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Abstract

We present an approach for reasoning about
actions and plans when domain knowledge
is represented by a symbolic causal network,
which is a principled, logical representation of
a domain that explicates its perceived causal
structure. The proposed approach shows that
causal structures can play a key role in logi-
cal reasoning about actions given their effec-
tive role in dealing with some of the prob-
lems associated with such reasoning, includ-
ing the frame, ramification, and concurrency
problems.

1 Introduction

A symbolic causal network is a principled represen-
tation of a logical database (a set of propositional
clauses), which encodes one’s perception of causal rela-
tionships in a given domain; see Figure 1.

In the same way that a probabilistic causal network
represents a probability distribution that is faithful to
a given causal structure [14], a symbolic causal network
represents a logical database that satisfies similar faith-
fulness conditions [5].

Causal faithfulness stands for two requirements, one
concerns the dynamics of database revisions due to new
observations, while the second concerns the dynamics
of database updates due to external actions.

In probabilistic causal networks, revisional faithful-
ness is encapsulated in conditional independence con-
straints, the satisfaction of which is guaranteed when-
ever the distribution is generated by processes config-
ured according to the network’s layout [14]. Symbolic
causal networks offer similar guarantees with respect
to logical databases, but the independence constraints
encoded by these networks are logical rather than prob-
abilistic.

Revisional faithfulness and how it can be obtained
using symbolic causal networks are treated elsewhere
[5]. In this paper, we focus on the action part of faith-
fulness, ensuring that actions, their effects, their inter-
actions with observations, and their interactions with
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al => battery-ok

key-turned & battery-ok & a2 => car-starts

~battery-ok & a3 => ~car starts

Figure 1: A symbolic causal network.

other actions are consistent with the (perceived) causal
structure of the world. Specifically, we will show that
symbolic causal networks define a simple update oper-
ator on logical databases that meets this faithfulness
requirement. Moreover, we will show how this operator
can serve as the basis for reasoning about actions and
plans when knowledge is encoded using symbolic causal
networks.

This paper is structured as follows. Section 2 reviews
symbolic causal networks. Section 3 discusses the up-
date operator defined by a symbolic causal network and
shows how it can be used to reason about actions. This
section also discusses the role of causal structures in
dealing with the frame, ramification, and concurrency
problems. Section 4 shows how symbolic causal net-
works can be used to reason about plans (sequences of
actions), in addition to illustrating their ability to rea-
son about a mixture of actions and observations and
to support abductive as well as predictive reasoning.
Finally, Section 5 shows how symbolic causal networks
support assumption—based reasoning and discusses the
role of this mode of reasoning in dealing with uncer-
tainty.

2 Symbolic causal networks

Consider the networks depicted in Figure 1 and Fig-
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A& Ok(X)=>~C  A&BG&ok(Y)=>D

~A & ok(X)=>C ~(A & B) & ok(Y) =>~D

Figure 2: A symbolic causal network describing a circuit.

ure 2. FEach of these networks has two components.
The first is a causal structure that captures perceptions
of causal influences. And the second is a set of micro
theories, each associated with one proposition in the
causal structure.

The purpose of each micro theory is to specify the
logical relationship between a proposition and its direct
causes. For example, the micro theory associated with
the Proposition car_starts in Figure 1 is

key_turned A battery_ok ANas DO car_starts,
—battery_ok Nas DO —car_starts,
which specifies the relationship between this proposi-
tion and its direct causes key_turned and battery_ok.
Similarly, the micro theory associated with Proposition
D in Figure 2 is
AANBANOK(Y) D D
“~(AANB)AOK(Y) D =D,
which specifies the relationship between Proposition D
and its direct causes A and B.

In general, the micro theory associated with a propo-
sition p has two types of material implications:

o positive causal rules of the form ¥ A a D p and
o negative causal rules of the form ¢ A G D —p,
where

1. ¥ and ¢ are propositional sentences constructed
from the direct causes of p in the causal structure.

2. « and B are propositional sentences constructed
from atomic propositions that do not appear in
the causal structure (called assumption symbols).

3. a A (B is unsatisfiable whenever ¥ A ¢ is satisfiable.
For example, in Figure 1, the material implication,
—battery_ok A as D —car_starts,

is a negative causal rule, where ¢ = —battery_ok and
«a = ag. Similarly, in Figure 2, the material implication,

AABAOK(Y) D D,

is a positive causal rule, where ¢ = AA B and g =
OK(Y) — that is, OK(Y) is an assumption symbol in
this case.

The first two conditions above ensure that each mi-
cro theory is local to a specific proposition and its di-
rect causes. The last condition is typically self-imposed
in causal modeling. In particular, the causal rules
YANaDpand 6 AF D —pentail a AF D (Y A @).
Therefore, if @ A 8 and 3 A ¢ are both satisfiable, then
the micro theory for p — which is intended to spec-
ify the relationship between p and its direct causes —
is indirectly specifying a relationship between the di-
rect causes of p, which is atypical in causal modeling.
For example, one would never specify a relationship
between the inputs to a digital gate in the process of
specifying the relationship between its inputs and out-
put.

3 Reasoning about action

We observed elsewhere that causal structures impose
independence constraints on belief changes that are
triggered by observations (belief revisions) [5]. In par-
ticular, we characterized the conditional independences
imposed by a causal structure on belief revisions:

Given a state of the assumption symbols, ob-
serving the direct causes of a proposition p
renders the belief in p independent of obser-
vations about its non—effects.

We also showed that the database induced by a sym-
bolic causal network satisfies all the independences en-
coded by its corresponding causal structure.

But causal structures also impose constraints on be-
lief changes that are triggered by external interventions
(belief updates [9]). Therefore, our focus in this paper
is on characterizing these constraints and on providing
a formal proposal for belief update that respects them.

To motivate the discussion in this section, consider
the symbolic causal network in Figure 2. Suppose that
gates X and Y are both ok, and that we have no in-
formation about the states of wires A, B, C' and D.
Suppose further that someone intervenes and sets out-
put C' to ON by connecting it to a high voltage. How
can we predict the effect of this action formally?

Before we answer this question, two points need to
be stressed:

1. We cannot account for this action by simply adding
C to the database describing the circuit. If we do
this, we end up concluding that input A must be
OFF and, therefore, that output D must also be
OFF. But this is counterintuitive since connecting
C to a high voltage should not change our beliefs
about input A and output D). This should not
be surprising given the recent literature on belief
update, which emphasizes the distinction between
recording an observation about a static world (ob-
serving that C' is ON) and recording an observa-
tion about a changing world (intervening to make

C ON) [9, 8].

2. The propositional database corresponding to the
digital circuit does not contain enough information
to predict the effect of an action that sets output C
to ON. To see why, consider the circuit in Figure 3,
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Figure 3: A symbolic causal network describing a circuit.

which is exactly like the circuit in Figure 2, except
that the input and output of inverter X are inter-
changed. The two circuits have the same logical
description as can be seen from their correspond-
ing causal networks. However, if we connect C in
Figure 3 to a high voltage, then we would conclude

that A and D are OFF.

What we have here is two circuits with equivalent log-
ical relationships among their wires, but with different
reactions to external interventions. The question now
is, What extra information about these circuits should
we appeal to in order to infer formally their reactions
to external interventions?

What we will show next is that the causal structures
of these circuits is precisely that extra information. In
particular, we will show that although the circuits’ log-
ical descriptions do not contain enough information to
predict their reactions to setting C' to ON, their logi-
cal descriptions together with the causal structures do.
Moreover, this combined information is exactly what is
captured by a symbolic causal network.

We first show in general how the causal structure
of a symbolic causal network can be used to update
the database specified by the network in response to
an action. We then show how the suggested approach
works on the previous example.

The update operator is based on the following princi-
ple, called the sufficient cause principle, which reduces
actions to observations:

Acting to establish the truth of proposition p
is equivalent to observing a hypothetical event
Do(p), called a sufficient cause of p, which is
(1) a direct cause of p, (2) logically entails
p and (3) is independent of every non—effect
(non—descendant) of p in the causal structure.

According to this principle, predicting the effect of
an action that establishes proposition p can be accom-
plished by performing the following steps. First, we
augment the given causal structure with a sufficient
cause Do(p) of p, thus changing the (causal) micro the-
ory of p. Second, we simulate the action of establishing
p by an observation of the sufficient cause Do(p).

Specifically, after extending the causal structure by
adding the sufficient cause Do(p), the micro theory of
proposition p,

YvYAa D p
oNB D —p,
is replaced by the following:
—Do(p) Ay A D p
—~Do(p)ASAB D -p
Do(p) D p.
One must stress the following about the above proposal:

1. The alteration of the micro theory of proposition p
is nonmonotonic. For example, the original micro
theory of p entails ¥ A D p, but the new micro
theory does not.

2. We are assuming that the action Do(p) has no pre-
conditions.

3. We are assuming that the action Do(p) always suc-
ceeds in obtaining its effect of establishing p.!

4. The direct effect of the action Do(p) is restricted
to its effect on p; all its other effects are logical
consequences of its effect on p.2

Since the above proposal reduces actions to obser-
vations, the results reported in [5] for reasoning about
observations become available for reasoning about ac-
tions. Among the most important of these results are
(1) a characterization of the independences imposed by
a causal structure on beliefs, observations and actions;
(2) the ability to read these independences and many of
their implications directly from the topology of a causal
structure using the criterion of d-separation [14]; (3) a
proposal for reasoning about actions and observations
that is guaranteed to satisfy these independences; and
(4) a set of distributed algorithms for computing in-
ferences that are symmetric in their complexity to the
algorithms used in probabilistic causal networks.

3.1

Let us see how we can formally predict the effect of
setting C' to ON in both circuits by appealing to our
account of action.

Starting with the circuit in Figure 2, we create a
sufficient cause Do(C') for proposition C' and update
its micro theory, which leads to the causal network in
Figure 4 and its corresponding database I'.  We then
simulate the action of setting C' to ON by observing
the sufficient cause Do(C'), which gives the intended
results:

An example

T U{OK(X), 0K (Y), Do(C)} E C,
I U{OK(X), OK(Y), Do(C)} I AV ~D.

That is, our beliefs about A and D do not change as a
result taking an action that sets C' to ON.

1This is not a limitation, but a simplification. Actions
with uncertain effects can be modeled in the same frame-
work, but are outside the scope of this paper.

2We note here that actions with similar properties have
been treated in probabilistic settings using a probabilistic
analogue of the sufficient—cause principle [16, 8].



Do(C) => C ° °

~Do(C) & A & ok(X) =>~C A & B & ok(Y) =>D
~Do(C) & ~A & ok(X) =>C ~(A & B) & ok(Y) => ~A

Figure 4: A symbolic causal network extending the one in
Figure 2 by including a sufficient cause Do(C) for proposi-
tion C. Adding this cause changes the micro theory asso-
ciated with C' only. The rest of the network remains un-
changed.

C & ok(X) =>~A
~C & ok(X) => A

@ O @

Do(C) =>C A& B& ok(Y)=>D

~(A & B) & ok(Y) =>~D

Figure 5: A symbolic causal network extending the one in
Figure 3 by including a sufficient cause Do(C) for proposi-
tion C. Adding this cause changes the micro theory asso-
ciated with C' only. The rest of the network remains un-
changed.

If we perform the same exercise with respect to the
circuit in Figure 3, we obtain the symbolic causal net-
work in Figure 5, which specifies a different database
A. We then simulate the action of setting C' to ON by
observing the sufficient cause Do(C'), which also gives
the intended results:

AU{OK(X), OK(Y), Do(C)} = C A=A A=D.

That is, our beliefs about A and D change as a result
of setting C' to ON. Note, however, that adding Do(C)
does not perturb the micro theories of either A or D.
The key idea underlying the approach we presented
so far is that causal knowledge can efficiently be orga-
nized in terms of small mechanisms (described using
micro theories), each involving a relatively small num-
ber of propositions. Each external intervention over-
rules just one mechanism, leaving the others intact.
The specification of an action then requires only the
identification of the mechanism that it overrules. Once

this is identified, the effect of an action can then be
computed from the constraints imposed by the remain-
ing mechanisms. The simplicity and effectiveness of
this approach manifests itself clearly when discussing
the way it treats some of the major difficulties in rea-
soning about actions; that is, the frame, ramification,
and concurrency problems.

3.2 Causal structures and the frame problem

A frame aziom is a statement identifying an aspect of
the world that is not changed by a certain action. For
example, “Moving block A on the table does not change
its color” is a frame axiom. The frame problem is that of
succinctly summarizing the frame axioms [12]. A num-
ber of proposals for such summarization are discussed
in [15].

Summarizing frame axioms is one of the key roles
played by the causal structure of a symbolic causal net-
work. In particular, if the effect of an action is pre-
dicted according to the sufficient—cause principle, then
the following property is guaranteed: An action Do(p)
will never change the truth value of a proposition ¢ that
is not an effect (descendant) of p in the causal struc-
ture. Therefore, by using the sufficient—cause princi-
ple to reason about actions, one is implicitly respecting
the following frame axioms, which can be read from the
topology of a causal structure:

For each proposition p, and for each proposi-
tion ¢ that is not an effect of p in the causal
structure, the action Do(p) does not change
the truth value of gq.

This follows because the non—effects of p in a causal
structure are d-separated from Do(p).

For example, the causal structure in Figure 2 repre-
sents eighteen frame axioms, and the causal structure
in Figure 3 represents sixteen frame axioms. The ax-
iom, “Do(C) does not change the truth value of D” is
encoded by the causal structure of Figure 2, but not
by the one of Figure 3. On the other hand, the axiom,
“Do(A) does not change the truth value of C” is en-
coded by the causal structure of Figure 3, but not by
the one of Figure 2. It is this extra information that
a symbolic causal network captures about a system, in
addition to the logical description of that system.

3.3 Micro theories and the ramification
problem

The ramification problem is the difficulty of describing
the indirect effects of actions. This problem is most
common in formalisms that solve the frame problem by
deriving frame axioms from the completeness assump-
tion of effect axioms [15]. In such a case, prohibiting
domain constraints (e.g., the workings of a gate) seems
to simplify the derivation of frame axioms because it al-
lows such derivation through only local considerations
of effect axioms. The result of this restriction, how-
ever, is the inability to deduce indirect effects of ac-
tions, which puts the burden on the user to enumerate
them in effect axioms.

Domain constraints are represented in symbolic
causal networks using the micro theories associated
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Figure 6: Possible causal interactions.

with network propositions. These constraints are used
to infer the indirect effect of actions. For example, in
Figure 3, the action Do(C) has the direct effect of set-
ting C' to ON, but it also has an indirect effect of making
A OFF. But this indirect effect can be inferred using
the micro theory of proposition A.

In summary, the ramification problem does not ap-
pear in symbolic causal networks because micro theo-
ries are domain constraints that are used to infer in-
direct effects of actions. Moreover, allowing domain
constraints in symbolic causal networks does not com-
plicate the frame problem because frame axioms are
not derived from effect axioms, but are inferred from
the causal structure instead.

3.4 d—separation and concurrent actions

The approach we presented so far does not require a
special treatment of concurrent actions [1, 11]. That is,
to predict the effect of a set of actions, one needs only
to identify the mechanisms that they overrule and then
compute the effects of such actions using the constraints
imposed by the remaining mechanisms.

More importantly, the causal structure of a symbolic
causal network can be used to predict some interactions
among concurrent actions without having to specify the
involved mechanisms. This should not be surprising,
however, given that a causal structure outlines the in-
teractions among these mechanisms.

In particular, the criterion of d—separation tells us
that for any propositions p and ¢ in a causal struc-
ture, the actions Do(p) and Do(q) are logically inde-
pendent given a state of assumption symbols. This fol-
lows because Do(p) and Do(q) are always d-separated
in any causal structure. This property, however, does
not necessarily hold in case either p, ¢, or one of their
common descendants is observed. For example, given
the state OK(X) A OK(Y) of assumption symbols in
Figure 3, observing =D makes the actions Do(—C)
and Do(B) logically dependent; in particular, it makes
Do(—=C)A Do(B) inconsistent. Note, however, that this
dependence is only in light of a given state of assump-
tion symbols. If we do not commit to such a state, the
combined actions Do(—C') A Do(B), together with the
observation =D, logically imply ~OK(X) V -OK(Y),
thus ruling out the state OK(X) A OK(Y) from being
possible.

The criterion of d—separation can also be informative
about the interactions between the effects of actions.

0 1 2 3
fired 0

\O %
| oaded 0 0 0 O :‘;:;\
alive 0 0 o _\_\>\

O

Figure 7: A causal network for reasoning about plans.

In particular, from d—separation we can infer the fol-
lowing principles, which refer to Figure 6. First, if ¢ is
an indirect cause of e, and if there is a conflict between
the effect of Do(c) and the effect of Do(e), then the
effect of Do(e) prevails. Next, if ¢; and ¢3 are common
causes of e, then the actions Do(eq) and Do(cz) can
never have a conflicting effect on e. This follows from
the definition of a micro theory, which guarantees that
c1 and ¢y are logically independent given a state of as-
sumption symbols. Finally, if ¢; and e; are common
effects of ¢, then the cause ¢ is logically independent of
the actions Do(e;1) and Do(ez) given a state of assump-
tion symbols. That is, neither of these actions will have
an influence on c.

The reader is referred to [13] for more details on the
use of d-separation in making predictions about the
effects of actions.

4 Reasoning about plans

Reasoning about plans (sequences of actions) requires
one to explicate the temporal order in which actions
take place. To that end, symbolic causal networks that
support such reasoning can use propositions that are
indexed by the time at which they hold.

For example, if one wants to plan in a shooting sce-
nario, then one may construct a symbolic causal net-
work with the causal structure in Figure 7 and the fol-
lowing micro theories:

e The micro theories of loadedy, aliveg and fired, are
empty.



e The micro theory of loaded;, where t > 0, is

fired,_y D —loaded
—fired,_, A loaded;—1 D loaded:
—loaded;_y D —loadedy,

e The micro theory of alive;, where t > 0, is

fired,_q N loaded;—1 D —alive
S(fired,_q A loaded;_1) A alive,—1 D alive,

—alive;_1 DO —alives.

This completes the definition of the symbolic causal
network, which can now be used to answer queries.
We will now consider two examples for reasoning
about plans, one illustrating the ability to reason about
a plan in light of some observations and the other illus-
trating the ability to support abductive reasoning.

4.1 Mixing actions and observations

Suppose that the user observes aliveg A —loadedy, de-
cides to load the gun without firing it, Do(loaded:) A
—fired,, and then fires it, Do(fired,). What is the effect
of this sequence of actions on loaded; and alive;?

To answer this query according to the proposal given
in Section 3, we change the micro theory of loaded;
from

firedy D —loaded;
—firedy A loadedy D loaded;
—loadedy O —loaded;.

to:3
—Do(loaded,) A firedy D —loaded;
—Do(loaded,) N —firedy A loadedy D loaded,
—Do(loaded,) N —loadedy D —loaded,

Do(loadedy) D loaded;.

We also replace the micro theory of fired,, which is
empty in this case, with

Do(fired,) D fired,.

Now, assuming that the above substitutions lead to
database A, it is easy to verify that

AU {aliveg, ~loadedq, Do(loadedy), —fired,, Do(fired,)}

implies loaded; N alive; for t = 1,2, and that it implies
—loaded; N —alive; for t > 3. That is, the victim is dead
and the gun is unloaded after the action is taken and
that persists into the future.

4.2 Abductive reasoning

Suppose that the user observes the victim to be alive
aliveg, decides to fire the gun Do(fired,), and then finds
out that the victim is still alive alives. How can we
explain this observation?

SNote that the transformation is nonmonotonic: the
original database entails —loadedy D —loaded;, but the new
database does not entail this.

To answer this query according to the proposal given
in Section 3, we change the micro theory of fired,, which
is empty in this case, with

Do(fired,) D fired,.
Now, assuming that the above substitutions lead to
database A, it is easy to verify that

A U {aliveg, Do(fired,), alives}

implies —loaded;. That is, the reason why shooting
did not kill the victim is explained by the gun being
unloaded during the shooting.

5 Assumption—based reasoning

Reasoning about actions and plans is typically done un-
der uncertainty: Actions may not always succeed, and
when they do, their effects may not be certain. Even
if the direct effects of actions are certain, their indirect
effects are often conditional on uncertain propositions.

In probabilistic reasoning about actions, this problem
is dealt with by attaching probabilities to propositions.
In logical reasoning, uncertainty is typically dealt with
using nonmonotonic reasoning. There are many pro-
posals for nonmonotonic reasoning. One of these pro-
posals, called assumption—based reasoning, identifies a
set of assumable propositions, assumes their truth val-
ues, and then retracts or reverses these assumptions
when they prove to be wrong. An ATMS is the ba-
sic formalism for implementing this sort of reasoning
[6]. In ATMSs, a label is attached to each proposition,
which characterizes all assumptions under which the
proposition holds.

Symbolic causal networks support assumption—based
reasoning. In particular, in the same way that proba-
bilistic causal networks compute a probability for each
proposition in the network, symbolic causal networks
compute an argument for each proposition. Arguments
are logically equivalent to ATMS labels, but they are
not necessarily put in canonical form [3].* Consider
the network in Figure 3 for an example. Initially, the
argument for any proposition is simply false, meaning
that not any set of assumptions would be enough to en-
tail any proposition. After observing D, however, the
arguments for A, B, and —C are updated to OK(Y),
OK(Y), and OK(X) A OK(Y), respectively. But if
we set C' to ON, the argument for = A is updated to
OK(X).

In assumption-based reasoning, one assumes a par-
ticular state of assumption symbols, thus leading to
some state of belief. But this state is then changed in
face of observations that contradict with it. The role
that arguments play in this mode of reasoning is two—
fold. First, they are needed to decide whether a propo-
sition holds given some assumptions. Second, they are
needed to characterize the assumptions that are logi-
cally possible after recording some observations. Specif-
ically, proposition p follows from some assumptions pre-
cisely when these assumptions entail the argument for

*Therefore, arguments are easier to compute than ATMS
labels; the complexity of computing arguments in symbolic
causal networks is symmetric to the complexity of comput-
ing probabilities in probabilistic causal networks [2, 3].



p. Moreover, the assumptions that are logically possi-
ble given the observation O are those that do not entail
the argument for -0 [3].

Another important role of arguments in reasoning
under uncertainty is in implementing Dempster—Shafer
reasoning. The basic idea here is to assign probabilities
to assumption symbols while assuming their probabilis-
tic independence. The probability of the argument for
proposition p can then be shown to correspond to the
Dempster—Shafer belief in p [10].

We have discussed earlier the role that causal struc-
tures play in treating the frame, ramification, and con-
currency problems. These structures also play a sig-
nificant computational role that will be elaborated on
in the remainder of this section. Specifically, since a
causal structure encodes independences that can be
read from its topology, and since the database induced
by a symbolic causal network is guaranteed to satisfy
these independences, the causal structure of a symbolic
causal network can be exploited by distributed algo-
rithms when computing arguments. That is, the topol-
ogy of a causal structure can be used to guide the de-
composition of arguments into smaller arguments that
can be computed in parallel [2, 5, 3]. More precisely,
whenever propositions X and Y are d—separated by 7
in the causal structure [14], we get the following key

property:
Argument(Yxyz) = Argument(Yxz)VArgument(Yyz),

where ¥ xyz is a clause over propositions X UY U Z,
while ¥xz and Yy z are the subsets of ¥ xy 7z over the
propositions X U Z and Y U Z, respectively.® This de-
composition is the basis for distributed algorithms that
compute arguments and is analogous to the decomposi-
tion used when computing probabilities in probabilistic
causal networks [3]. In fact, symbolic causal networks
are only an instance of a more general class of networks,
called abstract causal networks [2], which also include
probabilistic causal networks [14] and kappa causal net-
works [7]. The computational utility of the indepen-
dences encoded by a causal structure is common to all
instances of abstract causal networks as shown in [2],
which also presents some formal algorithms and a Lisp
implementation, called cNETs [4], for reasoning with
abstract causal networks.

Conclusion

The basic contribution of this paper has been a pro-
posal for updating propositional knowledge bases that
are represented using symbolic causal networks. The
proposal guarantees the faithfulness of belief updates
to a given causal structure in a precise sense. It also
shows that causal structures can play a key role in log-
ical reasoning about actions given their effective role
in dealing with some of the problems associated with
such reasoning, including the frame, ramification, and
concurrency problems.

®This is similar to the guarantee that Pr(X,Y|Z) =
Pr(X|Z)Pr(Y|Z) whenever X and Y are d-separated by

Z in a probabilistic causal network.
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