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Abstract

Experimental studies in which treatment assignment is random but subject
compliance is imperfect may be susceptible to bias; the actual effect of the
treatment may deviate appreciably from the mean difference between treatet
and untreated subjects. This paper establishes universal formulas that can
be used to bound the actual treatment effect in any experiment for which
compliance data is available and in which the assignment influences the re-
sponse only through the treatment given. Using a linear programming anal-
ysis, we present formulas that provide the tightest bounds that can be in-
ferred on the average treatment effect, given an empirical distribution of assign-
ments, treatments, and responses. The application of these results is demon-
strated on data that relates cholesterol levels to cholestyramine treatment
([Lipid Research Clinic Program 84]).
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1 INTRODUCTION

Consider an experimental study where random assignment has taken place but
compliance is not perfect (i.e., the treatment received differs from that assigned).
It is well known that under such conditions a bias may be introduced, in the sense
that the true causal effect of the treatment may deviate substantially from the causal
effect computed by simply comparing subjects receiving the treatment with those
not receiving the treatment. Because the subjects who did not comply with the
assignment may be precisely those who would have responded adversely (positively)
to the treatment, the actual effect of the treatment, when applied uniformly to the
population, might be substantially less (more) effective than the study reveals.

In an attempt to avert this bias, economists have devised correctional formu-
las based on a model called “instrumental variables” ([Bowden and Turkington 84))
which, in general, do not hold outside the linear regression model. A recent anal-
ysis by [Efron and Feldman 91] departs from the linear regression model, but still
makes restrictive commitments to a particular mode of interaction between com-
pliance and response. [Manski 90] has derived nonparametric bounds on treatment
effects under rather general conditions which, unfortunately, do not reflect the unique,
two-stage, partly randomized process characteristic of studies with imperfect compli-
ance. [Holland 88] has given a general formulation of the problem (which he called
“encouragement design”) in terms of Rubin’s model of causal effect and has outlined
its relation to path analysis and structural equations models. [Angrist et al. 93], also
invoking Rubin’s model, have identified a set of assumptions under which the “Instru-
mental Variable” formula is valid for certain subpopulations. These subpopulations
cannot be identified from empirical observation alone, and the need remains to devise
alternative, assumption-free formulas for assessing the effect of treatment over the
population as a whole. In this paper, we derive bounds on the average treatment ef-
fect that rely solely on observed quantities and are universal, that is, valid no matter
what model actually governs the interactions between compliance and response.

The paper is organized as follows. In Section 2 we formulate our assumptions
using a graphical model, and we present a simple, closed-form formula for bounding
treatment effect, given partial compliance data. Section 3 reformulates the problem
using a potential-response model — closely related to Rubin’s ([Rubin 74]) model of
counterfactuals — in which the states of some variables correspond to hypothetical
response policies of subjects in the population. In Section 4, using a linear program-
ming analysis of the potential-response model, we refine the bounds presented in
Section 3 and present the results in tabular form. For any experimental distribution
of assignments, treatments, and responses, the tables provide the tightest bounds
that can be inferred on the actual treatment effect. In Section 5, the application of
these bounds is demonstrated on the [Lipid Research Clinic Program 84] data, which
relate cholestyramine treatments to cholesterol levels. In Section 6, we show by hy-
pothetical example how the bounds derived in Section 4 can significantly improve
upon the bounds from Section 2. In Section 7, we introduce special assumptions that
might further restrict subject behavior, and for each such assumption we derive the
corresponding bounds on the treatment effect.



2 BOUNDS DERIVED FROM A
GRAPHICAL MODEL

The canonical partial-compliance setting can be graphically modeled as shown in
Figure 1.
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Figure 1: Graphical representation of causal dependencies in a randomized clinical
trial with partial compliance.

We assume that Z, D, and Y are observed binary variables where Z represents
the (randomized) treatment assignment, D is the treatment actually received, and
Y is the observed response. U represents all factors, both observed and unobserved,
that may influence the outcome Y and the treatment D. To facilitate the notation,
we let z, d, and y represent, respectively, the values taken by the variables Z, D, and
Y, with the following interpretation:

z € {z0, 21}, 21 asserts that treatment has been assigned (zo, its negation);

d € {do,d1}, dy asserts that treatment has been administered (dy, its negation); and
y € {yo,y1}, y1 asserts a positive observed response (yq, its negation).

The domain of U remains unspecified and may, in general, combine the spaces of
several random variables, both discrete and continuous.

The graphical model reflects two assumptions of independence:
1. The treatment assignment does not influence Y directly, but only through the
actual treatment D, that is,

Z || YI[{D,U} (1)

In practice, any direct effect Z might have on ¥ would be adjusted for through
the use of a placebo.

2. Z and U are marginally independent, that is, Z || U. This independence is
partly ensured through the randomization of Z, which rules out a common cause
for both Z and U. The absence of a direct path from Z to U represents the
assumption that a person’s disposition to comply with or deviate from a given
assignment is not in itself affected by the assignment; any such effect can be
viewed as part of the disposition.



These assumptions impose on the joint distribution® the decomposition
Ply,d,z,u) = P(yld,u) P(d|z,u) P(z) P(u) (2)

which, of course, cannot be observed directly because U is a latent variable. However,
the marginal distribution P(y,d, z) and, in particular, the conditional distributions
P(y,d|z),z € {20, 21}, are observed, and the challenge is to assess the causal effect of
D on Y from these distributions.?

In addition to the independence assumption above, the graphical model of Fig-
ure 1 reflects claims about the behavior of the population under external interventions.
In particular, it reflects the assumption that P(y|d, u) is a stable quantity: the prob-
ability that an individual with characteristics U = u given treatment D = d will
respond with Y = y remains the same, regardless of how the treatment was selected
— be it by choice or by policy. Therefore, if we wish to predict the distribution of Y
under a condition where the treatment D is applied uniformly to the population, we
should calculate

P(Y = y|D = d applied uniformly) = E[P(y|d, u)] (3)

where F stands for the expectation taken over u.
Likewise, if we are interested in estimating the average change in Y due to treat-

ment, we define the average causal effect, ACE(D — Y) ([Holland 88]), as
ACE(D = Y) = E[P(yi|di,u) — P(y1]do, u)] (4)

The task of causal inference is then to estimate or bound the expectation in Eq. (4),
given the observed probabilities P(y,d|zo) and P(y, d|z).

For uniformity of notation, we can define, in an analogous way, the average causal
effects of the assignment Z, ACE(Z — Y') and ACE(Z — D). However, since 7 is
chosen at random, averaging over u is superfluous, and these two quantities can be
obtained from the observed distribution:

ACE(Z = D) = P(di|=1) — P(di20) (5)
ACE(Z =Y) = P(yilz1) — P(y1]0) (6)

After a few algebraic manipulations (see [Pearl 93]), Eq. (4) yields an alternative
expression for ACE(D — Y):

P(y1|217u) — P(y1|2’07u)

ACE(D = Y)=E P(ds |21, 1) — P(dy|z0, ) (7)

If we think of u as an index characterizing the experimental units (i.e., the subjects),
the result is simple and intuitive. It says that for each individual unit u, the indirect

1Only the expectation over U will enter our analysis, hence we take the liberty of denoting the
prior distribution of U by P(u), even though U may consist of continuous variables.

2In practice, of course, only a finite sample of P(y,d|z) will be observed, but since our task is
one of identification, not estimation, we make the large-sample assumption and consider P(y,d|z)
as given.



causal effect along the chain Z — D — Y is equal to the product of the individ-
ual causal effects along the two links of the chain. If all units were to exhibit the
same difference in compliance probabilities, P(dy|z1,u) — P(d1|z0,u), we would have
obtained the celebrated “Instrumental Variable” formula

ACE(Z —=Y)  P(y]z1) — P(y1]20)

ACE(D - Y) = ACE(Z = D) _ P(di|z1) — P(dy|) (8)

which says that the causal effect ACE(Z — Y') associated with the intent-to-treat
needs to be adjusted upward, through division by the degree of compliance ACE(Z — D).
This ratio formula is indeed valid in linear regression models, under which it was de-
rived by social scientists and econometrician as far back as 1940 ([Angrist et al. 93,
Holland 88]). In general, however, the quantities on the right-hand side of Eq. (7)
cannot be observed directly (only in expectation), and ACE(D — Y') can become as
low as zero or even negative. Still, when almost perfect compliance is observed, the
unknown quantities P(y|d,u), P(d|z,u), and P(u) do not have the freedom to render
ACE(D — Y) substantially different from ACE(Z — Y'), and informative bounds can
then be obtained on the actual causal effect of the treatment.

Further analysis of Egs. (2) and (3) ([Pearl 93]) yields the following bounds for
the two terms on the right-hand side of Eq. (4):

max[P(y1,d1]z1); P(y1,di,|20)] < E[P(y1|dy,u)] < 1—max[P(yo,d1|20); P(yo,di|z1)

(9)

max[P(y1, do|z0); P(y1,do,|21)] < E[P(y1]do, u)] < 1—max[P(yo,dol20); P(yo,do|21)]

(10)

Choosing appropriate terms to bound the difference E[P(yi|di,u)] — E[P(y1|do,u)],
we obtain lower and upper bounds on the causal effect of D on Y:

P(‘yl,d1|21)—|—P(‘y0,d0|Zo) —1 S ACE(D — Y) S 1—P(‘y0,d1|21) —P(’yl,do|20) (11)
or, alternatively,

ACE(D — Y)
ACE(D — Y)

> ACE(Z —=Y) — P(y1,do|z1) — P(yo,d1|z0) (12)
< ACE(Z = Y) + P(yo, do|z1) + P(y1, d1|20)

Due to its simplicity and wide range of applicability, we will call the bounds of
Eq. (12) the natural bounds (three other less intuitive expressions for the upper and
lower bounds may be inferred from Eqgs. (9) and (10), but these will not be presented
here because they will be rederived in Section 4). The natural bounds guarantee that
the causal effect of the actual treatment cannot exceed that of the intent-to-treat by
more than the sum of two measurable quantities, P(y1, do|z1) + P(yo, d1|20); they also
guarantee that the causal effect of treatment cannot drop below that of the intent-
to-treat by more than the sum of two other measurable quantities, P(yo,do|z1) +
P(y1,d1]z0). The width of the natural bound, not surprisingly, is given by the rate
of defection, P(d;|z0) + P(do|z1). While the bounds in Egs. (9) and (10) are sharp,
the ones in Eq. (12) can be substantially improved using linear programming (see
Section 4), albeit at the expense of formal elegance.



Before continuing to the more refined model of Section 3, we should point out
that the structural model of Figure 1 imposes definite constraints on the observed dis-
tributions P(y,d|z) and P(y,d|z1). The constraints, obtained directly from Eq. (2),

are

P(y1,d1|21) < 1- P(y07d1|20)
P(y1,d1|20) < 1- P(y07d1|21)
P(y17d0|21) < 1- P(y07d0|20)
P(y1,d0|20) < 1- P(y07d0|21)

These constraints constitute necessary and sufficient conditions for a marginal proba-
bility distribution P(y, d, z) to be generated by the structure of Figure 1, and therefore
they may serve as an operational test for the compatibility of that structure with the
observed data.

3 THE POTENTIAL-RESPONSE MODEL

A powerful feature of the graphical model discussed so far is its capacity for
producing meaningful results while keeping the latent variable U totally unspecified;
U may be finite or unbounded, discrete or continuous, ordered as well as unstructured.
Although this generality has the advantage of freeing the analyst from making a
commitment to a particular parametric model, it may turn into an inconvenience when
finer mathematical details are needed. Fortunately, it can be shown ([Pearl 93]) that
it is always possible to replace the latent variable U, no matter how complex, by two
discrete and finite variables, one representing tendencies to comply with assignment,
the other representing tendencies to respond to treatment.

Figure 2 depicts a structure, equivalent to that of Figure 1, in which the la-
tent variables R and R’ have only four states each: r € {rg,r1,7ry,73} and ' €
{rg,ri,rh,rs}. It was shown in [Pearl 93] that every experimental outcome mod-
eled by the graphical structure of Figure 1 can also fit into the finite-variable struc-
ture of Figure 2 and, moreover, that the states of the variables R and R’ corre-
spond to the potential-response vectors in Rubin’s model of causal effects ([Rubin 74,
Rosenbaum and Rubin 83]), as defined below.

D is a deterministic function of the variables Z and R:

do if =T

do if 7=r1 z=2
d if r=r z=2x
d=Fp(z,r) =
d if r=ry z=2
do if r=ry 2=2

dl if T =T7T3
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Figure 2: A structure equivalent to that of Figure 1 but employing two latent variables,
R and R', with four states each.

Similarly, Y is a deterministic function of D and R’:
yo if ' =r]

yo if r=r] d=dy
y1 if r'=r] d=4d;
y = Fy(d,r') = (13)
yp if r'=r) d=dy
yo if r'=rl d=4d,

) . b’
yp if =1

The correspondence between the states of variables R and R’ and the potential
response vectors in the Rubin’s model is rather transparent: each state corresponds
to a counterfactual statement specifying how a unit in the population (e.g., a person)
would have reacted to any given input. For example, r; represents units with perfect
compliance, while ry represents units with perfect defiance. Similarly, r] represents
units with perfect response to treatment, while r{ represents units with no response
(y = yo) regardless of treatment. The counterfactual variables Y; and Y; usually
invoked in Rubin’s model can be obtained from R’ as follows:

1 fR =rlor R =r]
0 otherwise
1 fR =rlor R =r}
0 otherwise

Yi= {YifD=d} :{
Yo= {Yif D=do} ={

In general, treatment response and compliance attitudes may not be independent,
hence the arrow R — R’ in Figure 2. The joint distribution over R x R’ requires 15
independent parameters, and these parameters are sufficient for specifying the model
of Figure 2, P(y,d,z,r,r") = P(y|d,r")P(d|r,z) P(z)P(r,r'), because Y and D stand
in functional relation to their parents in the graph. The causal effect of the treatment
can now be obtained directly from Eqgs. (3) and (13), giving

P(y:|D = dy applied uniformly) = P(r' =7r]) + P(r' =1%)
P(y:|D = dy applied uniformly) = P(r' =ry) + P(r' =r})

7



and

ACE(D = Y)=P(r'=r]))— P(r' =1}) (14)

The computational advantage of the potential-response model is twofold. First,
lower bounds on ACE(D — Y') can now be produced by minimizing a linear func-
tion over a 15-dimensional vector space, rather than by dealing with the unspecified
domain of U. Second, the constraints that the data P(y,d|z0) and P(y,d|z) induce
on the parameters of P(r,r’) are linear, compared with the non-convex constraints
induced on the parameters P(d|z,u) and P(y|d,u) in the graphical structure of Fig-
ure 1. This enables the use of linear programming techniques to obtain tighter bounds
on the causal effect ACE(D — Y); such bounds are much harder to obtain in a model
where U remains unspecified.

4 TIGHT BOUNDS ON TREATMENT
EFFECTS

4.1 Linear programming formulation

In this section we will explicate the relationship between the parameters of the ob-
served distribution P(y,d|z) and the parameters of the joint distribution P(r,r’) of
the potential-response functions. This will lead directly to the linear constraints
needed for minimizing/maximizing ACE(D — Y') given the observation P(y,d|z).

The conditional distribution P(y,d|z) over the observable variables is fully spec-
ified by eight parameters, which will be notated as follows:

Poo.o = P(yo,d0|20)
poro = P(yo,di|20)
Poo = P(yi,do|20)
Piio = P(y1,d1|20)
Poo1 = P(y07d0|21)
pori = P(yo,di|z1)
poa = P(yi,do|z1)
P11 = P(y1,d1|21)

The probabilistic constraints

11

n=00

ipn.l =1 (16)

n=00

further imply that p' = (Poo.07P01.07P10.07P11.07P00.17P01.17P10.17P11.1) can be specified by
a point in six-dimensional space. This space will be referred to as P. Eqgs. (5) and



(6) may be rewritten in terms of these parameters as

ACE(Z — D) = pua+pora — piio — Poro (17)
ACE(Z —=Y) = pia+pioa — Piio — Pioo (18)

The joint probability over R x R’, P(r,r’'), has 16 parameters and completely
specifies the population under study. These parameters will be notated as

gp = Plr=rjr'=nr)
where j, k € {0,1,2,3}. The probabilistic constraint
3 3
D> g = 1
7=0 k=0

imphes that q_) = (q007 qo1, 902, 903, 910, 911, 912, 913, 420, 921, 422, 923, 430, 931, 432, q33) spec-
ifies a point in 15-dimensional space. This space will be referred to as Q).
Eq. (14) can now be rewritten as a linear combination of the () parameters:

ACE(D = Y) = qo+qu+ g+ g1 — qoz — 12 — g22 — ¢32 (19)

Given some point ¢ in () space, there is a direct linear transformation to the
corresponding point p in the observation space P:

Poo.o = oot qo1 + Gio + G11
Po1.o = G20+ 22 + G30 + 32
Proo = o2 t qo3 + qi2 + qi3

P11.0 = 21t G23 + ¢31 + ¢33

Poo.l = oo+ qo1 + G20 + G21
Poi1 = Gio+ qi2 + g30 + 32
P01 = o2 t Go3 + q22 + ¢a23

P11l = i1+ G133+ g3+ ¢33

which will sometimes be written in matrix form, § = PJ.

Given a point p in P space, the strict lower bound on ACE(D — Y) can be
determined by solving the following linear programming problem:

Minimize: o1 + g11 + g21 + ¢31 — Go2 — G12 — G22 — ¢32

Subject to:

I
—_

> qin

0 k=0
Pqg = p (20)
¢x > O0for ke {0,1,2,3}

3

J



4.2 Symbolic solutions to the linear programming problem

Given an observed point p in P space, Lp_y(p) and Up_y(p), respectively, will
represent the strict lower and upper bounds on ACE(D — Y') associated with p.
More precisely,

Lp—y(p) = _ min ACE(D —Y) (21)
Up—y(p) = qsrtn%}:(p@ACE(D_)Y) (22)

where Eq. (19) gives ACE(D — Y) in terms of ¢.

For every given point p, the optimization above can be executed using the Simplex
Tableau algorithm (see [Davis and McKeown 81]), which yields a pair of numerical
values for Lp_y(p) and Up_y(p). Fortunately, the size of the problem permits a
symbolic solution to be obtained by tracking the conditions that lead to the various
decisions in the Simplex Tableau algorithm. This procedure generates a decision tree
with 34 leaf nodes, each containing a symbolic solution to Lp_y(p). By taking the
union of the conditions leading to leat nodes with identical expressions, eight distinct
formulas were obtained, each conditioned by a conjunction of inequalities as presented
in Table 1. The first entry in the table corresponds to the natural lower bound of
Eq. (11).

H Conditions ‘ Lp_y(p) H

P11.1 = P11.0
Po1.1 + Pro1 = Poio P11+ pooo — 1
P00.0 = Poo.1

Po1.o + P1o.o = Proa
P11.0 = P11

Po1.o + Pro.o = Poi.a P10+ pooar — 1
P00.1 = P00.0

Po1.1 + Pioa = Pio.o
P11.0 2 P11+ Pro P11.0 — P11.1 — P1o.1 — Po1.0 — P10.0
Po1.1 = Por.o t+ P1o.o
P11.1 2 Pi1o + Proo P11.1 — Po1.1 — P1o.1 — P11.0 — P10.0
Po1.0 = Por1 t+ Pro1
p11.0 + Proo = Pi11 = Piio —Po1.1 — P1oa
Po1.0 + Poo.o = Poo.l = Poo.o
pi1.1 + Proa 2 Piio 2 Piia —Po1.0 — P10.0
Po1.1 + Poo.1 = Poo.o = Poo.l
P10.0 2 Por1 t+ Prot Poo.1 — Po1.1 — P1o.1 — Po1.0 — P00.0
P00.1 = Po1.o T Poo.o
P10.1 = Por.o + P1o.o P00.0 — Po1.0 — P10.0 — Po1.1 — Poo.1
P00.0 = Po1.1 + Poo.1

Table 1: Lower bounds on ACE(D — Y') given a point p in the observation space P.

A more convenient representation of this table is obtained by noting that Lp_y (p)
is simply the maximum of the eight expressions in the right-hand column of the table.
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Thus,

Lp_y(p) = max

P11.0 — P11.1 — P1o.1 — Poir.o — P1o.0
P111 — Pi1.o — P1o.o — Poia — Piroa

Poo.1 — Poi.a1 — Pro.1 — Poi.o — Poo.o
Poo.o — Por.o — P1o.o — Poi.1 — Poo.l )

P11.1 + Pooo — 1
P11.0 + pooa — 1

—Po1.1 — P1o1
—pPo1.0 — P1o.o

(23)

The upper bound can be derived in similar fashion, by maximizing rather than

minimizing the objective function. However, instead of duplicating the maximizing
exercise, we can take advantage of the fact that the solution of the lower bound

problem gives us the maximally negative causal effects, which correspond to the

upper bound on the causal effect if we switch the label on the observed treatment
response variable Y and take the additive inverse of each solution. The results of this
exercise are shown in Table 2. The first entry in the table corresponds to the natural

upper bound of Eq. (11).

H Conditions

Up_y(p)

Po1.1 = Po1.0
p11.1 + Poor = Piio
P1o.0 = Pio.1
P11.0 + Poo.o = Poo.1

1 — po1.1 — pioo

Po1.0 = Po1.1
P11.0 + Poo.o = P11
P1o.1 = P10.0
P11.1 + Poo.r = Poo.o

1 — po1.o — pioa

Po1.0 = Poi.a + Poo.i
Pi1.1 = Pi1.o + Poo.o

—Po1.0 + Po1.1 + Poo.a + Pi1.0 + Poo.o

Poi.1 = Poi.o + Poo.o
P11.0 = Pi1a + Poo.t

—Po1.1 + P11.1 + Poo.x + Poi.o + Poo.o

P11 + Pioa = Pioo = Pioa

Poi.o + Poo.o = Poia = Poi.o P11.1 + Poo.a
Pi1.0 + Pioo = Pioa = Pio.o
Poi.a + Pooa = Poio = Poia P11.0 t Poo.o

Po0.0 = P11+ Poo.1
P1o.1 = Pi1.o + Proo

—p1o.1 + P11.1 + Poo.a + Pii.o + Pioo

Poo.1 = P11.o + Poo.o
P10.0 = Pi1a + Pioa

—P10.0 + P11.0 + Poo.o + P11 + Proa

Table 2: Upper bounds on ACE(D — Y') given a point p in observation space P.

As for the lower bound case, we can show that the conditions on each formula

11



imply

I — po1.1 — pioo
I — po1.o — proa
—Po1.0 T Por.1 + Poo.ax + P11.o + Poo.o
—po1.1 + P11.1 + Poo.a + Por.o + Poo.o (24)
P11.1 + Poo.
P11.0 + Poo.o
—pP1o.1 + P111 + Pooa + Pi1.o + Proo
—P10.0 + P11.0 + Poo.o + P11.1 + Proa

Up—y(p) = min

4.3 The positive-effects convention

To simplify the presentation of the bounds found in the last subsection, we first choose
a notational system in which assignment to treatment does not reduce the probability
of treatment usage (D = d;) and of positive response (Y = y;1). From Egs. (5) and
(6), these conditions can be written as

ACE(Z — D)

>
ACE(Z - Y) >

or, alternatively,

Poia +Piia = Poiro+ Prio
Pioa +Piia = Pioo + Prio

The conjunction of these two inequalities will be referred to as the condition of positive
effects. This constraint may be imposed without loss of generality, because the labels
of the variables’ values can always be swapped in such a way that the inequalities are
satisfied: if ACE(Z — D) < 0, we swap dp and dq; if ACE(Z — Y) < 0, we swap yo
and y;.

In a notational system where the condition of positive effects holds, the lower and
upper bounds on the treatment effect can be simplified to read

P11+ pooo — 1
P11 — P11.0o — P1o.o — Po1.1 — Piroa
Lp_y (ﬁ) = Inax —Po1.1 — P1oa (25)
—Po1.0 — P1o.0
P00.0 — Po1.0 — P1o.0 — Po1.1 — Poo.1

and

1 — poi.1 — pioo

1 — poi.o — pioa
Up_y(p) = min —Por.o + Por1 + Pooa + Piio + Poo.o (26)
P11.1 + Poo.a
P11.0 + Poo.o

—p1o.1 + P11.1 + Poo.1 + Pi1.o + Proo

respectively.

12



4.4 Graphical presentation of the bounds

When compliance is perfect (i.e., ACE(Z — D) = 1), we expect the causal effect of
the treatment to coincide with the causal effect of the intent-to-treat, that is,

ACE(D - Y)=ACE(Z —»Y) if ACE(Z—D)=1

Similarly, if the conditions for the Instrumental Variable formula (Eq. (8)) are sat-
isfied (e.g., linear models), we expect ACE(D — Y') to be determined solely by
ACE(Z — Y) and ACE(Z — D). In general, however, the latter two parameters
will not be sufficient to determine ACE(D — Y') uniquely; nevertheless, they can be
used to determine the range within which ACE(D — Y') may fall.

Figure 3 plots Lp_y(p) and Up_y(p) given ACE(Z — D) and ACE(Z —Y).
The range of ACE(D — Y) is quite wide, and is given by the simple formula:

ACE(Z — Y)+ACE(Z — D)—1 < ACE(D - Y) < 1-|ACE(Z — D)-ACE(Z — Y|

(27)
An interesting point is that plotting the natural bounds given by Eq. (12) as a function
of ACE(Z — D) and ACE(Z — Y) gives us precisely the same results as shown in
Figure 3.

10k . N ~
A NN NEARN
E v N N, 4
¢ /s s
< |- -, ’ > , </ AS \
0.8 R L AN N Ve
e e
/ . 2
7!/ , '.// N N4 \)
o6 e - 0N s
ya 7/ B N ’
/ . /s 7
/ v s
04 7 s 27
7/ / VAR
7/ 7/
7/ / /
/s s
021 / L7
s d 4
7/ 7/
L / L. & 4 ~L -
A P il A o —T>
/02 04 ,06 - 08 S0
Y e 7 ' ACE(Z->Y)
, .
V e
-0.2 7 /
e
/s
.
7/
04T
0.6 T
.......... ACE(Z-D) =00
----- ACE(Z->D)=0.2
o ACE(Z->D)=0.4
————— ACE(Z->D)=0.6
— — — — ACE(Z->D)=08
B ACE(Z->D) = 1.0
-0+

Figure 3: Bounds on ACE(D — Y) plotted against ACE(Z — Y) and ACE(Z — D).

Note that the bounds Lp_y(p) and Up_y(p) for a particular point p'in P space
may be much tighter than the bounds shown in Figure 3 as functions of ACE(Z — D)
and ACE(Z — Y) evaluated at . This will be demonstrated by example in Section 5.
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5 EXAMPLES

At this point it is worth summarizing by example how the bounds of Eqs. (23)
and (24) can be used to provide meaningful information about causal effects.

Consider the Lipid Research Clinics Coronary Primary Prevention Trial data (see
[Lipid Research Clinic Program 84] for an extended description of the clinical trial).
A portion of this data consisting of 337 subjects was analyzed in [Efron and Feldman 91]
using a model that incorporated subject compliance as an explanatory variable; this
same data set is the focus of our analysis. A population of subjects was assem-
bled and two preliminary cholesterol measurements were obtained: one prior to a
suggested low-cholesterol diet (continuous variable Cyq); and one following the diet
period (Cpz). The initial cholesterol level (C) was taken as a weighted average of
these two measures: C; = 0.25C ;1 + 0.75C 3. The subjects were randomized into two
treatment groups; in the first group all subjects were prescribed cholestyramine (z),
while the subjects in the other group were prescribed a placebo (zp). During several
years of treatment, each subject’s cholesterol level was measured multiple times, and
the average of these measurements was used as the post-treatment cholesterol level
(continuous variable Cp). The compliance of each subject was determined by tracking
the quantity of prescribed dosage consumed (continuous variable B).

In order to apply our analysis to this study, the continuous data obtained in
the [Lipid Research Clinic Program 84| study must be transformed to binary vari-
ables representing treatment assignment (Z), received treatment (D), and treatment
response (Y'). The following transformation accomplishes this by thresholding dosage
consumption and change in cholesterol level:

B do if z=2zy0rb<50 )
d = { dy if z=2z and b > 50 (28)
’ yo if e —ep < 28 )
¥y = { yp if ¢ —ecp > 28 (29)

This transformation reflects the assumption that a subject does not receive cholestyra-
mine if not assigned to the cholestyramine treatment group, namely, P(yo,d;|z0) =0
and P(y1,d1|z0) = 0. The threshold for dosage consumption in Eq. (28) was selected
as roughly the midpoint between minimum and maximum consumption, while the
threshold for cholesterol level reduction in Eq. (29) was selected at 28 units.

If the data samples are interpreted according to Egs. (28) and (29), then the
computed distribution over (Z, D,Y’) results in the following point in P space”:

Poo.o = P(yo,do|zo) = 0.919
Poio = P(‘yo, d1|zo) = 0.000
Pio.o = P(’yl, d0|zo) = 0.081
pi1.o = P(y1,di|z0) = 0.000

3We make the large-sample assumption and take the sample frequencies as representing P(y, d|z).
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Pooa = P(yo,dolz1) = 0.315
Poi1 = P(’yo,d1|21) = 0.139
Pio1 = P(y1,do|21) = 0.073
pi11 = Py, di|z1) = 0473

By first computing the causal effects of the intent-to-treat,

ACE(Z — D) = pua+pora — piio — poro = 0.612 (30)
ACE(Z = Y) = pi1a+Ppio1 — P11.o — Proo = 0.465

we can verify that the condition of positive effects is satisfied. This justifies the use of
Eqgs. (25) and (26) for evaluating the strict lower and upper bounds on ACE(D — Y').
By computing the quantities required for Eq. (25), we obtain

pr1ia+poo—1 = 0.392
Pi11 — P1ro — Proo — Porl — P1or = 0.180
Lp_y(p) = max —po11 — poa = —0.212 (31)
—poro — poo = —0.081
Poo.o — Por.o — P1o.o — Por.l — Poo.l = 0.384

Those needed for Eq. (26) give us

I - Po11 — Poo = 0.780
I - Poir.o — Pioa = 0.927
- . —po1.o + por1 + Poo1 + Pi1.o + pooo = 1.373 o
Up_y(p) = 32
Dy (p) = min p111 + pooa = 0.788 (32)
P10 + pooo = 0.919
—p1o1 + P11+ poos + pi1o + poo = 0.796
Accordingly, we conclude that the treatment causal effect lies in the range
0.392 < ACE(D — Y) <0.780 (33)

which is rather remarkable; the experimenter can categorically state that when applied
uniformly to the population, the treatment is guaranteed to improve by at least
39.2% the probability of reducing the level of cholesterol by at least 28 points. This
guarantee does not rest on any assumed model. Unfortunately, these results cannot
be translated directly into a useful policy statement for treating people with high
cholesterol, because the [Lipid Research Clinic Program 84] data were obtained for
continuous level of dosage consumed (D), while our analysis is restricted to binary D.
To infer the behavior of the population under uniform consumption at a specific level
of dosage, a model with a continuous (or at least 3-level) treatment must be studied.

Note that the bounds in Eq. (33) are equal to the natural bounds given by Eq. (12):

ACE(D — Y)
ACE(D — Y)

0.465 — 0.073 — 0.000 = 0.392

>
< 0.465 + 0.315 4 0.000 = 0.780
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It is interesting to note that “naive” comparison of subjects in and out of the treat-
ment group would predict, in this case, the value of

P(yi|dy) — P(y1|do) = 0.662 (34)

which demonstrates the potential inaccuracy in using the mean difference for evalu-
ating ACE(D — Y).

If ACE(Z — D) and ACE(Z — Y') are the only quantities measured, then the
following bounds on ACE(D — Y') can be computed by substituting the values from
Eq. (30) into Eq. (27):

0.077 < ACE(D — Y) < 0.853 (35)

As noted in Section 4.4, these bounds are much wider than those obtained in Eq. (33),
which utilized the full information given by P(y,d|z).

6 TIGHTNESS OF THE NATURAL BOUND

Although the example above shows no improvement over the natural bounds, the
next (hypothetical) example will show that in certain cases the natural bounds can
be improved upon significantly. Consider the following point in P space:

Poo.o = P(yo,dolzo) = 0.55
poro = Pyo,di|z0) = 0.45
P00 = P(y1,dolz0) = 0.00
pi1o = P(y1,di|z0) = 0.00
pooa = P(yo,do|lz1) = 0.45
Po11 = P(y 1|lz1) = 0.00
P01 = P(y olz1) 0.00
pi1a = P(yr,di|z) = 0.55

Substitution of these parameters into Eq. (12) results in the natural bounds
0.10 < ACE(D — Y) < 0.55

while the bounds resulting from the application of Eqs. (23) and (24) collapse to
0.55 < ACE(D — Y) <0.55

Obviously, when our goal is the assessment of the treatment causal effect, the bounds
obtained through linear programming can be much more informative.

Interestingly, a precise determination of ACE(D — Y') is feasible even though the
compliance is low:

ACE(Z — D) = 0.10
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Intuitively, one would expect that if most subjects ignore their treatment assignment,
the results of the study would be suspect. This intuition is partially supported by
Figure 3, which shows that the feasible range of ACE(D — Y') tends to widen as
ACE(Z — D) decreases. Nevertheless, the idiosyncratic features of the data in this
example permit us to determine precisely the causal effect. These features also allow
us to precisely determine the distribution of subjects in the population, in terms of
the subjects’ compliance and response characteristics.
This example is just one in a whole class of points in P space:

1
Pooo = 5(1 + )
1
Poio = 5(1 - l‘)
pioo = 0
piio = 0
1
Poo1 = 5(1 - $)
poria = 0
poa = 0
1
P11 = 5(1 + )

for 0 < x < 1, where the upper and lower bounds coincide

Lo—y(P) = ~(1+2)

2
- 1
Up-y(p) = S +2)
while the natural bounds give
1
x<ACE(D—-Y)< 5(1 + )

The tight lower and upper bounds are equal because the observed points in this class
can only be modelled by a single point in () space.

Each point in this class represents a rather odd population, one in which subjects
fall into only one of two behaviors with the following distribution:

1
qu=Plr=r,r"=r)) = E(l + )
1
g0 = P(r=ryr' =1 = E(l — )
The first behavior is characterized by perfect compliance with the assignment along
with a perfect response pattern to the treatment received (y = y; if and only if
d = dy). The second behavior is characterized by perfect defiance of the assignment
(the subject always chooses the treatment that is the opposite of the one assigned)

along with a total inability to respond positively to either treatment. The strong and
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strange interactions between the compliance and response behaviors implied by these
data would be very uncharacteristic of most subject populations.

In this section, we have shown that, in general, the natural bounds given by
Eq. (12) may not always be as tight as the bounds given by Eqgs. (23) and (24). In
the next section, however, we will demonstrate that the natural bounds are tight in
two important subspaces of P: when the data reveal treatment sufficiency (conditional
independence between treatment assignment and treatment response given treatment
received), and when it is reasonable to assume that subjects are non-defiant.

7 INCORPORATING ADDITIONAL
ASSUMPTIONS

In this section we will examine the impact that various assumptions have on
the bounds for ACE(D — Y') and the constraints that they place on the observed
parameters. The main assumptions to be discussed here are:

e treatment sufficiency (conditional independence of treatment assignment and

observed response given treatment received);

o treatment sufficiency together with structural stability; and

e no perfectly defiant subjects.

7.1 Treatment sufficiency

This subsection examines whether the presence of conditional independence Z || Y|D
in the data simplifies the formulas for the bounds on ACE(D — Y'). In other words,
are any of the expressions within the minimization/maximization of Eqs. (25) and
(26) eliminated? The following theorem provides the answer to this question.

Theorem 7.1 If the observed distribution P(y,d|z) satisfies Z || Y|D and the con-
dition of positive effects, then the natural bounds on ACE(D — Y)
ACE(D — Y) Z 1ACE(Z — Y) — P(’yl, d0|21) — P(yo, d1|20)

are tight.

Proof:

We will show that a set of constraints implied by Z || Y[D and the condition
of positive effects are only mutually consistent with those conditions in Tables 1
and 2 corresponding to the natural bounds (the topmost entries).

First, assume that g is strictly positive.

By definition, Z || Y|D if and only if

P(y|d720) = P(y|d721)
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for all y and d such that P(d|z) > 0 and P(d|z;) > 0. This may be written:

P10.0 o P1oa
Poo.o + P1o.0 Poo.1 + Pioa
P11.0 _ P11
Poi.o + Pi1.0 Poia + Pi1a
or, equivalently,
Poo1 = SPooo
Proa = SplO.O (36)
poio = 1'poia
piio = I'piia

where S and T represent the ratios

§ - Poo.1 _ P1o.1

Poo.o P1o.0
T — Po1.o _ Pi1.0

Poi1.a P11

From the condition of positive effects,

P11+ poia — piio — poro = 0

which, from Eq. (36), may be rewritten

(1 =T)p111+por1) > 0 (37)

This implies that 7" < 1.

Likewise, we may use the equalities in Eq. (36) to rewrite the probabilistic
constraints given by Eqgs. (15) and (16):

Poo.o + L'pora+ proo+1Ipia = 1
Spoo.o + pora + Spoo+pua = 1

Taking the difference of these two equations gives
(1 = S5)(pooo + proo) = (I —=T)(por1+ pi11) (38)

T <1 then implies that S < 1.
Applying these bounds on S and 7' to Eq. (36) results in the constraints

Pooo = Pooi
Proo = Pioa
Poi1 = Poio
P11 2 Piio
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which, when conjoined with the conditions in Tables 1 and 2, reveal that the only
applicable bounds on ACE(D — Y') under the assumption of positive effects and
conditional independence are the natural bounds:
LDﬁY(ﬁ) = p11a + pooo — 1 = ACE(Z - Y) - P(y17d0|21) - P(y07d1|20)
Up—y(p) =1—=por1—pioo= ACE(Z —=Y)+ P(yo,do|z1) + P(y1, d1|z0)

When p is not strictly positive, we can proceed through a similar exercise on a
case-by-case basis and obtain identical results. We omit this part of the proof.

a

Figure 4 shows how the conditional independence tightens the lower bounds shown
in Figure 3 when the only information known about the observed distribution is

ACE(Z — D) and ACE(Z —Y).
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Figure 4: Bounds on ACE(D — Y) plotted against ACE(Z — Y') and ACE(Z — D),
given that Z || Y|D.

7.2 Treatment sufficiency with structural stability

Where treatment sufficiency holds under a variety of experimental conditions, it is
reasonable to assume that it is not caused by incidental equality of parameters,
but rather by structural constraints. This notion of structural stability is indeed
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the pivotal assumption behind the causal inference methods of [Pearl and Verma 91,
Spirtes et al. 91], namely, that every conditional independence shown in the data
must be logically implied by the decomposition of the joint probability distribution
given by Eq. (2) as dictated by the graph structure. If this assumption holds, then
the data are DAG-isomorphic to the graph structure, and all independence relatlons
may then be tested by using the d-separation criterion ([Pearl 88]).

Theorem 7.2 [f an observed distribution P(y,d|z) is structurally stable and satisfies
Y || ZID and Y || Z, then

ACE(D — Y) = P(yi|ds) — P(y:|do) (39)

Proof:

The antecedent of the theorem implies that Z and Y must be d-separated given
D in the graph structure for which the data is DAG-isomorphic. Applying the
d-separation criterion to the graphical structure of Figure 1, we find that, given
D, 7 and Y are dependent via the path, Z — D — U — Y. The only way to
remove this dependency is to eliminate one of the following edges: Z — D,
U — D,or U— Y. The assumption that Z and D are marginally dependent
prevents the elimination of Z — D; therefore, the antecedent of the theorem
can only be satisfied if at least one of the edges U — D or U — Y is eliminated.

First, assume that U — Y is eliminated from the graph structure. In this case,
P(y|d,u) = P(y|d), which, when substituted into Eq. (4), results in

ACE(D —»Y) = P(yld) — P(yi|do)

Next, assume that U — D is eliminated from the graph structure. In this case,
we note that P(u) = P(uld), allowing the following transformations of Eq. (4):

ACE(D - Y) = Z[P Pyildy, u) — P(u)P(y1|do, u)]
_ ;[P uld) Py d, ) — P(uldo) Py do, )
= S UP(y,ulds) — Plyr, uldo)]
= Plpld) - Plyldo)

O

Notice that the combination of structural stability and treatment sufficiency sub-
sumes the assumption of Eq. (1); Z || Y[{D,U} is no longer an assumption but is
implied by Z || Y|[D, because, for any set of variables S, Z || Y|[S cannot hold if
there is a direct arc from Z to Y. Therefore, when structural stability holds, finding a
variable Z' satisfying Z' || Y[D and Z' || Y permits us to dispose of the randomlzed
assignment altogether and infer causal effects (using Eq. (39)) in purely observational
studies. Discovering a Z' which satisfies these relationships may be viewed as un-
covering a randomized experiment that is conducted by Nature itself, and this is the
basis of the “virtual control” condition discussed in [Pearl and Verma 91].
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7.3 Non-defiance

In Section 3, a subject was characterized as perfectly defiant if under either treatment
assignment the subject fails to comply with the assignment (d = d; if and only if
z = zg). In terms of the potential-response model, this behavior is specified by
R = ry. An example of a situation in which perfectly defiant subjects might be
possible is a study that involves observation of draft status (Z) and military service
(D) ([Angrist et al. 93]). In this scenario, there could conceivably be subjects who
despise authority and so, if drafted, would evade service and, if not drafted, would
volunteer for service.

Alternatively, there are situations in which perfectly defiant behavior would be
improbable:

e when subjects do not know exactly what the two treatment options (z¢ and z;)
are; hence, it is beyond their means to defy both treatment assignments.

e when subjects know what the two treatment options are but do not know which
treatment they have been assigned (the procedures for receiving the assigned
treatments are identical, as in the use of placebo).

e when subjects know what both treatments are and know which treatment they
have been assigned but do not have access to both treatments; therefore, it is
beyond their means to obtain the opposite treatment under either assignment.

Drug studies often are very likely to fit one of these situations, especially since a
placebo is usually used as the alternative treatment to the medication under study,
so subjects cannot easily determine which treatment they have been assigned.

Based on the applicability suggested above, we will define the assumption of
non-defiance as stating that there are no perfectly defiant subjects in a study. This
assumption is expressed by the constraint P(r =ry) =0, or ¢2; = 0 for y =0,...,3.
Non-defiance together with the condition of positive effects is equivalent to the as-
sumption of “monotonicity” analyzed by [Angrist et al. 93], which translates to the
restriction: either P(r = ry) = 0 or P(r = r;) = 0. Because the assumption of
non-defiance imposes restrictions on the unobserved parameters in ) space, it carries
the potential of improving the bounds on ACE(D — Y') beyond those of Egs. (21)
and (22). The following theorem refutes this possibility.

Theorem 7.3 If all subjects in a population are non-defiant, then the natural bounds

on ACE(D —Y),

ACE(D — Y)
ACE(D — Y)

ACE(Z — Y) — P(y1,do|z1) — P(yo, d1|20)
ACE(Z — Y) + P(yo,do|z1) + P(y1, d1]20)

are tight.
This theorem may be proven by reapplying the Simplex Tableau algorithm to the

optimization problem given by Eq. (20) with the constraints ¢z; = 0 for j =0,...,3.
Exactly as before, we obtain symbolic solutions for the upper and lower bounds
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by tracking the conditions that lead to various decisions in the Simplex Tableau
algorithm. This procedure results in a single expression each for the lower and upper
bounds; these expressions are identical to the natural bounds given by Eq. (12).

It is important to understand that the non-defiance assumption (as well as that of
treatment sufficiency) does not widen the bounds of Eqs. (21) and (22) to the natural
bounds, but instead restricts the observation space P to a region where the natural
bounds are the only applicable bounds. Consequently, the assumption of non-defiance
is partly observable; if P(y,d|z) does not satisfy the following constraints implied by
non-defiance

Pooo = Pooi
Poi1 = Poio
Ploo = Pioa
P11 2 Piio

then the assumption of non-defiance does not hold. To summarize, the assumption of
non-defiance provides no benefits over the unconditional bounds given by Eqs. (23)
and (24); however, it narrows the space of observation so as to render the natural

bounds of Eq. (12) realizable.

7.4 Local average-treatment effect

While this paper focuses primarily on predicting the average treatment effect over
an entire population, there are cases where one would be interested in treatment
effects averaged over a subpopulation of special characteristics. [Angrist et al. 93]
have found that, under the assumption of non-defiance, the treatment effect averaged
over the subpopulation of perfectly complying individuals, ACE.(D — Y), can be
identified and is given by the Instrumental Variable formula

ACE(Z —»Y) _ P(yi]z1) — P(yi]20)

ACE(D = V) = ACE(Z — D)~ P(di|z1) — P(dy|) (10)

In other words, Eq. (40) gives the correct treatment effect for those individuals whose
participation in the treatment D comes as a consequence of the encouragement Z.

This can be verified by noting that a compliant subpopulation is characterized by
the condition R = ry; thus

ACEC(D — Y) = P(‘y1|d177'1) — P(‘y1|d077“1)
= P(ri|ri) — P(ry|r1)
P(ri,ry) = P(ri,m)
P(ry)
q11 — q12
qio t+ q11 + q12 + qi13

This last expression coincides with the Instrumental Variable formula above under
the condition of non-defiance, namely, P(ry) =0, or ¢2; =0 for j =0,...,3.
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It is worth noting that the subpopulation of perfectly complying individuals is
not, in general, identifiable, because the condition R = r; cannot be determined
from the triplet (y,d, z). Nevertheless, the behavior of this subpopulation may be
of interest to analysts, as it reveals the treatment effect under ideal conditions, free
of noncompliance side effects. Bounds on the behavior of other subpopulations of
interest can be obtained by methods similar to those in Section 4.

8 CONCLUSIONS

This paper provides formulas that allow analysts to make categorical statements
about causal effects in the context of studies where subjects are only partially com-
pliant. These formulas, expressed in terms of the distribution over observed variables
(treatment assignment, treatment received, and observed response), represent strict
upper and lower bounds for the average causal effect of the treatment on the popu-
lation. These bounds are applicable to all studies where the assignment itself only
affects the observed response via the treatment actually received, regardless of any
interaction that might take place between the treatment received and the observed
response. Aside from this assumption, the results do not rest on any particular model
of compliance behavior.

We believe that the results presented here could be particularly helpful in quasi-
experimental studies, that is, studies in which randomized mandated treatments are
either unfeasible or undesirable and randomized encouragements are instituted in-
stead ([Holland 88]). For example, in evaluating the efficacy of a social program, the
randomized instrument can be advertisement, incentives, or eligibility, letting subjects
make the final choice of participation. The bounds established through Egs. (23) and
(24) reveal that such studies, despite the indirectness of the randomized instrument,
can yield valuable information on the average causal effect of the treatment on the
population.

Some topics that will receive attention in future work include the analysis of
multi-level and continuous treatments, the maximume-likelihood estimation technique
for finite samples, and the analysis of hypothetical queries.
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