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Abstract

This paper describes a framework for speci-
fying preferences in terms of conditional de-
sires of the form “«a is desirable if 37, to be
interpreted as “a is preferred to —a other
things being equal in any f world”. We
demonstrate how such preference sentences
may be interpreted as constraints on admis-
sible preference rankings of worlds and how
they, together with normality defaults, allow
a reasoning agent to evaluate queries of the
form “would you prefer o1 over oy given ¢”
where o1 and o5 are action sequences. We
also prove that by extending the syntax to
allow for importance-rating of preference sen-
tences, we obtain a language that is powerful
enough to represent all possible preferences
among worlds.

1 Introduction

This paper describes a framework for specifying plan-
ning goals in terms of preference sentences of the form
“prefer a to —av if ¥”. Consider an agent deciding if she
should carry an umbrella, given that it is cloudy. Nat-
urally, she will have to consider the prospect of getting
wet —=d (not dry), the possibility of rain r, that it is
cloudy ¢, and so on. Some of the beliefs and knowledge
that will influence her decision may be expressed in
conditional sentences such as: “if I have the umbrella
then I will be dry”, u — d, “if it rains and I do not
have the umbrella then I will be wet” | » A—u — —d and
“typically if it is cloudy, it will rain”, ¢ — r. She may
also have preferences like “I prefer to be dry”, d > —d
and “I prefer not to carry an umbrella”, —u > u. From
the beliefs and preferences above, we should be able to
infer whether to carry an umbrella if she observes that
it is cloudy, assuming that keeping dry is more impor-
tant to her than not carrying an umbrella.

The research reported in this paper concerns such de-
cisions. Our aim is to eventually equip an intelligent
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Figure 1: Schematic of the proposed system

autonomous artificial agent with decision making ca-
pabilities, based on two types of inputs: beliefs and
preferences. Beliefs, some of which may be defeasible,
will be specified by normality defaults like “if you run
across the freeway then you are likely to die”, written
run — die. Preferences may be encoded in conditional
sentences such as “if it is morning then I prefer coffee
to tea”, written coffee > tea | morning. Figure 1
shows a schematic of the program. FEach normality

default ¢; LI ¥; and preference sentence «; =, 5; | v
will be quantified by an integer §; or ¢; which indicates
the degree of the corresponding belief or preference. A
larger degree implies a stronger belief or preference.
The program will also accept queries in the form of
(¢,01 > 03), which stands for “would you prefer oy
over oy given ¢7”. The output of the program is the
degree € to which the preference o1 > o3 holds in the
context ¢.

We take Bayesian decision theory and maximum ex-
pected utility [von Neumann and Morgenstern, 1947,
Pearl, 1988, Keeney and Raiffa, 1976] as ideal norms
for decision making. The problems with the the-
ory are that it requires complete specifications of a
probability distribution and a utility function and
that the specifications are numeric. The problems



with the complete specification of numeric proba-
bilities had been considered and partly resolved in
[Goldszmidt, 1992, Goldszmidt and Pearl, 1992]. The
approach is to move from numeric probabilities to
qualitative, order-of-magnitude abstractions and to

use conditional statements of the form ¢ 2 Y as
a specification language that constrains qualitative
probabilities. These constraints translate to a unique
belief ranking x(w) on worlds that permits the rea-
soning agent to economically maintain and update a
set of deductively closed beliefs. Pearl in [Pearl, 1993]
addressed the problem of numeric utilities. Paralleling
the order-of-magnitude abstraction of probabilities; he
introduced an integer-valued utility ranking u(w) on
worlds that, combined with the belief ranking x(w),
scores qualitative preferences of actions and their con-
sequences. However, the requirement for the complete
specification of the utility ranking remains problem-
atic.

Here we propose a specification language which ac-
cepts conditional preferences of the form “if g then «
is preferred to —=a”, @ > —a | . A conditional prefer-
ence of this form will also be referred to as a conditional
desire, written D(«|B3), which represents the sentence
“if B then « is desirable”. The output is the evaluation
of a preference query of the form (¢, 01 > o2) where
¢ is any general formula while 7 and o5 are action
sequences. The intended meaning of such query is “is
oy preferred to o5 given ¢”7 Our program is as fol-
lows. Each conditional desire D(«|8) is given ceteris
paribum (CP) semantics; “a is preferred to -« other
things being equal in any G-world”. A collection of
such expressions imposes constraints over admissible
preference rankings w(w). From the set of admissible
rankings we select a subset of the most compact rank-
ings 7t (w), each reflecting maximal indifference. At
the same time we use the normality defaults to com-
pute the set of believable worlds {w | k(w) = 0} that
may result after the execution of ¢; given ¢. One way
of computing the beliefs prevailing after an action is
through the use of causal networks, as described in
[Pearl, 1993]. To compare sets of believable worlds we
introduce a preference relation between sets of worlds,
called preferential dominance, that is derived from a
given preference ranking m(w). To confirm the pref-
erence query (¢,oq1 > 02), we compare the set of be-
lievable worlds! resulting from executing o; given ¢
to those resulting from executing o2 given ¢, and test
if the former preferentially dominates the latter in all
the most compact preference rankings. A set of worlds
W preferentially dominates V' if and only if:

'In general, “surprising worlds” should be considered
as well, in case they carry extremely positive or negative
utilities (e.g. getting hit by a car). But, to simplify the
exposition, we consider only believable worlds. A system
combining both likelihood and utility considerations, re-
flecting a qualitative version of the expected utility crite-
rion, is described in [Pearl, 1993].

1. W provides more and better possibilities,

2. W provides less possibilities but excludes poorer
possibilities or

3. W provides better alternative possibilities

when compared with V.

So far we have described the flat version of our lan-
guage, where a degree is not associated with each con-
ditional desire sentence D(«|8). We will show that
the flat language is not sufficient for specifying all
preference rankings. In particular we exhibit a prefer-
ence ranking that is not the most compact admissible
ranking with respect to any set of conditional desires.
Also, by not specifying the relative importance of con-
ditional desires, the flat language does not allow us
to decide among preferences resulting from conflict-
ing goals. To alleviate these problems we allow condi-
tional desires to be quantified by a integer indicating
the degree or strength of the desire. We prove that this
quantified language is expressive enough to represent
all preference rankings.

In the next section, we describe the language and the
semantics for conditional desires. In section 3, we in-
troduce preferential dominance between sets and show
how a preference query may be evaluated. Quantified
conditional desires are introduced in section 4 together
with the sufficiency theorem. Related work is com-
pared in section 5 and we conclude with a summary of
the contributions of this paper.

2 Preference Specification

2.1 The Context

In this section we consider conditional desires of the
form D(«|f) where a and 3 are well-formed formulas
obtained from a finite set of atomic propositions X =
{X1, Xs,...,Xn} with the usual truth functionals A, V
and —. Consider the desire sentence “I prefer to be
dry”, D(d). This sentence may mean that

1. “d is preferred to —d regardless of other things”,
or that

2. “dis preferred to —d other things being equal” or

3. some intermediate reading.

In this paper we take the ceteris paribum (CP) read-
ing which is “d is preferred to —d other things being
equal”. Similarly, the interpretation for a conditional
desire D(a|f) is “« is preferred to —a other things
being equal in any #-world”.

The first interpretation is not very useful, as shown by
von Wright in [von Wright, 1963], in that it does not
allow for two or more unconditional preference state-
ments to exist consistently together. For example, the
desire to be rich, D(r) and the desire to be healthy,



D(h) will quickly run into a conflict when considering
the worlds 7h and Fh. This is because the world rh is
preferred to Th by virtue of D(r) and 7h is preferred to
rh by virtue of D(h). The CP interpretation becomes
reasonable in the light of this. Now we are going to
question the CP interpretation.

Our first task is to explicate the meaning of D(«|g8)
in terms of preference constraints on pairs of worlds.
Given the statement D(«), the CP interpretation im-
poses constraints only between worlds that agree on
propositions that are not part of «. However to ex-
plicate what it means to be “part of «” it is insuffi-
cient to examine « syntactically, a semantic definition
is required. For example, if w = X1 A X2 A (A3 Xi),
v=-X1AX3 A (/\g X;) and o = X; we will con-
clude that w > v is not sanctioned by CP, but if we
were to write alpha as X; A (X3 V = X3) one might
conclude that the preference above holds, because X,
appears to be part of o and every thing else seems
to be equal. To explicate this notion we say that a
wif a depends on a proposition X; if all wifs that are
logically equivalent to « contain the symbol X;. The
set of propositions that « depends on is represented
by S(«). This set is referred to as the support of «,
written support(a) in [Doyle et al., 1991]. The set of
propositions that « does not depend on is represented
by S(a) = X \ S(a). To explicate the notion of “other
things being equal in any f-world”, we say that two
worlds agree on a proposition if they assign the same
truth value to the proposition. Two worlds agree on a
set of propositions if they agree on all the propositions
in the set. We say that w and v are S-equivalent, writ-
ten w ~g v if w and v agree on the set S C X. Given a
conditional desire D(«|fF) and a S-world, w, the worlds
that have “other things being equal” in w are those
that are S(a)-equivalent to w. We call D(ajw) a spe-
cific conditional desire if w is a wif of the form A} z;,
where z; = X; or =X;. (As a convention we will use
the same symbol w to refer to the unique model of the

wif w.)

Every specific conditional desire imposes constraints
on some set of worlds; we call that set the context.

Definition 1 (Context) Let D(ajw) be a specific
conditional desire. The context of D(a|w), C(a,w)
1s defined as

C’(Oz,w):{l/|1/~§(a-)w}. (1)

We write Cy(a,w) for {v |Ev|v € Cla,w)} where vy
15 a wif.

In the umbrella example the support of u V d is,
S(uVd) = {u, d} and the context of the specific condi-
tional desire D(u V d|udcr) is {udcr, uder, uder, uder},
the set of worlds which agree with w = uder on all
propositions except for u and d. The constraints im-
posed by D(u V d|uder) are shown in figure 2, where

uder uder

uder —— udcr

Figure 2: Constraints imposed by D(u V d|udcr)

the existence of an arrow w — v represents a prefer-
ence constraint between w and v. The meaning of the
direction of the arrow will be explained later.

Going from specific conditional desires to conditional
desires, a conditional desire D(«|3) is interpreted as
a conjunction of specific conditional desires D(a|w)
over all models w of 8, A, 5 D(a|w). We note that

D(«|f) may impose constraints on worlds that do not
satisfy the condition @ which may sound paradoxical.
The reason being that each world fixes only S(«), the
atomic propositions which are not in «; however not
all worlds that are constrained by D(«|3) are models
of #; v € C(a,w) & v = [. This stands contrary
to [Doyle et al., 1991] where conditional desires were
restricted to apply only to the models of 8. Consider
the sentence, “I desire the light to be ON if it is night
and the light is OFF”, D({|n A=l). Clearly such a sen-
tence compares night-worlds in which the light is ON
to those in which the light is OFF. The former does
not satisfy the condition # = nA—l. Such a reasonable
sentence would be deemed meaningless in a restricted
interpretation such as [Doyle et al., 1991]. 2 does not
act as a filter for selecting worlds to which the desired
constraints apply, instead it identifies worlds in which
the desires are satisfied.

2.2 Admissible Rankings

A preference ranking 7 is an integer-valued function
on the set of worlds Q. The intended meaning of a
ranking is that the world w is no less preferred than
the world v if w(w) > w(v). Given a non-empty set
of worlds, W, we write 7,(1¥) for min, ew 7(w) and
7 (W) for max,ew 7(w). If W is empty then we adopt
the convention that 7, (W) = oo and #*(W) = —c0.
The constraints imposed by a specific conditional de-
sire D(a|w) translates into constraints over admissible
preference rankings. The constraints are that every
a-world in the context C(a,w) has a higher rank (is
preferred) than any —a-world in the same context.

Definition 2 (Admissibility of rankings) Let D
be a set of conditional desires. A preference rank-
ing m is admissible with respect to a conditional de-
sire D(a|B) if for all w E B, v € Cu(a,w) and
V' e Coo(a,w) implies

m(v) > w(V). (2)



A preference ranking m is admissible with respect to
D if it is admissible with respect to all conditional de-
sires in D.

If there exist a ranking that is admissible with respect
to a set of conditional desires, D then we say that D
is consistent. A trivial example of an inconsistent set
is {D(u), D(—u)}. Another example of an inconsistent
set is {D(a), D(—«|B)}. The proof will be given later.
Figure 2 shows the three constraints imposed by the
conditional desire D(u V d|uder). An arrow w — v
represents the constraint m(w) > 7 (v).

The principle of CP, though simple and reasonable, is
still insufficient for drawing some conclusions we would
normally draw from conditional desire sentences. Con-
sider the sentence D(d) “I desire to remain dry” in the
original umbrella story. If this were truly the only de-
sire we have, we should prefer every situation in which
we are dry to any in which we are wet. No other con-
sideration can get into conflict with this ramification.
This conclusion is not sanctioned in the semantics con-
sidered thus far. For example we would not be able to
deduce that the situation in which we are dry with the
umbrella is preferred to the situation in which we are
wet without the umbrella. The reason is that D(d)
does not impose any constraints between worlds that
do not agree on any of the other propositions u, ¢ or
r. Although we do not want to deduce constraints
between u and —u worlds from the sole expression of
the desirability of d, we would still want to be able
to deduce a preference for d-worlds over —d-worlds by
default if it is consistent to do so. This discussion sug-
gests that in normal discourse we enforce additional
constraints which are implicit in our reasoning. One
such constraint is the principle of mazimal indiffer-
ence.

2.3 The Principle of Maximal Indifference

In [Goldszmidt, 1992] a distinguished ranking, the x+
ranking, was selected from among the admissible belief
rankings. The kT belief ranking assumes that every
situation is as normal as possible, reflecting the prin-
ciple of maximal ignorance. In the case of preferences
the principle that we want to adopt is the principle of
maximal indifference. We want to assume that there is
no preference between two worlds unless compelled to
be so by preferences that are explicated by the reason-
ing agent. From the set of admissible preference rank-
ings we want to select a distinguished ranking which
best capture the essence of the principle of maximal
indifference. This ranking, the 7T preference ranking,
will minimize the difference in the preference ranks.

Definition 3 (The 7t ranking) Let D be a set of
consistent set of conditional desires and let I be the
set of admissible rankings relative to D. A 7t ranking
ts an admissible ranking that is most compact, that

Table 1: Two most compact rankings

Worlds T T
abe m-+2|m+2
abe m+1|{m+1
abe m+1|m+1
abe m m
abe m+3 | m+2
abe m+2|{m+1
abe m+1 m
abe m m—1

18
Yo lrtw) =7t < Y Irw) —7(w)]  (3)
w,VESY w,VESY

for all w € 11.

The 7t rankings reflects maximal indifference? in the
reasoning agent. Consider the extreme case where the
set of desires D is empty. Without compactness, all
preference rankings are admissible and no conclusions
can be drawn. However with compactness we will se-
lect the “unique” ranking that ranks all worlds the
same. In this way we make definite conclusions about
the reasoning agent’s lack of preferences among worlds.

In the umbrella example, if we have the sole desire
D(d) then the 7+ rankings are

7r+(w):{ m+1 ifwpdand

m otherwise. (4)

where m is an integer. These preference rankings al-
low us to conclude that all worlds that satisfy d are
preferred over all worlds that do not.

Although the 7t ranking is unique in the above um-
brella example it is not so in general. Consider the
set D = {D(alc), D(b|e), D(a|~c), D(a A b|—¢), D(a V
—b|=¢)}. The first two conditional desires impose the
constraints

m(abe) > m(abe) > w(abe)
w(abe) > w(abe) > w(abe)
and the last three conditional desires dictate
m(abe) > w(abe) > w(abe) > m(abe).

Table 1 shows two admissible preference rankings of
D. The sum of difference in ranks for both 7; ad 75
is 68 and that is the minimum sum achievable subject
to the constraints. Therefore both 7 ad 7» are #t
preference rankings of D.

2An alternative interpretation of maximal indifference
can be developed whereby the distance 7(w) — 7(v) can-
not be reduced without either violating admissibility or in-
creasing the difference between some other pair of worlds.



This is a simple and small example and the 7t ranking
can be easily computed. In the general case the con-
ditional desires introduce a set of linear constraints
between worlds of the form w(w) — w(v) > 0. The
problem of finding the most compact preference rank-
ing can be modeled as a nonlinear programming pro-
gramming problem; minimizing

Y Irw) = 7(v)]

w, Ve
subject to linear constraints of the form

m(w) —w(v) > 0.
There is no known efficient algorithm for solving the
general nonlinear programming problem. However it
is quite possible that this optimization problem is
tractable for a restricted sublanguage of conditional
preferences.

3 Evaluation of Preferences

3.1 The Role of Normality Defaults

So far we have paid no attention to normality de-
faults and this might lead us to counterintuitive be-
havior. Consider the preference query, “given that it
is cloudy and raining, would you prefer to have an um-
brella”, (er,u > —u)? If we have the sole desire D(d)
then we will certainly want to confirm the query de-
spite the unlikely possibilities of remaining dry without
the umbrella or being wet with the umbrella. Unless
the knowledge base categorically excludes such scenar-
ios as impossible, the semantics thus far will prevent
us from the commonsensical conclusion to carry an
umbrella. The purpose of normality defaults in the
knowledge base is to identify such scenarios as unlikely.
What we need is a system that on the one hand will
keep esoteric situations as possibilities (just in case
they become a reality) and on the other hand not let
them interfere with mundane decision making. To dis-
regard the unlikely scenarios, we compute the “believ-
ability” or likelihood of the worlds after the execution
of actions, o; (4 and —u in this example) given some
context, ¢ (cr in this example) and focus only on the
worlds that are believable. An example of such a belief
model is described in [Pearl, 1993]3. We will assume
that the output of this model is a belief ranking « on
worlds. We will write x(¢; ;) to represent the rank-
ing that results after the executing o; given context,
¢. k°(¢; o;) will represent the set of believable worlds,
namely the set of worlds for which k(¢; ;) = 0.

3.2 From Preferences on Worlds to
Preferences on Sets

In a framework that tolerates imprecision and uncer-
tainty, the consequence of the execution of an action

In [Pearl, 1993] the computation of the post-action be-
liefs requires the use of a causal model.

may not be a specific world but a set of believable
worlds. Thus to confirm a preference query we will
need to define a preference relation between sets of
worlds for example worlds in which we have an um-
brella and worlds in which we do not have an umbrella.
The straightforward approach would be to say that a
set W (of believable worlds) is preferred over another
set V if every world in W is preferred over any world
in V. This criterion however is too restrictive. Con-
sider the case where we have worlds u, v and w with
ranks 0, 1 and 2 respectively. Let W = {u,v,w} and
V = {u,v}. In this example, the common possibilities
u and v ensure that there is at least a world (u) in
W that is not strictly preferred to a world (v) in V
and vice versa. Therefore we are unable to determine
any preference between the two sets because of the
common possibility. However W offers all the possi-
bilities that are available in V' and in addition provides
an additional possibility that is “better” than what is
currently available in V. Intuitively we ought to prefer
W to V.

Another consideration in determining the preferences
between sets of worlds is the likelihoods of the worlds.
This is the theme in Bayesian decision theory where
the expected utilities, the sum of the utilities weighted
by their corresponding probabilities, are compared and
the set with the largest expected utility is preferred.
Unfortunately the basic assumption of this paper was
that the numeric probabilities and utilities are not
available; what we have are order-of-magnitude ap-
proximations of probabilities and utilities which are
expressed as normality defaults and conditional de-
sires. Pearl in [Pearl, 1993] proposed an order of mag-
nitude of abstraction of the maximum expected utility
criterion. There are two problems with the proposal.
An assumption in the proposal is that the scale of the
abstraction of preferences is the same as the scale of
the abstraction of beliefs. While this assumption could
conceivably be valid when the utility ranks are ex-
plicitly specified, it is not justifiable when beliefs and
preferences are specified in terms of normality defaults
and conditional desires. The other problem is that the
conclusions of the system are not invariant under a lat-
eral shift of worlds along the preference scale (a linear
translation of the utility ranking). The utility rank-
ings, 7 and 7 + 1 may admit different conclusions in
the system. This is problematic in our framework be-
cause lateral shifts of admissible preference rankings
are always admissible since conditional desires impose
only interval constraints among worlds. In this paper
we take into account the likelihoods of the worlds by
comparing worlds only when they have the same belief
ranks of 0. All worlds of the same degree are consid-
ered to be equally believable.

In summary, when determining the preference between
two sets, we will assume that the worlds in both
sets are equally believable and will consider separately
three types of worlds characterizing the compared set:
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the common possibilities, the additional possibilities
and the excluded possibilities. Let us consider when
we will prefer the set W over the set V' (see figure 3)
by imagining that the set V represents the possibili-
ties that are currently available to us and the set W
represents the set of new possibilities. Let us consider
the case when W C V. Since W excludes some pos-
sibilities from V' we have to compare these excluded
possibilities (in V' \ W) with the new possibilities of-
fered by W. If the excluded possibilities are ranked
lower than those that remain then W protects us from
those excluded possibilities and we should prefer W to
V. In the case when V C W, W provides more pos-
sibilities. If these additional possibilities (in W\ V)
are ranked higher than the current possibilities, W
provides an opportunity for improvement over the sit-
uation in V' and again we should prefer W to V. In
the general case, if W and V have some possibilities in
common, then these common possibilities (in W NV)
can be disregarded from consideration. If the addi-
tional possibilities (in W\ V') are ranked higher than
the excluded possibilities (in V\W) then we will prefer
W to V. This motivates the definition of preferential
dominance, a preference criterion between sets that
depends on whether one set includes or overlaps the
other.

Definition 4 (Preferential Dominance) Let W
and V be two subsets of Q and let m be a preference
ranking. We say that W w-dominates V, written

W =2V, if and only of W £V and
1. 7, (W)>7(V\W) when W CV or
2. m(WA\V)>7a*(V) when WDV or

3. m(WA\V)>a"(V\W) otherwise.

In figure 3, W m-dominates V, (written W =, V),
if the worlds in the dominating set are preferred over
the worlds in the dominated set. Consider the example
where we have the worlds u, v and w with preference
ranks 0, 1 and 2 respectively. Let W = {u,w} and
V = {u,v}. In determining the preference between W
and V, the common possibility u is disregarded and
7 (WA\V)=2> a*(V\W) = 1. Therefore W =, V.

Table 2: Rankings in the umbrella example

Worlds | Preference ranking | Belief ranking

w 7t (w) K(w)

uder m-+ 1 0

ader m+1 >0

uder m >0

uder m 0

udcr m+ 1 >0

udcT m+ 1 >0

udcF m >0

uder m >0

3.3 Preferential Entailment

Let us consider the preference query “would you prefer
o1 over oy given ¢7”. In evaluating this query, we
condition our beliefs on the context ¢ and compute
the rankings that result after executing ;. To confirm
the preference query (¢, 01 = 032), we compare the set
of believable worlds resulting from executing o, given
¢ with those resulting from executing o3 given ¢, and
test if the former preferentially dominates the latter in
all the most compact preference rankings.

Definition 5 (Preferential Entailment) Let D be
a set of conditional desires and  be some belief ranking
on €. ¢ preferentially entails o1 > o2 given (D, &),
written ¢ |~ (o1 = 02), if and only if

K2(9;01) =+ K7(¢;09)
for all 7+ rankings of D.

Example

Let us reconsider the umbrella story where we need to
verify the preference query “would you prefer to have
the umbrella given that it is cloudy”, (¢; u > —u)? We
have four atomic propositions, u - have umbrella, d -
dry, ¢ - cloudy and r - rain. Let us assume that we
have the normality defaults, A = {u — d,r A ~u —
—d, ¢ — r} and one unconditional desire, D = {D(d)}.
For this example we will adopt the belief model in
[Goldszmidt, 1992, Pearl, 1993]. First we process the
defaults set A to get the resulting belief rankings x(w).
Next, table 2 lists the possible worlds, given that it
is cloudy, and gives the belief ranking «(w) and the
7t preference ranking, where m is some fixed integer.
k%(¢;u) = {uder} and has rank m+1 while °(¢; —u) =
{@ider} with rank m. Therefore the preference query
(¢;u > —w) is confirmed.

4 Quantified Conditional Desires

A typical reasoning agent may have many desires. She
may desire to be alive, D(a), desire to be dry, D(d) and
also desire not to carry an umbrella, D(—u). These



Table 3: Preference Rankings, 71 and m

Worlds, w | m1(w) | ma(w)
ab 2 2
ab 0 1
ab 1 1
ab 0 0

desires are not perceived as being equally important;
being alive is more important than being dry and being
dry is probably more important than not carrying an
umbrella. In the specification language described so
far there is no mechanism for indicating the varying
degrees of preference. Let us examine the importance
of having such degrees.

Suppose, in the umbrella example, that we have the
desire Dj(—u) in addition to the desire Dy(d). These
desires are quantified by a number indicating the
strength of the preference. The strength of the de-
sire to be dry is 2 which is stronger than the strength
of the desire not to have the umbrella. In this case
we will still expect the reasoning agent to confirm the
preference query (c;u > —wu) as before. However, in
the flat system where there is no consideration for the
strength of the preferences, the constraints imposed by
the two desires would yield
if w = dA —u and

m+1
7r+(w):{ m—1 ifwl=-dAuand

m otherwise

as the most compact ranking. Now x°(c;u) has the
single world uder while k°(¢; —u) has the single world
uder, both of rank m. This means that we are unable
to confirm the obvious fact that one should carry an
umbrella on a cloudy day, (¢;u > —u).

The unquantified specification language is also not
expressive enough to express all possible preferences.
Consider the preference rankings, 71 and 73, shown in
table 3. For any set of conditional desires, 75 is admis-
sible whenever 7; is admissible because the language
does not allow us to impose a constraint between ab
and @b. Furthermore w5 is more compact than @ be-
cause Y |m(w) —mw)| =7 > |m(w) — ma(v)| = 6.
Therefore w1 cannot be the #7 ranking for any set
of conditional desires. This means that if 7 repre-
sents our preferences among worlds, there is no way
we can express these preferences exactly in terms of
conditional desires alone.

To alleviate these weaknesses we extend the syntax of
the specification language by quantifying a conditional
desire with an integer ¢ which indicates the strength
of the desire. A quantified conditional desire is a pref-
erence expression of the form D.(«|B), where € is a
integer, read: “Given 3, « is preferred to —a by €”.

Definition 6 (Quantified Admissibility) Let D be

a set of quantified conditional desires. A preference
ranking w is said to be admissible with respect to a
quantified conditional desire D¢(c|fB) if for allw = B,
v € Cola,w) and V' € Coq(a,w) implies

w(v) > 7(v/) + <. (5)

A preference ranking is admissible with respect to D
of it 1s admassible with respect to all desires in D.

An unquantified conditional desire is assumed to have
a default degree of e = 1.

Example with multiple desires

Let us reconsider the umbrella example assuming that
we have two desires Dy(d) and Dp(—u). The degrees
of these desires indicate that the desire to remain dry
is more important by an order of magnitude than the
discomfort of carrying an umbrella. The most compact
preference ranking in this case is

m+3 ifwkEdA-uand
+.n_ ) m+2 ifulEdAuand
T w) = m+1 ifwl=-dA-uand
m otherwise

The believable worlds are k°(¢;u) = {uder} with rank
m + 2 and «°(c; —u) = {udcr} with rank m + 1. This
confirms the obvious conclusion (¢;u > —u) (with de-
gree 1) which remain unsettled in the flat system.

Now we want to show that the quantified language
is powerful enough to express all possible preference
ranking.

Definition 7 (Conditional Desires of ) Given «
preference ranking w, the conditional desires entailed
by m is the set D™ = {D(«|B) | @ is admissible with
respect to D(a|5)}.

We note that if a preference ranking = is admissible
with respect to D; and D5 then 7 is admissible with
respect to D1 U Dy. This means that « is admissible
with respect to D™ and DT is the largest set that has
7 as an admissible preference ranking.

Theorem 1 (Uniqueness) Let 7 and p be preference
rankings. If p is admissible with respect to D™ then

p=m+k

for some constant integer k.

In other words two preference rankings entail the same
set of conditional desires if and only if one is a lateral
shift of the other.

Corollary 1 (Sufficiency of the Language) For
all preference rankings, w, there exists a set of quan-
tified conditional desires, II, such that m is the most
compact ranking admissible with respect to II. In fact
7w 1s unique up to a linear translation.



If our preferences among worlds are represented by a
preference ranking, then the sufficiency corollary tells
us that our preferences may be completely specified by
a set of quantified conditional desires.

One significant point to note is that the proof of the
sufficiency corollary makes use of conditional desires
that have negative degrees. This is somewhat unfor-
tunate as conditional desires with negative degrees are
not particularly intuitive. Another way of augmenting
the expressiveness of the specification language is to al-
low for conditional preferences of the form « > § | 7,
“if 4 then « is preferred to 4”. This will not be con-
sidered here.

Another problem with the ceteris paribum semantics is
that it does not handle specificity of conditional pref-
erences very well. For example the conditional desires
{D(«|B), D(—~«|B)} is inconsistent whenever 8 D 5.

Theorem 2 (Specificity) If«, 8 and §' are wffs and
B D then {D(|B), D(—a|f')} is inconsistent.

In normal discourse, we have no difficulty accommo-
dating general expressions of preferences which are
subsequently qualified in more specific scenarios. For
example I desire to be alive, D(a), yet I am willing to
die for some noble cause, D(—ale). In such a situation
D(—alc), having a more specific condition, overrides
the former unconditional desire, D(a). Such other de-
sirable behavior is sanctioned by a more recent inter-
pretation of conditional desires which further weakens

the CP semantics [Tan, 1994].

5 Comparison with Related Work

Verification of the assertability of conditional ought
statements of the form “you ought to do A if C”
is considered in [Pearl, 1993]. The conditional ought
statement is interpreted as “if you observe, believe or
know C' then the expected utility resulting from doing
A is much higher than that resulting from not doing
A”. The treatment in [Pearl, 1993] assumed that a
complete specification of a utility ranking on worlds
is available and that the scale of the abstraction of
preferences is the same as the scale of the abstraction
of beliefs. Another problem is that the conclusions of
the system is not invariant under a lateral shift of the
utility ranking; for example utility rankings 71 and 72,
where m3(w) = m1(w) + 1, may admit different conclu-
sions; which endows special status to worlds toward
which one is indifferent.

Goal expressions were given preference semantics in
[Wellman and Doyle, 1991] while relative desires were
considered in [Doyle et al., 1991]. These accounts are
similar to our semantics for unquantified unconditional
desires. However their treatment of conditional pref-
erences (called restricted relative desires) of the form
“given 7, « is preferred over 37 is problematic. In

particular the semantics forces us to conclude that we
must be indifferent* to the inevitable. This fatalistic
view shows itself in a theorem: “you must be indiffer-
ent to «, given «”. Thus if you discovered that your
car has been stolen then you must be indifferent to it.
While some may subscribe to such a fatalistic attitude,
our semantics here is more optimistic.

In [Boutilier, 1993], expressions of conditional prefer-
ences of the form “I(«|f@) - if 8 then ideally «”, are
given modal logic semantics in terms of a preference or-
dering on possible worlds. I(«|f) is interpreted as “in
the most preferred worlds where £ holds, « holds as
well”. This interpretation places constraints only on
the most preferred f-worlds, allowing only S-worlds
that also satisfy a to have the same “rank”. This con-
trasts with our ceteris paribum semantics which places
constraints between pairs of worlds. In discussing
the reasoning from preference expressions to actual
preferences (preference query in our paper) Boutilier
[Boutilier, 1993] suggests that the techniques in de-
fault reasoning (for handling irrelevance in particular)
could be similarly applied to preferential reasoning.
For example he suggests that worlds could be assumed
to be as preferred or as ideal as possible which paral-
lels the assumption made in computing the k1 belief
ranking [Goldszmidt, 1992], that worlds are as normal
as possible. While it is intuitive to assume that worlds
would gravitate towards normality because abnormal-
ity is a monopolar scale, it is not at all clear that worlds
ought to be as preferred as possible since preference
is a bipolar scale. In our proposal there is no pref-
erence for either end of the bipolar preference scale.
The 7t rankings actually compacts the worlds away
from the extremes thus minimizing unjustified pref-
erences. The difference can be seen in the example
shown in table 1. The compactness criterion selects
two distinguished compact preference rankings m; and
wq. If worlds are assumed to be as preferred as possi-
ble then 71 would be the sole distinguished preference
ranking. It remains to be seen if the I operator corre-
sponds closely with the common linguistic use of the
word “ideally”.

In [Pinkas and Loui, 1992] consequence relations are
classified according to their boldness (or cautiousness).
We may also employ a bolder (or more cautious) en-
tailment principle which would correspond to a risk
seeking (or risk averse) disposition.

6 Conclusion

In this paper we describe a framework for specifying
preferences in terms of conditional desires of the form
“a is desirable if 87, to be interpreted as “a is pre-
ferred to —a when all else is fixed in any G world”. We
demonstrate how such preference sentences may be in-

*You are indifferent to « if you desire both o and —a.



terpreted as constraints on admissible preference rank-
ings of worlds and how they, together with normality
defaults, allow a reasoning agent to evaluate queries of
the form “would you prefer o1 over o5 given ¢” where
o1 and oy could be either action sequences or observa-
tional propositions. We also prove that by extending
the syntax to allow for importance-rating of prefer-
ence sentences, we obtain a language that is power-
ful enough to represent all possible preferences among
worlds. This work is an extension of [Pearl, 1993] and

[Doyle et al., 1991].

A  Proofs

Lemma 1 (Common Contexts) v € C(a,w) =

Cla,w) = C(a,v).

Lemma 2 (Extreme worlds) Let 7 be a preference
ranking and let p be admissible with respect to D™. For
all contexts C,

7(w) = maxw(v) = p(w) = maxu(v)

and

m(w) = min7(v) = pw) = minp(v)

Proof: Let w € C and z; be X; if w | X; and —X;
otherwise. By lemma 1 we may assume that C =
C(a,w) for some wif a. Consider § = /\X,es(a) ;.
If 7(w) = max,ec m(v) then Dg(Blw) € D™. This
implies that p(w) > p(v) for all v € C. Therefore
7(w) = maxyec 7(v) = p(w) = max,ec p(v). If
7(w) = min,ec m(v) then Do(—=Bw) € D™. This im-
plies that p(w) < p(v) for all v € C. So w(w) =
minyec 7(v) = p(w) = min,ec p(v). 0

Corollary 2 (Extreme worlds) Lei = be a prefer-
ence ranking and let p be admissible with respect to
D™,

(w) = maxn(v) = p(w) = maxp(v)

and
m(w) = min7(v) = pw) = minp(v)

Given a preference ranking, we write w, for a world
that has the minimum rank and w* for a world that
has maximum rank.

Lemma 3 (Larger Admissible Differences) Leil 7
be a preference ranking and let p be admuissible with
respect to D™. For all w € Q,

() — ) 2 w(w) — 7).

Proof: We will prove by induction on m, the num-
ber of variables w and w, disagree on. In the base

case, if m = 0 then w = w,. Therefore the lemma
holds trivially. Let us assume that the lemma holds for
m=20,...,k— 1. Without loss of generality, we may
assume that w and w, disagree on Y = {X;,..., Xy}
and that w = a; for i = 1,...,m. If 7(w) = m(ws)
then the theorem holds by corollary 2. Therefore we
may assume that 7(w) — 7(w«) > 0. We consider the

context, C' = C’(/\’f zi|w).

If we can find a world v ~x\x, w, v |= —&; such that
m(w) > 7(v) then let d = Dr(u)—n(v)(2i|lw) € D™ and
we also have d implies p(w) — p(v) > w(w) — 7(v).
Otherwise, let v be such that #(v) = max,¢c (V')
and d = Dw(w)_,r(,,)(/\’f zi|lw) € D™. In this case, by
lemma 2, we also have d implies p(w) — p(v) > 7(w) —
w(v). Now clearly, in both cases, v # w. This im-
plies, by the induction hypothesis, that p(v)—p(w.) >
7(v) — m(w«). By adding the two inequalities, we get
the desired inequality p(w) — p(wy) > 7(w) —7(wy). O

Lemma 4 (Smaller Admissible Differences) Let
7w be a preference ranking and let p be admissible with
respect to D™. For all w € Q,

pw) = plws) < m(w) — m(ws).

Proof: For all worlds w, Dyr(u,)—r(w)(-w) € D". This
implies p(w) — p(wy) < w(w) — 7(wy). O

Theorem 1 (Uniqueness) Let 7 and p be preference
rankings. If y is admissible with respect to D™ then

p=m+k
for some constant integer k.

Proof: Lemmas 3 and 4 imply that g = 7 4+ p(w.) —
7wy ). O

Corollary 1 (Sufficiency of the Language) For all
preference rankings, 7, there exists a set of quantified
conditional desires, II, such that 7 is the most compact
ranking admissible with respect to II. In fact = is
unique up to a linear translation.

Proof: The proof follows when we set II to be D™. O

Theorem 2 (Specificity) If «, § and @' are wifs and
B D B then {D(«|B), D(—«|3)} is inconsistent.

Proof: (By contradiction) Let us assume that
{D(a|B), D(—~«a|B")} is consistent. Let m be an ad-
missible preference ranking, the world w be such that
w | B (note that w = f as well since § D7)
and C = C(—a,w) = C(a,w). By D(a|8) we have
Cyo »r C.o and by D(-a|f') we have Cy > Coq.

This i1s a contradiction. O
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