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Abstract

This paper demonstrates the use of graphs as a mathematical tool for ex-
pressing independencies, and as a formal language for communicating and pro-
cessing causal information for decision analysis. We show how complex infor-
mation about external interventions can be organized and represented graphi-
cally and, conversely, how the graphical representation can be used to facilitate
quantitative predictions of the effects of interventions.

We first review the theory of Bayesian networks and show that directed
acyclic graphs (DAGs) offer an economical scheme for representing conditional
independence assumptions and for deducing and displaying all the logical con-
sequences of such assumptions. We then introduce the manipulative account
of causation and show that any DAG defines a simple transformation which
tells us how the probability distribution will change as a result of external in-
terventions in the system. Using this transformation it is possible to quantify,
from non-experimental data, the effects of external interventions and to spec-
ify conditions under which randomized experiments are not necessary. As an
example, we show how the effect of smoking on lung cancer can be quantified
from non-experimental data, using a minimal set of qualitative assumptions.

Finally, the paper offers a graphical interpretation for Rubin’s model of
causal effects, and demonstrates its equivalence to the manipulative account of
causation. We exemplify the tradeoffs between the two approaches by deriv-
ing nonparametric bounds on treatment effects under conditions of imperfect
compliance.

*Portions of this paper were presented at the 49th Session of the International Statistical Institute,
Florence, Italy, August 25 - September 3, 1993.



1 Introduction

Although graphical models are intuitively compelling for conceptualizing statistical
associations, the scientific community generally views such models with hesitancy
and suspicion. The purpose of this paper is to demonstrate the use of graphs as
a precise mathematical tool of great versatility, especially as a formal language for
communicating causal information in statistical and decision analysis.

Causal models, no matter how they are represented, discovered, or tested, are
generally regarded as more useful than associational models because causal models
provide information about the dynamics of the system under study. In other words, a
joint distribution tells us how probable events are and how probabilities would change
with subsequent observations, but a causal model also tells us how these probabilities
would change as a result of external interventions in the system. For this reason,
causal models (or “structural models” as they are often called) have been the target
of relentless scientific pursuit and, at the same time, the center of much controversy
and speculation [Freedman 1987].

Bayesian Belief Networks became an interesting target of investigation precisely
for their ability to capture causal information [Pearl 1988]. Unfortunately, the direc-
tionality of the arcs in such networks has been treated very cautiously in both the
statistical and decision analytic literature [Lauritzen & Spiegelhalter 1988, Cox 1992,
Cox & Wermuth 1993, Spiegelhalter etal. 1993, Howard 1990]: the causal interpreta-
tion of the directed arcs has been de-emphasized in favor of the safer interpretation
in terms of “relevance” and “dependence”. This limited interpretation is deficient in
several respects. First, causal associations are the primary source of judgments about
dependence and relevance; they should therefore guide preformal thinking about the
design of statistical studies [Dempster 1990]. Second, rejecting the causal interpreta-
tion of directed arcs prevents us from using graphical models for making legitimate
predictions about the effects of actions. Such predictions are indispensable in most
decision making applications, including policy analysis and treatment management,
and often involve actions that were not anticipated in the modeling phase.

The primary aim of this paper is to show how complex information about external
interventions can be organized and represented graphically and, conversely, how the
graphical representation can be used to facilitate quantitative predictions of the effects
of interventions, anticipated and unanticipated alike.

Section 2 will review the use of directed acyclic graphs (DAGs) as a language for
communicating conditional independence assumptions. Sections 3 and 4 will define
the causal interpretation of DAGs and Section 5 will demonstrate their use in obser-
vational studies. Section 6 will demonstrate the equivalence between the language
of graphs and Rubin’s model of causal effects. Finally, Section 7 applies the two
approaches to the analysis of treatment effects in experimental studies with imper-
fect compliance. Using this example we show how a latent-variable structure can be
reduced to an equivalent counterfactual model and how the two approaches can be
used to derive nonparametric bounds on the causal effects of treatments, when data
is taken under conditions of partial compliance.



2 Directed Graphs and Conditional Independence:
A Review

Networks employing directed acyclic graphs (DAGs) are used to provide either

1. an economical scheme for representing conditional independence assumptions,
or

2. a graphical language for representing causal influences.

This section will focus on the former, since causal influences are discussed in the
remaining parts of this paper.

Given a DAG I' and a joint distribution P over a set X = {Xj,..., X,,} of discrete
variables, we say that I' represents P if there is a one-to-one correspondence between
the variables in X and the nodes of I', such that P admits the recursive product
decomposition

Py, ... x,) = HP("EZ | pa;) (1)

where pa; are the direct predecessors (called parents) of X; in I'. For example, the
DAG in Figure 1 induces the decomposition

P(x1, 72, 23,24, 75) = P(21) P(x2]|21) P(x3|z1) P(xs|es, x3) Pws|24) (2)
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Figure 1: A typical directed acyclic graph (DAG) representing the decomposition of
Eq. (2).

The recursive decomposition in Eq. (1) implies that, given its parent set pa,, each vari-
able X; is conditionally independent of all its other predecessors { X1, X3, ..., X;_1}\pa,.
Using Dawid’s [1979] notation, we can state this set of independencies as follows:

Xi || {X1,Xe,.., Xici}\pa, | pa, i=2,..,n (3)

Such a set of independencies will be called Markovian, since it reflects the Markovian
condition for state transitions: Each state is rendered independent of the past, given



its immediately preceding state. For example, the DAG of Figure 1 implies the
following Markovian independencies:

Xo || {0} [ Xy, X5 || Xo| Xu, Xy || Xo [{ Xy, X5}, X5 || {Xy, Xo, Xa} | Xy
W)

Conversely, any list M of Markovian independencies identifies a DAG I' (that
represents P) because it permits a recursive product decomposition as in Eq. (1).
However, such decomposition may imply additional independencies that are not in-
cluded in M. For example, the decomposition of Eq. (1) implies X5 || X3 | { X1, X4}
(which is not part of M) regardless of the numerical values assigned to the factors of
that product. A graphical criterion called d-separation [Pearl 1988] permits us to read

off the DAG the sum total of all independencies implied by a given decomposition.

Definition 2.1 (d-separation) If XY, and Z are three disjoint subsets of nodes in
a DAG I', then 7 is said to d-separate X from Y, denoted d(X,Z,Y)r, if and only
if there is no path from a node in X to a node in Y along which the following two
conditions hold: (1) every node with converging arrows either is or has a descendant
in Z, and (2) every other node is outside Z. A path satisfying the conditions above
is said to be active; otherwise it is said to be blocked (by Z). By path we mean a
sequence of consecutive edges (of any directionality) in the DAG.

In Figure 1, for example, X = {X,} and Y = { X3} are d-separated by Z = { X7 };
the path X; «— X; — X3 is blocked by X; € Z, while the path X; — X, « X3 is
blocked because X4 and all its descendants are outside Z. Thus d( X3, X7, X3) holds
in I'. However, X and Y are not d-separated by Z' = {X;, X5} because the path
Xy — Xy « X3 is rendered active by virtue of X5, a descendant of Xy, being in Z.
Consequently, d( X3, {X1, X5}, X3) does not hold in I'; Metaphorically, learning the
value of the consequence X5 renders its causes X, and X3 dependent, as if a pathway
were opened along the converging arrows at Xj.

The d-separation criterion has been shown to be both sound and complete relative
to the set of distributions that are represented by a DAG I' [Verma 1986, Geiger &
Pearl 1988]. In other words, there is a one-to-one correspondence between the set
of independencies implied by the recursive decomposition of Eq. (1) and the set of
triples (X, Z,Y) that satisfy the d-separation criterion in I'. Furthermore, the d-
separation criterion can be tested in time linear in the number of edges in I'. Thus, a
DAG can be viewed as an efficient scheme for representing Markovian independence
assumptions and for deducing and displaying all the logical consequences of such
assumptions. Additional properties of DAGs and their applications to evidential
reasoning in expert systems are discussed in [Pearl 1988, Pearl etal. 1990, Geiger

1990, Lauritzen & Spiegelhalter 1988, Spiegelhalter etal. 1993, Pearl 1993a].

3 Graphical Models and the Manipulative Ac-
count of Causation

The interpretation of DAGs as carriers of independence assumptions does not specif-
ically mention causation and will in fact be valid for any set of Markovian indepen-
dencies, along any ordering (not necessarily causal or chronological) of the variables.



However, the patterns of independencies portrayed in a DAG are so typical of causal
organizations that some of these patterns can only be given meaningful interpreta-
tion in terms of causation. For example, we can hardly find a pair of dependent
events, [y and FE,, that are rendered independent by conditioning on a third event
Es3 unless Fs serves as a cause for either £y or Fy (or both). Indeed, we cannot
easily contrive three such events if we constrain K3 to occur after F; and Ej, so as
to suppress the causal interpretation above. The DAG representation provides a per-
fect language for such dependencies; it lets F5 d-separate E5 from FEj in the pattern
Ey — FE3 — Fy or Ey «— E3 — F,, but not in the converging pattern £y — E3 «— Fs.
This distinction is the basis for the Markovian accounts of causation, as exemplified
by those of [Granger 1988, Suppes 1970], and by the more elaborate, non-temporal
accounts of [Pearl & Verma 1991] and [Spirtes etal. 1993].

However, the Markovian account still leaves open the question of why such in-
tricate patterns of independencies are produced by and become the characteristic
signature of causal organizations. A related question is how these patterns are con-
nected with the more basic notions associated with causation, such as influence,
manipulation, and control. The connection is made in the mechanism-based account
of causation.

The basic idea behind this account goes back to [Simon 1977] and is stated suc-
cinctly in his forward to [Glymour etal. 1987]: “The advantage of representing the
system by structural equations that describe the direct causal mechanisms is that if
we obtain some knowledge that one or more of these mechanisms has been altered, we
can use the remaining equations to predict the consequences — the new equilibrium.”
Here, by “mechanism” Simon means any stable relationship between two or more
variables, usually expressed in functional form, that remains invariant to external
influences until it falls directly under such influences.

This mechanism-based model was adapted in [Pearl & Verma 1991] for defin-
ing probabilistic causal theories; each child-parent family in a DAG I' represents a
deterministic function

Xi = fi(paiv 6i)7 (5)
where pa; are the parents of variable X; in I', and ¢;, 0 < ¢ < n, are mutually indepen-
dent, arbitrarily distributed random disturbances. Characterizing each child-parent
relationship as a deterministic function, instead of the usual conditional probability
P(z; | pa;), imposes equivalent independence constraints on the resulting distribu-
tions and leads to the same recursive decomposition

Pz, ... z,) = HP("(:Z | pa,) (6)

that characterizes DAG models (see Eq. 1). This is so because each ¢ is inde-
pendent on all non-descendants of X;. However, the functional characterization
X, = fi(pa,, &) also permits us to specify how the resulting distribution would change
in response to external interventions, using the convention that each function remains
constant unless specifically altered. Moreover, the non-linear character of f; permits
us to treat changes in the function f; itself as a variable, F;, by writing

Xi = I(pa;, F}, ;) (7)



where [ is a 3-argument function defined by
I(a,b,c) = fi(a,c) whenever b = f;.

Thus, any external intervention F; that alters f; can be represented graphically as an
added parent node of X;, and the effect of such an intervention can be analyzed by
Bayesian conditionalization, that is, by simply setting this added parent variable to
the appropriate value f;.

The simplest type of external intervention is one in which a single variable, say
X;, is forced to take on some fixed value z!. Such intervention, which we call atomnuc,
amounts to replacing the old functional mechanism X; = fi(pa;, ¢;) with a new mech-
anism X; = z! governed by some external force F; that sets the value z!. If we imagine
that each variable X; could potentially be subject to the influence of such an external
force F;, then we can view the causal network I' as an efficient code for predicting the
effects of atomic interventions and of various combinations of such interventions.

m m

Figure 2: Representing external intervention F; by an augmented network

F/:FU{FZ'HXZ'}.

The effect of an atomic intervention set(X; = z!) is encoded by adding to I' a link
F; — X, (see Figure 2), where F; is a new variable taking values in {set(z}), idle},
z! ranges over the domain of X;, and idle represents no intervention. Thus, the new
parent set of X; in the augmented network is pal = pa, U {F}}, and it is related to
X; by the conditional probability

P(z; |pa))=< 0 if F;, =set(z}) and z; # ! (8)
1 if F; =set(z}) and z; = !
The effect of the intervention set(x}) is to transform the original probability function
P(zy,...,z,) into a new function P (z1,...,2,), given by
sz(:cl, ey ) = P21, .,z | F; = set(al)) (9)

where P’ is the distribution specified by the augmented network I'' = I' U { F; — X}
and Eq. (8), with an arbitrary prior distribution on F;. In general, by adding a
hypothetical intervention link F; — X; to each node in I', we can construct an aug-
mented probability function P'(xq,...,x,; Fi, ..., F,) that contains information about



richer types of interventions. Multiple interventions would be represented by condi-
tioning P’ on a subset of the F;’s (taking values in their respective set(x!)), while the
pre-intervention probability function P would be viewed as the posterior distribution
induced by conditioning each F; in P’ on the value idle.

4 A Transformation Formula for Interventions

This representation yields a simple and direct transformation between the pre-intervention
and the post-intervention distributions:

M if z;, =2
Pl". ($17 ey xn) = 63(1'1 | pai) f # j (10)
’ 1 x; #x;

This transformation reflects the removal of the term P(xz; | pa;) from the product
decomposition of Eq. (6), since pa; no longer influence X;. Graphically, the removal
of this term is equivalent to removing the links between pa,; and X;, while keeping
the rest of the network intact. Transformations involving conjunctive and disjunctive
actions can be obtained by straightforward applications of Eq. (9) [Spirtes etal. 1993,
Goldszmidt & Pearl 1992, Goldszmidt 1992]

The transformation (10) exhibits the following properties:
1. An intervention set(x}) can affect only the descendants of X; in I'.

2. For any set S of variables, we have
Pz;(s | pa;) = P(S | i, pa,). (11)

In other words, given X; = ! and pa,, it is superfluous to find out whether
X; = 2! was established by external intervention or not. This can be seen
directly from the augmented network 1" (see Figure 2), since {X;} U pa, d-
separates F; from the rest of the network, thus legitimizing the conditional
independence S || F; | (Xi, pa;).

3. A sufficient condition for an external intervention set(.X; = z!) to have the same
effect on X; as the passive observation X; = 2} is that X; d-separates pa, from
X;, that is,

Pule;) = Pla; | ) i X; || pa, | X (12)

The immediate implication of Eq. (10) is that, given the structure of the causal
network I', one can infer post-intervention distributions from pre-intervention dis-
tributions; hence, we can reliably estimate the effects of interventions from passive
(i.e., non-experimental) observations. Of course, Eq. (10) does not imply that we
can always substitute observational studies for experimental studies, as this would
require an estimation of P(x; | pa;). The mere identification of pa; (i.e., the direct
causal factors of X;) requires substantive causal knowledge of the domain which is
often unavailable. Moreover, even when we have sufficient substantive knowledge to
structure I'; some members of pa, may be unobservable, or latent. Fortunately, there



are conditions for which an unbiased estimate of Pmé(xj) can be obtained even when
the pa, variables are latent and, moreover, a simple graphical criterion can tell us
when these conditions are satisfied.

5 Eliminating Confounding Bias

5.1 Strong Ignorability and the Back-door Criterion

Assume we are given a causal network I' together with non-experimental data on
a subset X, of observed variables in I' and we wish to estimate what effect the
intervention set(X; = x!) would have on some response variable X;. In other words,
we seek to estimate Pp/(z;) from a sample estimate of P(X,). Applying Eq. (9), we
can write

Pu(z;) = Pla; | Fi = set(x))
= > Plz; | S, X;=al,F; = set(a}))P'(S | Fi = set(z))) (13)
S

where S is any set of variables. Clearly, if S satisfies

S || £ and X; || Fi|(Xi,S) (14)

then Eq. (13) can be reduced to
Pylx;) = Y P(x;|8,27)P(S)
S
— Bs[P(e; |8, (15)

Thus, if we find a set S C X, of observables satisfying Eq. (14), we can estimate
P, (z;) by taking the expectation (over S) of P(z; | S,z}), and the latter can easily
be estimated from non-experimental data. It is also easy to verify that Eq. (14) is
satisfied by any set S that meets the following back-door' criterion:

1. No node in S is a descendant of X;, and

2. S d-separates X; from X; along every path containing an arrow into Xj.

In Figure 3, for example, the sets S; = {X3, X4} and S; = {X4, X5} meet the
back-door criterion, but S3 = { X} does not because X, does not d-separate X; from
X, along the path (X, X3, X1, X4, X5, X5, X;). Thus, we have obtained a simple
graphical criterion for finding a set of observables for estimating (by conditioning)
the effect of interventions from purely non-experimental data.

It is interesting that the conditions formulated in Eq. (14) are equivalent to those
known as strongly ignorable treatment assignment (SI'TA) conditions in Rubin’s model
for causal effect [Rosenbaum & Rubin 1983] (see Section 6 for detailed comparison).
Reducing the SITA conditions to a graphical back-door criterion facilitates computer-
aided search for an optimal conditioning set S and significantly simplifies the judg-
ments required for ratifying the validity of such conditions in practical situations.

IThe name “back-door” echoes condition 2, which requires that only indirect paths from X; to
X; be d-separated; these paths can be viewed as entering X; through the back door.
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Figure 3: A DAG representing the back-door criterion; adjusting for variables
{ X5, X4} (or { X4, X5}) yields an unbiased estimate of P(x; | set(xl)).

5.2 Other Graphical Criteria

The control of confounding bias does not end with the back-door estimand of Eq. (15);
an orthogonal estimand, worthy of the name “the front-door criterion”, may comple-
ment the latter in cases where we cannot find observed covariates S satistying the
back-door conditions. Consider variable X4 in Figure 3, and assume that it is the only
observed variable in the graph, beside X; and X;. Clearly, X4 does not satisty any of
the back-door conditions because (1) it is a descendant of X;, and (2) it does not block
any of the back-door paths between X; and X;. We shall now show that measurements
of Xg can nevertheless facilitate a consistent estimation of P(x;|set(x;)). This can be
shown either using the algebra of the “set” operator or, more directly, by reducing
the expression for P(z;|set(x;)) to formulae computable from the observed distribu-
tion function P(x;,xe,2;). To that end, let us denote by U the compound variable
consisting of all confounding variables between X; and X; (i.e., U = {Xy,..., X5} in
Figure 3), and further denote X; by X and X; by Y. All together, we now have a
structure depicted in Figure 4 below, containing one unobserved variable, U, three
observed variables X, Z, Y, with Z mediating the interaction between X and Y. We
will also assume that P(z,z) > 0 for all values of z and z.

O U (Unobserved)

- @
Z

X @
'
<o

Figure /

The joint distribution function of all four variables is given by the product

P(z,y,z,u) = P(y|z,u)P(z|x) P(x|u) P(u)



and our task is to compute the causal effect of X on Y, given by

P(y|set(x ZP yle, u)P(u) (16)

Using the two conditional independence claims embodied in the graph of Figure
4, it is possible to eliminate u from the rhs of (16) and obtain:

(y|set(x ZP )ZP(y|:c',Z)P(;E’) (17)

Since all factors on the r.h.s of (17) are consistently estimable from non-experimental
data, it follows that P(y|set(x)) is estimable as well. Thus, we are in the possession
of a consistent non-parametric estimator for the causal effect of a potential cause X
on a potential response Y, assuming of course that we find a mediating instrument
7 that meets the conditions of Figure 4.

We summarize this result by a theorem, following a formal definition identifiabil-

ity.
Definition 5.1 The causal effect of X on Y is said to be identifiable, if the quantity
P(y|set(x)), can be computed from the joint distribution of the observed variables.

Identifiability means that the quantity P(y|set(z)) can be estimated consistently from
an arbitrarily large sample, randomly drawn from the joint distribution.

Theorem 5.2 If a variable 7 satisfies the following conditions relative to an ordered
pair of variables (X,Y),

1. 7 intercepts all direct paths from X toY
2. There is no back-door path between X and Z, nor between Z and Y.

3. The relation between X and Z is non-deterministic, i.e., P(x,z) > 0

then the causal effect of X on'Y is identifiable and is given by the formula in Fq. (17).

The graphical criterion of Theorem 5.2 uncovers many new structures that permit
the identification of causal effects from nonexperimental observations. In contrast,
most of the literature on statistical experimentation considers the measurement of
intermediate variables, affected by the action, to be useless, if not harmful, for causal
inference [Cox 1958, Pratt & Schlaifer 1988]. The relevance of such structures in
practical situations can be seen, for instance, if we identify X with smoking, ¥ with
lung cancer, Z with the amount of tar deposited in a subject’s lungs, and U with
an unobserved carcinogenic genotype that, according to the tobacco industry, also
induces an inborn craving for nicotine. In this case, Eq. (17) would provide us with
the means to quantify, from nonexperimental data, the causal effect of smoking on
cancer. (Assuming, of course, that the data P(z,y, z) is made available and that we
believe that smoking does not have any direct causal effect on lung cancer except that
mediated by tar deposits).

Generalizations to more elaborate structures, including multiple Z variables,
nested combinations of back-door and front-door patterns, and concurrent “set” op-
erations, are natural extensions which we discuss elsewhere [Pearl 1994].



5.3 Related Topics

Eq. (10) was derived under the assumption that the pre-intervention probability P
is given by the product of Eq. (6), which represents a joint distribution prior to
making any observations. To predict the effect of action F; after observing C, we
must also invoke assumptions about persistence, so as to distinguish properties that
will terminate as a result of F; from those that will persist despite F;. Such a model
of persistence was invoked in [Pearl 1993b]; there, it was assumed that only those
properties that are not under any causal influence to terminate should persist. This
assumption yields formulas for the effect of conditional interventions (conditioned on
a pre-action observation C'). Again, given I', these effects can be estimated from
non-experimental data.

[Spirtes etal. 1993] have explored a more ambitious task — estimation of the ef-
fect of intervention when the structure of I' is not available and must also be inferred
from the data. Recent developments in graphical models [Pearl & Verma 1991, Spirtes
etal. 1993] have produced methods that, under certain conditions, permit us to infer
plausible causal structures from non-experimental data, albeit such structures have
a weaker set of guarantees than those obtained through controlled randomized ex-
periments. These guarantees fall into two categories: minimality and stability [Pearl
& Verma 1991]. Minimality guarantees that any other causal structure compatible
with the data is necessarily more redundant, and hence less trustworthy, than the
one(s) inferred. Stability ensures that any alternative structure compatible with the
data must be less stable than the one(s) inferred; namely, slight fluctuations in the
parameters of the functions f; (Eq. (7)) will render an alternative structure no longer
compatible with the data.

When the structure of I' is to be inferred under these guarantees, the formulas
governing the effects of interventions and the conditions required for estimating these
effects become rather complex [Spirtes etal. 1993]. Alternatively, one can produce
bounds on the effects of interventions by taking representative samples of inferred
structures and estimating P (z;) according to Eq. (10) (or Eq. (15)) for each such
sample.

6 Relation to Rubin’s Model of Causal Effects

So far, our discussion of causal graphs has focused on the manipulative account of
causation which, as was shown in Section 3, coincides with Simon’s mechanism-based
account. Another view of these basic accounts is provided by the counterfactual model
developed by [Rubin 1974] and [Holland 1986, Rosenbaum & Rubin 1983, Pratt &
Schlaifer 1988], the roots of which date back to [Neyman 1935] and [Fisher 1935].

In Rubin’s model, we imagine that an intervention Z (or “treatment” as it is often
called) can be applied at various levels 1,2, ...,T to any experimental subject (called
a “unit”) and that it is possible to record the values of the response observed in
conjunction with the different levels of the treatment. The correspondence between
the applied levels of the treatment and the recorded levels of the response would
then constitute the “causal effect” associated with the particular subject, as it char-



X1

Figure 5: Graphical representation of Rubin’s model, showing the observed response
(Y) as a function of treatment (Z) and causal effect (r) variables.

acterizes the potential impact of the treatment if applied (counterfactually) to that
subject. The target of causal-inference analysis is then the estimation, from statis-
tical data, of the properties of the potential-response vector r = (r1,r2, ..., 74, .., 77),
where r; stands for the response that the subject would exhibit if the ¢-th level of the
treatment were applied. For any given subject, r; is considered a deterministic (al-
beit unobservable) entity, as it determines precisely the response of the subject, had
he/she been given the treatment Z = t. However, for a subject randomly drawn from
a population, we can view r; as a random variable, and therefore, we can attempt to
estimate its distribution, its expectation, or the expectation of the difference r; — ry.

The distribution of r;, using the language of the manipulative account, is equal
to the distribution of the observed response Y, conditioned on the intervention Fy =
set(Z =t), namely,

Pl = y) = P'(Y = ylset(Z = 1)) = Py=uly) (18)

and

E(ry —ry) = E(Y|set(Z =t)) — E(Y|set(Z = 1)) (19)

The reason we must condition on the action Fz = set(Z = t) and not on the observa-
tion Z = tis that, to comply with the interpretation of r; as the subject’s hypothetical
response to treatment Z = ¢, we must suppress any information that the assignment
7 =1 may provide on the nature of subject.

The translation provided by Eqs. (18)-(19) implies that the causal effect defined
as E(ry—ry) can be computed from the manipulative account defined in Section 3 and
its associated transformations, as given in Eq. (10). This translation also permits us
to devise a graphical representation to Rubin’s model, thus displaying the functional
role of r;. For example, if in Figure 3 we take X; to be the treatment variable Z and X
to be the observed response Y, then the graph associated with Rubin’s model would
correspond to the one in Figure 5. The arc from X3 to Z represents a non-randomized
treatment assignment policy, where the assignment of subjects to treatment Z may
depends on the factor Xs;.

The main difference between the two figures is that in the counterfactual model
of Figure 5 r is treated explicitly as a variable, whereas in the manipulative model of



Figure 3 r is represented implicitly as a function that connects Y to its direct causal
factors: Xy, X5, and Xg. The two alternative representations of r are in line with the
transformation defined in Eq. (7). Note also that the counterfactual reading of r is
an integral part of the mechanism-based reading of causation; the semantics of the
function f;(pa,, €;) is intrinsically counterfactual because it defines the value of X; for
any hypothetical value combination of pa, and ;.

It is not hard to verify that Figures 3 and 5 are empirically equivalent, in the
sense that they imply the same statistical and manipulative behavior for all observed
variables (with the exception of Xs, which is maginalized out). For example, our
back-door criterion between X; and X, (see Eq. (14)) translates to an equivalent
back-door criterion between Z and r,

Z || r|S (20)
This is precisely the SITA condition defined in [Rosenbaum & Rubin 1983]. Moreover,
since Dawid’s [1979] axioms for conditional independence are faithfully encoded in the
d-separation criterion, we can immediately translate the condition in Eq. (20) into
equivalent graphical criteria, all of which are vividly displayed in the graph. For
example, stated in terms of the unobserved set of variables U (U = {X;, X3} in
Figure 5), our back-door criterion (Eq. (20)) reads
Z || UIS or U/ r]|S (21)
These are precisely the alternative conditions for (X, U)-adjustable treatment assign-
ment given in [Rosenbaum 1989).

The main attraction of Rubin’s model has been the facility to precisely define
the causal quantities we wish to estimate without specifying the inference methods
used in obtaining these estimates. As a result, the model exposes the fundamental
assumptions needed to make the desired estimates feasible, and we are often able
to reduce these assumptions to statements about independencies which, at least in
principle, can be submitted to judgmental verification.

Since quantities defined in Rubin’s model can be translated to equivalent quanti-
ties in the manipulative account of causation (see Eqs. (18)-(19)), it is clear that the
latter should enjoy similar advantages. Moreover, considering that graphical models
provide a calculus for processing manipulative statements (through the introduction
of hypothetical action variables, as shown in Section 3), it is not surprising that
graphical techniques are applicable for processing statements articulated in Rubin’s
model.

The current popularity of Rubin’s model is in part a reaction to basic inadequa-
cies of the structural equations framework, which forces the analyst to commit to
a particular regression model, governed by a particular set of random variables, 2:d
disturbances, and hypothetical parameters. While the graphical framework indeed
commits the analyst to treating quantities as random variables, often latent, it does
not require any assumption of 2¢d or parametric structure. The analyst is commit-
ted only to the qualitative structure behind causal thinking which, we conjecture, is
the very structure an analyst must consult when judging assumptions about Rubin’s
potential-response vector, such as Eq. (20).



It is not surprising, then, that the two approaches yield identical conclusions in
all cases where such conclusions can be stated formally or tested empirically. In cases
where the conclusions involve human judgment (e.g., confirming the SITA conditions),
the two approaches provide complementary languages for phrasing the judgments re-
quired. However, in problems requiring substantial use of domain knowledge, the
causal-network approach offers definite advantages.

7 Example: Causal Effects Under Partial Com-
pliance

To demonstrate the interplay between the counterfactual and the latent-variable mod-
els, we will present an analysis of a well-known practical problem using the two ap-
proaches.

7.1 The problem

Consider an experimental study in which random assignment has taken place but
compliance is not perfect, that is, the treatment received is different from that as-
signed. It is well known that under such conditions a bias may be introduced, in
the sense that the true causal effect of the treatment may deviate substantially from
that computed by simply comparing subjects receiving the treatment with those not
receiving the treatment. For example, subjects who did not comply with the assigned
treatment may be precisely those who would have responded adversely to the treat-
ment, so the treatment, when applied uniformly to the population, might actually be
substantially less effective than the study reveals.

In an attempt to compensate for such bias, economists have devised correctional
formulas, called “instrumental variables” [Bowden & Turkington 1984], which, in gen-
eral, do not hold outside the linear regression model. A recent analysis by Efron and
Feldman [1991] represents a healthy departure from the linear regression model, yet it
still makes restrictive commitments to a particular mode of interaction between com-
pliance and response. Angrist et al. [1993], invoking Rubin’s model, have identified
a set of assumptions under which the “instrumental variable” formula is valid, but
have not provided an alternative, assumption-free formula. We now derive correc-
tional formulas that rely solely on observed quantities and are universal, that is, they
are valid no matter what model actually governs the interactions between compliance
and response.

7.2 The latent-structure approach
The canonical partial-compliance setup can be represented by the following network:
We assume that Z, D, and Y are observed binary variables where, using con-

ventional terminology (e.g., [Angrist et al. 1993]), Z represents the (randomized)
“treatment assignment”, D is the treatment actually received, and Y is the observed
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Figure 6: Graphical representation of causal dependencies in a randomized clinical
trial with partial compliance.

response. U represents all unobserved and unknown factors which, as Figure 6 shows,
may influence the outcome Y and the treatment D. To simplify the notation, we let
z,d, and y represent, respectively, the values taken by the variables Z, D, and Y, with
the following interpretation:

z € {z0,21}, 21 asserts that treatment has been assigned (zo, its negation)

d € {dy,d1}, dy asserts that treatment has been administered (dy, its negation)

y € {y0,y1}, y1 asserts a positive observed response (yo, its negation)

The domain of U remains unspecified and may, in general, combine the spaces of
several random variables, both discrete and continuous.

The graphical model reflects two assumptions:

1. The treatment assignment does not influence Y directly, only through the actual
treatment D, that is,
Z | Y [{D,U} (22)

In practice, any direct effect Z might have on Y would be adjusted for through
the use of a placebo.

2. Z and U are marginally independent, that is, Z || U. This independence is
partly ensured through the randomization of Z, which rules out any common
cause for both Z and U. The absence of a direct path from Z to U repre-
sents the assumption that latent factors, U, which represent a person’s initial
characteristics, are not in themselves affected by the assignment.

These assumptions impose the following decomposition on the joint distribution
Ply,d,z,u) = P(yld,u) P(d|z,u) P(z) P(u) (23)

which, of course, cannot be observed directly. However, the marginal distribution
P(y,d,z) and, in particular, the conditional distribution P(y,d|z),z = zo,z1 are
observed, and the challenge is to estimate the causal effect of D on Y from these
distributions.

For any two binary variables X and Y, define the causal effect R(X — Y) of X
on Y as

R(X —Y) = P(y|set(z1)) — P(y1|set(zo)) (24)



Thus, for the experimental design depicted in Figure 6, we seek an estimate of

R(D —=Y) = P(yi|set(dr) — P(y1|set(do)
= Z[P(‘yﬂdhu) = P(y1|do, u)]P(u) (25)
given the observed probabilities P(y,d|zo) and P(y, d|z).

A few algebraic manipulations of (25) (see Appendix) yields an alternative ex-

pression for R(D — Y')

P(‘y1|217u) - P(;‘/1|2’07u)

RID—-Y)=F
( ) P(d1|21,u) — P(d1|20,U)

(26)

where F stands for the expectation taken over u.

If we think of u as an index characterizing the experimental units (i.e., the sub-
jects) the result is simple and intuitive. It says that for each individual unit u, the
indirect causal effect along the chain Z — D — Y is equal to the product of the
individual causal effects along the two links of the chain. If all units were to exhibit
the same difference in compliance probabilities, P(dy|z1,u) — P(d1]|z0,u), we would
have the celebrated instrumental variable formula

R(Z =Y)

R(D—-Y) = m

(27)
which says that the causal effect R(Z — Y') associated with the intent-to-treat needs
to be adjusted upward, through division by the partial compliance R(Z — D). This
ratio formula is indeed valid in linear regression models and was derived by econo-
metricians as far back as 1940 [Angrist et al. 1993]. In general, however, since the
quantities on the r.h.s. of Eq. (26) cannot be observed directly (only in expectation),
the expression for R can become as low as zero and even negative. Still, when an
almost-perfect compliance is observed, the unknown quantities P(y|d,u), P(d|z,u),
and P(u) do not have the freedom to render R(D — Y) substantially different from
R(Z — YY), and meaningful bounds can then be obtained on the actual causal effect
of the treatment.

The analysis presented in the Appendix yields the following bounds for the two
terms on the r.h.s. of (25)%:

max[P(y1,di|z1); P(y1,di]z0)] < Pyi|set(dr)) < 1 — max[P(yo,d1|20); P(yo,d1|z1)]
(2%)
max[P(y1,do|20); P(y1,dol|z1)] < P(yi|set(do)) < 1 — max[P(yo,do|20); P(yo,dolz1)]
(29)
Choosing appropriate terms to bound the difference P(y|set(dy))— P(y1]set(dp)), we
obtain a useful lower bound on the causal effect of D on Y:

R(D —Y) > R(Z—Y)— Py, do|z1) = P(yo, di]20) (30)

?These bounds were independently obtained by Robins (1989) and Manski (1990), and were
significantly improved by Balke and Pearl (1993).



This bound guarantees that the difference between the causal effect of the intent-to-
treat and the causal effect of the actual treatment could never exceed the sum of two
measurable quantities, P(y1, do|z1) + P(yo, d1]z0).

Before continuing to Rubin’s approach, we should mention that the structural
model of Figure 6 imposes definite constraints, obtained directly from Eq. (28)-(29),
on the observed distributions P(y,d|z9) and P(y,d|z1):

P(y1,d1|21) < 1- P(y07d1|20)
P(y1,d1|20) < 1- P('yo,d1|21)
P(y17d0|21) < 1- P(y07d0|20)
P(y1,dolzo) < 1 — P(yo,dolz1) (31)

These constraints constitute necessary and sufficient conditions for a marginal prob-
ability P(y,d, z) to be generated by the structure of the model given in Figure 6 and
therefore may serve as an operational test for the consistency of that structure with
the observed data.

7.3 The counterfactual approach

A peculiar feature of the graphical model discussed so far is its capacity for producing
meaningful results while keeping the latent variable U totally unspecified. U may be
finite or unbounded, discrete or continuous, ordered or unstructured. Although this
generality has the advantage of freeing the analyst from commitment to a particular
parametric model, it may turn into an inconvenience when finer mathematical details,
such as tighter bounds or maximum likelihood estimates, are needed.

The structure of Figure 7 is similar to that of Figure 6, with the difference that
the latent variables R R’ have only four states each. We will now show that every
model that fits into the general latent structure of Figure 6 can also fit into the finite-
variable structure of Figure 7 and, moreover, that the states of the variables R and R’
correspond precisely to the components of the causal-effect vector in Rubin’s model.

Figure 7: A structure equivalent to that of Figure 6 employing two latent variables,
R and R', with /-states each.

Our first step is to convert each conditional probability term P(z;|pa;) in Eq.
(23) into an equivalent functional form, x; = fi(pa;,€;), as in Eq. (7). This can be



accomplished by the standard method of simulating probability distributions, letting
¢; be uniformly distributed over [0, 1], and defining

1 ife < Plx; = 1|pa,)
0 otherwise

Xi = filpa;, &) = { (32)

It is clear that f; induces the specified conditional probability relation between pa;
and X;.

The next step is to convert the functional equations involving the hypothetical
variable U/ to ones involving variables with a finite number of states. Consider the
conditional probability P(d|z,u) in its functional form d = fp(z,u,ep). No matter
how complex U and ep might be, their impact on D cannot amount to more than
a modification of the functional relationship between D and Z and, since there are
exactly four functions relating two binary variables, each (u,ep) pair selects one of
the four functions. Thus, the impact of the random pair (u,ep) can be simulated
by a four-state variable r € {rg,ry, 9,73}, together with the appropriate distribution
over r’s states, with each state selecting one of the four binary functions.

Formally, if dom(U) and dom(ep) are the domains of U and ep, respectively,
define the mapping R : dom(U) x dom(ep) — {ro,r1,72,73} as follows:

(33)

(
ro if fp(zo,u,ep) =0 and fp(z1,u,ep) =0
p_)mn if fp(z0,u,ep) =0 and fp(z1,u,ep) =
| 2 if fp(zo,u,ep) =1 and fp(z1,u,ep)
1 ( )

1
0
rs if fD(ZO7u76D) = and fD %1, U, €p 1

We can now write D as a function of the variables Z and R:

do if r=Tg

do if r=r1 z==z
di if r=r z=2x
d=Fp(z,r)= (34)
di if r=ry z=2
do if r=ry z2=2x

dl if r=TrTs3

Repeating the same transformation on the factor P(y|d,u) or its functional form
y = fy(d,u,ey) permits us to express Y as a function of D and a second four-state
variable R':

. 3 [
yo if r'=r]

yo if r'=r] d=d
yr it =r] d=d;
v = Fyld,r!) = )
y1 if r'=ry, d=dy
yo it r'=rh d=d;

ypr if r'=r]



where R' : dom(U) x dom(ey) — {ry,ri,r5,r5}. Since U influences both R and R/,
the two variables are not independent, hence the arrow R — R’ in Figure 7. The join
distribution over R x R’ requires 15 independent parameters, and these parameters
are sufficient for specifying the model of Figure 7, since Y and D stand in a functional
relation to their parents.

The correspondence between the states of variables R and R’ and the potential
response vectors in the Rubin’s model is rather transparent: each state corresponds
to a counterfactual statement specifying how a unit in the population (e.g., a person)
would have reacted to any given input. For example, r; represents units with perfect
compliance, while ry represents units with perfect defiance. Similarly, r] represents
units with perfect response to treatment, while rj represents units with no response
(y = yo) regardless of treatment. The counterfactual variables Y; and Yy usually
invoked in Rubin’s model can be obtained from R’ as follows:

I it R =r]or R =1}
0 otherwise

1 fR =r,or R =r}
0 otherwise

Yi= {YifD=d} ={
Yo= {Yif D=dy} :{

The transformations shown in Eqgs. (32) - (35) demonstrate that the so-called coun-
terfactual events (or “potential-response” variables) emerge in a natural way from a
purely mathematical exercise aimed at reducing the domain of the latent variables to
the bare minimum (see Balke & Pearl 1994).

The causal effect of the treatment can now be obtained directly from Eq. (35),
giving

Plyilset(dr)) = P(r'=ri)+ P(r'=r3)
Plylset(do)) = P =15+ P(r' =ry) (36)

and

R(D—=Y)=P(' =r))— P(r'=r)) (37)

The computational advantage of this scheme is two-fold. First, upper and lower
bounds on R(D — Y') can now be produced by minimizing a linear function over
a 15-dimensional vector space, rather than by dealing with the unspecified domain
of U. Second, the constraints that the data P(y,d|z9) and P(y,d|z;) induce on the
parameters of P(r,r') are linear, while the constraints induced on the parameters
P(d|z,u) and P(y|d,u) in the previous model are non-convex (see Eq. (50) in the
Appendix). These advantages enables the use of linear programming techniques to
obtain tighter bounds on the causal effect R(D — Y') [Balke & Pearl 1993]; such

bounds are much harder to obtain in a model where U remains unspecified.

7.4 The causal effects of treatments on the treated

Much of the statistical literature assumes that

R(D — Z) = E[P(y1]d,u) — P(y1|do, )] (38)



is the parameter of interest in experimental studies, since it predicts the impact of
applying the treatment uniformly (or randomly) over the entire population. Heckman
and Robb [1985] have argued that R(D — Z) is not a useful evaluation parameter if
future treatment policies will involve selection decisions by the agents. In such cases,
the parameter of interest should measure the impact of the treatment on the treated,

o = E[P(yi|dy,u) — P(y1]do, u)|D = di] (39)

namely, the change of the mean response of the treated subjects compared to the
mean response of these same subjects had they not been treated.

The analysis presented in Appendix Il shows that, under the conditions specified
in Figure 6, a* can be assessed with much greater accuracy than R(D — Z). More
remarkably, under the additional condition of “no intrusion” (namely, P(d;|z0) = 0
as in most clinical trials), o* can be identified precisely.

The bounds governing o are:

. P(yilz1) — P(yilzo)  P(yo,d1]20)

— 40
ST P@PE) P o
* S P(y1|21) - P(y1|20) P(y17d1|20) (41)
P(dy)/P(z) P(dy)
The width the a* bounds is equal to Ztz) —  PGold) which for small P(z)
P(dy) 1-P(z1) ’ 1

approximates to P(zg|d1): the fraction of treated persons that were not assigned
treatment. Clearly, in situations where treatment may only be obtained by those
designated by the assignment, a* is perfectly identifiable and is given by:

* P(y1|z1) — P(y1]20)

B P(dq|z1)
Unlike R(D — Z), o* is not an intrinsic property of the treatment, as it varies
with the strictness with which compliance is enforced. The significance of the o*
measure emerges primarily in studies where it is desired to evaluate the efficacy of an

it P(dy|z0) = 0 (42)

existing program on its current participants under a constant recruitment policy. Eq.
(42) states that accurate evaluation does not require that participation be mandated
at random; it is sufficient that notification about the program (or other types of
encouragement) were sent to a randomly selected sample. If no participation has
taken place without notification then o can be identified precisely (using Eq. (42)) by
taking the mean response difference between the notified and unnotified populations,
divided by the participation rate P(d|z1).

In cases where some unnotified participation may take place, the bounds of
Eqgs. (40)-(41) need be invoked and some additional parameters need be measured:
P(yo, d1]z0), P(y1,d1|z0), and P(dy), all of which can be estimated from the partici-
pating population.

7.5 Remarks

Balke and Pearl (1993) have obtained significantly tighter bounds on the average
treatment effect R(D — Y) relative to those shown in Eqs. (28)-(28). In particular,



they have shown that the difference between the upper and lower bound cannot
exceed the rate of noncompliance, P(dy|z0) + P(dp|z1), and that it may in some cases
collapse to a point estimate, even when as many as 50% of subjects switch over
to unassigned treatments. Remarkably, the statistical establishment responsible for
treatment evaluations has remained totally oblivious to such possibilities; in practice,
the effectiveness of drugs and other treatments are still being assessed by an intent-
to-treat analysis, namely by the R(Z — Y') measure.

The identifiability of o* has been shown and discussed in [Angrist & Imbens
1991] but its significance has apparently been overlooked in the rest of the literature.
Heckman [1992] has advocated the use of randomized eligibility in the evaluation of
social programs and has shown that under such eligibility policy the mean-difference
measure, P(y1|d1) — P(y1|do), is always less biased (relative to a* ) than in studies
in which eligibility is not randomized. Remarkably, Eq. (42) shows that randomized
eligibility, as a general experimental methodology, is more efficacious than expected;
it does not just result in a lower bias — it eliminates bias altogether and permits the
precise determination of a*. The bounds presented in Eqs. (40) - (41) have apparently
not been reported before.

8 Conclusions

I hope this paper convinces the reader that DAGs can be used not only for spec-
ifying assumptions of conditional independence but also as a formal language for
organizing claims about external interventions and their interactions. I hope to have
demonstrated as well that DAGs can serve as an analytical tool for quantifying, from
non-experimental data, the effect of actions (given qualitative causal structure), for
specifying and testing conditions under which randomized experiments are not nec-
essary, and for aiding experimental design and model selection.

Most statisticians and decision analysts are reluctant to deal with problems in-
volving causal considerations because we lack the mathematical notation for distin-
guishing causal influence from statistical association. The set(z) notation introduced
in this paper makes this distinction explicit, and permits us to evaluate probability
expressions involving both observations and interventions. In [Pearl 1994] it is fur-
ther shown that such evaluations can be performed by symbolic manipulations guided
by the causal network. The resulting calculus yields amazingly simple solutions to
a number of interesting problems in causal inference and should allow rank-and-file
researchers to tackle practical problems that are generally considered too hard, or
impossible. It is hoped therefore that the semantics and notation introduced in this
paper will reinstate causality as a legitimate form of human knowledge, worthy of
explicit formal representation and mathematical analysis.
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Appendix I (Derivation of Eqs. (26) and (30))

To prove (26), we use the conditional independence assumption of (22), and write

Pylz,u) = Z P(ylz,d,u) P(d|z,u)

d

= Z P(y|d,u) P(d|z,u)

d
which amounts to two equations,
P(yilz1,u) = Plyildy,u) P(di]z1,u) + P(yi|do, u)[1 — P(dy]z1, u)]
P(yilzo,u) = Plyildy,u) P(di]z0,u) + P(yi|do, u)[1 — P(dy]zo, u)]

Solving for P(y1|dy,u) and P(y1|do, u), and taking their difference, gives

Py1|z1,u) — P(y1]zo, u
Plyildy, u) = Plys|do, u) = PEdi:zi u; — PEdilzz u;

Finally, taking the expectation (over u) on both sides, gives Eq. (26).
To prove (30), we write

P(y,d|z) = Z P(y|d,v) P(d|z,u) P(u)

u

and define the following four functions:

Jo(u) = P(y1]do, u) go(u) = P(d1|u, z0)
fi(u) = P(y1ldy, u) g1(u) = P(di|u, z1)

(43)

(44)

(45)

(46)

This permits us to express six independent components of P(y,d|z) as expectations

of these functions:

P(y1,do|z0) Elfo(1 —go)] = a
P(y1,dolz1) = E[fo(1-g1)] =0
P(di|z0) = E(go) =c
P(di|z1) = E(g1)=d
(y1,d1|20) = E[fl '90] =€
(y1,d1|21) E[fl '91] =h

(50)

For any two random variables X and Y such that 0 < X < 1,0 <Y <1 we have

1+ B(XY) - E(Y) > E(X) > E(XY)

(51)

since E[(1—X)(1—-Y)] > 0. This inequality holds for any pair of f, g functions (since

they lie between 0 and 1) and we can write:

1+ E(figo) — E(90) = E(fi) = E(fig0)

1+ E(figr) — E(¢r) > E(f1) > E(finr)
L+ E[fo(1 —g0)] — E(1 —g0) = E(fo) = E[fo(l — go)]
L+ E[fo(l—g)] — E(1 —g1) = E(fo) = E[fo(l —g1)]

(52)



or

max|h; €]

(f1) <min[(1+e—c)(L+h—d)

<FK
maxla; 8] < B(fy) < minl(a+ o) (b-+d) (53)
Substituting back the P(y,d|z) expressions from (48) and (49), gives Eqs. (28) and
(29). Finally, lower bounding F(f1) and upper bounding FE(fy) provides a lower

bound for their difference
B(f)~ B(fo) > maxle; k] — minl(a + o); (b+ d)]

h—(a+c¢) (54)

AVARAY,

from which Eq. (30) follows.



Appendix I1 (Derivation of Eqs. (40)-(41))
To evaluate

o = E{[P(yildi,u) — P(y:]do,w)]|[D = di}

we define

A(u) P(yildy,u) — P(yildo,u) = fi(u) — fo(u)

P(z1)

and write (using Eqgs. (40)-(42)):

a* E[A(u)|D = di]
>u Au)Plu|dy)

= By 2w Alw) Pdi]u) Plu)

= Py 2w 2w Au) P(difu, 2) P(2) P(u)

= P(ldl) >ou Au) P(u)[P(21)g1(u) + P(20)g0(u)]

= pay AL (u) = folw)llagi(u) + (1 — q)go(u)]}

= P(ldl)E[Qflgl + (1 = q) figo — qfog1 — (1 — q) fogo]

= P(ldl)[qh‘i’(l —q)e — qE(fog1) — (1 — q)E(fogo)]

= puleh + (1 —q)e —q(E(fo) = b) — (1 — ¢)(E(fo) — a)]
= P(lcll)[Q(h+b)+(1 —¢)(e+a)— E(fo)]

Substituting the expressions for (h + b) and (e + @) from (42), and using
a< E(fo)<a+ec

from (45), we obtain upper and lower bounds on o*:

P(ldl)[P('yl) — P(d1]|z0) — P(y1,do|z0)] < o™ < P(ldl)

[P(yl) - P(y17d0|zo)]

Alternatively, collecting common terms on both sides of (60), we get

P(yo,d1|20) < o P(y1]z1) — P(y1|zo) < P(y1,dq]20)

P~ ° Pd)/P(z1)  —  P(d)

which proves Eqgs. (40)-(41)). Therefore,

P(‘!/1|Zl) - P(’!/1|20) .
* = f P(d =
« Pdi]or) i (di]z0) =0

(58)

(59)

(60)

(61)

(62)



