of Eq. (32), let us use the data in Table 1 to calculate the
probability that a randomly selected person will develop cancer (y; : ¥ = 1) under each
of the following two actions: smoking (z; : X = 1) or not smoking (zy : X = 0).

Substituting the appropriate values of P(y|z), P(y|z, 2), and P(z) gives

E[P(yi|z1,u)] = .05(.10 X .50 + .90 X .50) +.95(.05 x .50 + .85 x .50)
= .05 % .50 +.95 x .45 = 4525
E[P(i|zo,u)]) = .95(.10 x .50 + .90 x .50) + .05(.05 X .50 + .85 x .50)
95 x .50 + .05 x .45 = .4975 (49)

Thus, contrary to expectation, the data prove smoking to be somewhat beneficial to one’s
health.

The data in Table 1 are obviously unrealistic and were deliberately crafted so as
to support the genotype theory. However, this exercise was meant to demonstrate how
reasonable qualitative assumptions about the workings of mechanisms can produce precise
quantitative assessments of causal effects when coupled with nonexperimental data. In
reality, we would expect observational studies involving mediating variables to refute the
genotype theory by showing, for example, that the mediating consequences of smoking,
such as tar deposits, tend to increase, not decrease, the risk of cancer in smokers and
non-smokers alike. The estimand given in Eq. (32) could then be used for quantifying the
causal effect of smoking on cancer.

APPENDIX II: Graphs, structural equations, and counterfactuals

This paper uses two representations of causal models: graphs and structural equations.
By now, both representations have been considered controversial for almost a century.
On the one hand, economists and social scientists have embraced these modeling tools,
but they continue to debate the empirical content of the symbols they estimate and
manipulate; as a result, the use of structural models in policy-making contexts is often
viewed with suspicion. Statisticians, on the other hand, reject both representations as
problematic (if not meaningless) and instead resort to the Neyman-Rubin counterfactual
notation [Rubin 1990] whenever they are pressed to communicate causal information.
This appendix presents an explication that unifies these three representation schemes
in order to uncover commonalities, mediate differences, and make the causal-inference
literature more generally accessible.
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The primitive object of analysis in Rubin’s counterfactual framework is the unit-based
response variable, denoted Y (z,u) or Y, (u), read: “the value that Y would obtain in unit
u, had X been z”. This variable has natural interpretation in structural equation models.
Consider a set T of equations

where the U; stand for latent exogenous variables (or disturbances), and the PA; are
the explanatory (observed) variables in the ith equation (pa; is a realization of PA;).
(50) is similar to (14), except we no longer insist on the equations being recursive or on
the U;’s being independent. Let U stand for the vector (Uy,...,U,), let X and Y be two
disjoint subsets of observed variables, and let 7}, be the subtheory created by replacing the
equations corresponding to variables in X with X = x, as in Definition 2. The structural
interpretation of Y (z,u) is given by

Y (z,u) £ Yr, (u) (51)

namely, Y (z,u) is the (unique) solution of Y under the realization U = u in the subtheory
T, of T'. While the term wnit in the counterfactual literature normally stands for the
identity of a specific individual in a population, a unit may also be thought of as the set
of attributes that characterize that individual, the experimental conditions under study,
the time of day, and so on, which are represented as components of the vector u in
structural modeling. Eq. (51) forms a connection between the opaque English phrase
“the value that Y would obtain in unit u, had X been z” and the physical processes that
transfer changes in X into changes in Y. The formation of the submodel T, represents a
minimal change in model T needed for making x and u compatible; such a change could
result either from external intervention or from a natural yet unanticipated eventuality.

Given this interpretation of Y'(z, u), it is instructive to contrast the methodologies of
causal inference in the counterfactual and the structural frameworks. If U is treated as a
vector of random variable, then the value of the counterfactual Y (z,u) becomes a random
variable as well, denoted as Y (z) or ;. The counterfactual analysis proceeds by imagining
the observed distribution P*(xy,...,z,) as the marginal distribution of an augmented
probability function P* defined over both observed and counterfactual variables. Queries
about causal effects, written P(y|Z) in the structural analysis, are phrased as queries about
the marginal distribution of the counterfactual variable of interest, written P*(Y (z) = y).
The new entities Y (x) are treated as ordinary random variables that are connected to the
observed variables via consistency constraints (Robins, 1987) such as

X=2z = Y(@)=Y (52)

and a set of conditional independence assumptions which the investigator must supply to
endow the augmented probability, P*, with causal knowledge, paralleling the knowledge
that a structural analyst would encode in equations or in graphs.

For example, to communicate the understanding that in a randomized clinical trial (see
Figure 5(b)) the way subjects react (') to treatments (X) is statistically independent of
the treatment assignment (Z7), the analyst would write Y(z) || Z. Likewise, to convey
the understanding that the assignment processes is randomized, hence independent of any
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variation in the treatment selection process, structurally written Ux || Uz, the analyst
would use the independence constraint X (z) || Z. o

A collection of constraints of this type might sometimes be sufficient to permit a
unique solution to the query of interest, for example, P*(Y(z) = y); in other cases, only
bounds on the solution can be obtained. Section 4 explains why this approach is con-
ceptually appealing to some statisticians, even though the process of eliciting judgments
about counterfactual dependencies has so far not been systematized. When counterfac-
tual variables are not viewed as by-products of a deeper, process-based model, it is hard
to ascertain whether all relevant judgments have been articulated, whether the judgments
articulated are redundant, or whether those judgments are self-consistent. The elicitation
of such judgments can be systematized using the following translation from graphs.

Graphs provide qualitative information about the structure of both the equations in
the model and the probability function P(u), the former is encoded as missing arrows,
the latter as missing dashed arcs. Each parent-child family (PA;, X;) in a causal diagram
G corresponds to an equation in the model (50). Hence, missing arrows encode exclusion
assumptions, that is, claims that adding excluded variables to an equation will not change
the outcome of the hypothetical experiment described by that equation. Missing dashed
arcs encode independencies among disturbance terms in two or more equations. For

example, the absence of dashed arcs between a node Y and a set of nodes 7,..., 7,
implies that the corresponding error variables, Uy, Uy, ...,Uyg,, are jointly independent
in P(u).

These assumptions can be translated into the counterfactual notation using two simple
rules; the first interprets the missing arrows in the graph, the second, the missing dashed
arcs.

1. Exclusion restrictions: For every variable Y having parents PA,, and for every set
of variables S disjoint of PA,, we have

Y(pa,) =Y (pay,s) (53)

2. Independence restrictions: If Z;,..., Z; is any set of nodes not connected to Y via
dashed arcs, we have

Y(pay) L {Zl (pazl )7 SRR Zk(pa’zk)} (54)

Given a sufficient number of such restrictions on P*, it is possible to compute causal
effects P*(Y(xz) = y) using standard probability calculus together with the logical con-
straints (e.g., Eq. (52)) that couple counterfactual variables with their measurable coun-
terparts. These constraints can be used as axioms, or rules of inference, in attempting to
transform causal effect expressions, P*(Y(z) = y), into expressions involving only mea-
surable variables. When such a transformation is found, the corresponding causal effect
is identifiable, since P* reduces then to P. The axioms needed for such transformation
are:

Degeneracy: Y () =Y (55)
Composition: Y (z) =Y (z,Z(z)) for any Z disjoint of {X,Y} (56)
Sure — thing : If Y(z,2) =Y (2',2) V2' # 2z, then Y(z,2) =Y (2) (57)
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Degeneracy asserts that the observed value of Y is equivalent to a counterfactual
variable Y (z) in which the conditional part: “had X been z” is not enforced, that is, X
is the empty set.

The Composition axiom!4

asserts:
If Y(z,2) =y and Z(z) = 2, then Y(z) =

and, conversely:
If Y(z) =y and Z(z) =z, then Y(z,2) =y

In words: “The value that Y would obtain had X been z is the same as that obtained
had X been x and Z been z, where z is the value that Z would obtain had X been x”.

The sure-thing axiom (named after Savage’s “sure-thing principle”) asserts that if
Y (z, z) = y for every value z of X, then the counterfactual antecedent X = z is redundant,
namely, we need not concern ourselves with the value that X actually obtains.

Properties (56)-(57) are theorems in the structural interpretation of Y (x,u) as given
in Eq. (51) [Galles & Pearl 1997]. However, in the Neyman-Rubin model, where Y (z, u)
is taken as a primitive notion, these properties must be considered axioms which, together
with other such properties, defines the abstract counterfactual conditioning operator “had
X been z”. It is easy to verify that composition and degeneracy imply the consistency
rule of (52); substituting X = {0} in (59) yields Y = Y (2) if Z = 2, which is equivalent
o (52).

As an example, let us compute the causal effects associated with the model shown in
Figure 2 (or Egs. (1)-(3)). The parents sets a given by:

={0}, PA, ={X}, PA, ={Z} (58)
Consequently, the exclusion restrictions (53) translate into:
Z(z) = Z(y,z) (59)
X@y) = X(zy)=X()=X (60)
Y(2) = Y(z,12) (61)
The independence restrictions (54) translate into:

Z(z) | {Y(2),X} (62)

Task-1, compute P*(Z(z) = z) (Equivalently P(z|Z))
From (62) we have Z(x) || X, hence

P (Z(x) = z) = P*(Z(z) = z|x) = P"(z|x) = P(z|z) (63)

Task-2, compute P*(Y(z) = y) (Equivalently P* (y|2))

PHY =X P(¥(2) = 1) (@) (64)

14This axiom was communicated to me by James Robins (1995, in conversation) as a property needed
for defining a structure he calls “finest fully randomized causal graphs” [Robins 1986, pp. 1419-1423]. In
Robins’ analysis, Y (z, 2) and Z(z) may not be defined.
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From (62) we have

Y(z) I Z()[X (65)
hence
P(Y(2) =ylz) = P(Y(2) = yla, Z(z) = 2) by (52)
= P*Eﬁ(z) ): ylz, 2) by 240;
= P*(ylz,z by (40
= Plylz,2) %)
Substituting (66) in (64), gives
P'(Y(2) =y) = >_P(ylz,2) P(z) (67)

T

which is the celebrated covariate-adjustment formula for causal effect, as in Eq. (42).

Task-3, compute P*(Y(z) = y) (Equivalently P(y|Z))
For any arbitrary variable Z, we have (by composition)

Y(z) =Y (2, Z(x))
In particular, since Y (z,2) = Y (2) (from (61)), we have
Y(z) =Y (2, Z(x)) = Y (Z())
and

PY(z)=y) = P'(Y(Z(z) =y

since Y(z) || Z(x).
P*(Y(z) = y) and P*(Z(x) = z) were computed in (67) and (63), respectively, hence

PH(Y(z) =y) = }_ P(z|z) Z P(y|z,2") P(')

In summary, the structural and counterfactual frameworks are complementary of each
other. Structural analysts can interpret counterfactual sentences as constraints over the
solution set of a given system of equations (51) and, conversely, counterfactual analysts
can use the constraints (over P*) given by Eqgs. (53) and (54) as a definition of graphs,
structural equations and the physical processes which they represent.
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