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This paper establishes formulas that can be used to bound the actual treatment
effect in any experimental study in which treatment assignment is random but
subject compliance is imperfect. These formulas provide the tightest bounds
on the average treatment effect that can be inferred given the distribution of
assignments, treatments, and responses. Our results reveal that even with high
rates of noncompliance, experimental data can yield significant and sometimes
accurate information on the effect of a treatment on the population.

1 Introduction

Consider an experimental study where random assignment has taken place but compliance
is not perfect (i.e., the treatment received differs from that assigned). It is well known
that under such conditions a bias may be introduced, in the sense that the true causal
effect of the treatment may deviate substantially from the causal effect computed by simply
comparing subjects receiving the treatment with those not receiving the treatment. Because
the subjects who did not comply with the assignment may be precisely those who would
have responded adversely (positively) to the treatment, the actual effect of the treatment,
when applied uniformly to the population, might be substantially less (more) effective than
the study reveals.

In an attempt to avert this bias, analysts sometimes resort to parametric models which
make restrictive commitments to a particular mode of interaction between compliance and
response [Efron and Feldman, 1991]. [Angrist et al., 1993] have identified a set of assump-
tions under which a nonparametric correction formula, called “Instrumental Variables”, is
valid for certain subpopulations. These subpopulations cannot be identified from empiri-
cal observation alone, and the need remains to devise alternative, assumption-free formulas
for assessing the effect of treatment over the population as a whole. [Robins, 1989] and
[Manski, 1990] derived nonparametric bounds on treatment effects which are assumption-
free, but do not make full use of the information available in the data. In this paper, we
provide the tightest possible bounds on the average treatment effect. These bounds rely
solely on observed quantities and are universal, that is, valid no matter what model actually
governs the interactions between compliance and response.

2 Problem formulation

The canonical partial-compliance setting can be graphically modeled as shown in Figure 1.
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Figure 1: Graphical representation of causal dependencies in a randomized clinical trial with
partial compliance.

We assume that Z, D, and Y are observed binary variables where Z represents the
(randomized) treatment assignment, D is the treatment actually received, and Y is the
observed response. U represents specific characteristics of an individual subject, namely, all
factors, both observed and unobserved, that may influence a subject’s choice of treatment D
and eventual outcome Y. To facilitate the notation, we let z, d, and y represent, respectively,
the values taken by the variables Z, D, and Y, with the following interpretation: z € {zq, 21},
z1 asserts that treatment has been assigned (zg, its negation); d € {do, d1}, di asserts that
treatment has been administered (dy, its negation); and y € {yo, 1}, y1 asserts a positive
observed response (yg, its negation). The domain of U remains unspecified and may, in
general, combine the spaces of several random variables, both discrete and continuous.

The model analyzed invokes two assumptions of independence:

1. For a given individual, the treatment assignment does not influence Y directly, but
only through the actual treatment D, that is,
Z || Y [{D,U} (1)

In practice, any direct effect Z might have on Y would be adjusted for through the
use of a placebo.

2. Z and U are marginally independent, that is, Z || U. This independence is partly
ensured through the randomization of Z, which rules out a common cause for both Z
and U. Additionally, Z || U implies that the assignment Z does not alter a person’s
initial characteristics U. This still permits the final choice of treatment D to be
dependent on the subject’s initial reaction to the treatment assigned Z, as long as the
initial reaction can be regarded as transitory, i.e., not having direct effect on Y.

These assumptions impose on the joint distribution® the decomposition
P(y,d,z,u) = P(yld,u) P(d|z,u) P(z) P(u) (2)

which, of course, cannot be observed directly because U is a latent variable. However, the
marginal distribution P(y,d, z) and, in particular, the conditional distributions P(y,d|z),
z € {20, 21}, are observed, and the challenge is to assess the causal effect of D on Y from
these distributions.?

1We take the liberty of denoting the prior distribution of U by P(u), even though U may consist of
continuous variables. If U is sufficiently refined, the term P(y|d,u) will become deterministic, but such
refinement is not necessary for our analysis.

2In practice, of course, only a finite sample of P(y,d|z) will be observed, but since our task is one of
identification, not estimation, we make the large-sample assumption and consider P(y, d|z) as given.



Causal analysis of treatment effects formalizes changes in the joint distribution which are
induced by external interventions [Pearl, 1994]. In particular, the analysis concerns the effect
of local interventions, relative to which P(y|d,u) is a stable quantity, i.e., the probability
that an individual with characteristics U = u given treatment D = d will respond with
Y = y remains the same, regardless of how the treatment was selected — be it by choice,
persuasion, or policy. Thus, to predict the distribution of Y if the treatment D were applied
uniformly to the population, we should calculate

P(y|D=d uniformly) y|d*) = ZP (yld, u) P(u) (3)

where P(y*|cz*) stands for the probability that Y would have been equal to y, if D were
(counterfactually) equal to d. A value annotated with a superscript asterisk (%) denotes
the value of the corresponding variable in a hypothetical counterfactual world, and a value
annotated with a hat (") indicates that the corresponding variable has been set to the
value by an external local action. Details of the semantics and evaluation of counterfactual
probabilities may be found in [Balke and Pearl, 1994].

If we are interested in estimating the average change in Y due to treatment, we can

similarly define the average causal effect, ACE(D — Y') ([Holland, 1988]), as
ACE(D —Y) = P(yild;) - P(yi|d5) (4)

The task of causal inference is then to estimate or bound the expressions in Eqs. (3) and
(4), given the observed probabilities P(y,d|z9) and P(y,d|z1). This may be accomplished
by a procedure detailed in [Balke and Pearl, 1994], which is based on linear programming
optimization coupled with the fact that the domain of U can be partitioned into sixteen
equivalent classes, each representing one of four possible mappings from Z to D conjoined
with one of four possible mappings from D to Y.

3 Results

Let the conditional distribution P(y,d|z) over the observable variables be notated as follows:

P(
DPoo.o P(y d0|20) Poo.1 = P(yo,do|21)
DPo1.o = P(yo,d |Zo) Po1a = P(yo, d1|2’1)
P1o.o0 = P(y |20) D101 = P(y1, d0|21)
P11.0 = P(yl,d |Zo) P111 = P(y1,d1|21)
q- (

Symbolic optimization of Eq. (3) leads to the following bounds:
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In addition, one can prove that these are the tightest possible assumption-free bounds
and, moreover, the tightest bounds on the average treatment effect are obtained by taking
differences of the bounds corresponding to the individual terms in Eq. (4). The bounds
shown above constitue substantial improvement over those derived by [Robins, 1989] and
[Manski, 1990], which correspond to the two upper terms in each expression. The width of
these bounds cannot exceed the rate of noncompliance, P(d;|zg) + P(dg|z1), and may in
some cases collapse to a point estimate, even when as many as 50% of subjects switch over
to unassigned treatments.

Examples and additional results regarding bounds on treatment effects in partial com-
pliance studies are presented in [Balke and Pearl, 1993]. In particular, it is shown that the
two independence assumptions underlying randomized-assignment experiments; although
not directly testable, impose the following testable constraints on the observed distribution:
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If any of these inequalities is violated, the investigator can safely deduce that either the
assignments were not properly randomized, or treatment assignment exerts some direct
influence on subjects’ responses.

Finally, the method of causal analysis outlined above permits us to evaluate a variety
of more intricate counterfactual probabilities. For example, suppose we wish to assess the
probability that a given individual would have recovered had he/she not been assigned
treatment (zg), when in actuality he/she has been assigned the treatment (z;), taken the
treatment (d;), and not recovered (yo). In this case, we analyze the causal effect of the
assignment in the subpopulation characterized by {z1,d1, yo}, which leads to the following
bounds:.
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A general method for obtaining such bounds is detailed in [Balke and Pearl, 1994].

4 Conclusion

In an attempt to avert confounding bias in randomized studies involving noncompliance,
analysts usually advocate the use of “intent-to-treat” analysis, which compares assignment
groups regardless of the treatment actually received. Estimates based on such analysis are
free of confounding bias as long as the experimental conditions perfectly mimic the conditions
prevailing in the eventual usage of the treatment. In particular, the experiment should
mimic subjects’ incentives for receiving each treatment. In situations where field incentives
are more compelling than experimental incentives, treatment effectiveness is determined by
the average causal effect, Ey[P(y1|u, d1) — P(y1|u, do)] for which we have provided universal
and strict bounds. The formulas established in this paper should enable the analyst to
determine the extent to which estimates based on intent-to-treat analysis may deviate from



the actual treatment effect. This information should be useful for assessing whether efforts
to ensure population compliance have the potential of increasing the overall benefit of the
treatment.
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