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Abstract

We present a qualitative, decision-theoretic account
for statements of the form: “You ought to do A, if
C”. We show that adding a qualitative causal the-
ory (in the form of a graph) as part of an epistemic
state is sufficient to facilitate the analysis of action
sequences, their consequences, their interaction with
observations, their expected utilities and, hence, the
assertability of conditional “ought” statements.

1 Introduction

Obligation statements, also called deontic state-
ments, come in two varieties: obligations to act
in accordance with peers’ expectations or commit-
ments to oneself, and obligations to act in the in-
terest of one’s survival, namely, to avoid danger and
pursue safety. This paper develops a decision theo-
retic account of obligation statements of the second
variety, using qualitative abstractions of probabili-
ties and utilities. The idea is simple. A conditional
obligation sentence of the form “You ought to do A
if C” is interpreted as shorthand for a more elab-
orate sentence: “If you observe, believe, or know
C, then the expected utility resulting from doing A
is much higher than that resulting from not doing
A”. The longer sentence combines several modal-
ities that have been the subjects of Al investiga-
tions: observation, belief, knowledge, probability
(“expected”), desirability (“utility”), causation (“re-
sulting from”), and, of course, action (“doing A”).
With the exception of utility, these modalities have
been formulated recently using qualitative, order-of-
magnitude abstractions of probability theory [8, 7].
Utility preferences themselves, we know from de-
cision theory, can be fairly unstructured, save for
obeying asymmetry and transitivity. Thus, paral-
leling the order-of-magnitude abstraction of proba-
bilities and considering that unfulfilled obligations
normally carry harsh consequences, it is reasonable
to score consequences on a three-level scale of util-
ity: very desirable (U = O(1/¢)), very undesirable
(U = =0(1/¢)), and bearable (U = O(1)). This
utility rating, when combined with the infinitesimal
rating of probabilistic beliefs [8], should permit us

to rate actions by the expected utility of their con-
sequences, and an obligation to do A would then
be asserted iff the rating of doing A is substantially
(i.e., a factor of 1/¢) higher than that of not doing
A.

This decision theoretic agenda, although conceptu-
ally straightforward, encounters some subtle difficul-
ties in practice. First, when we deal with actions
and consequences, we must resort to causal knowl-
edge of the domain and we must decide how such
knowledge is to be encoded, organized, and utilized.
Second, while theories of actions are normally formu-
lated as theories of temporal changes [18, 4], deontic
statements invariably suppress explicit references to
time, strongly suggesting that temporal information
is redundant, namely, it can be reconstructed if re-
quired, but glossed over otherwise. Third, decision
theoretic methods treat actions as distinct, prede-
fined objects, while deontic statements of the type
“You ought to do A” are presumed applicable to any
arbitrary proposition A.! Finally, decision theoretic
methods, especially those based on static influence
diagrams, treat both the informational relationships
between observations and actions and the causal re-
lationships between actions and consequences as in-
stantaneous [17, 15, Chapter 6]. In reality, the effect
of our next action might be to invalidate currently
observed properties, hence any non-temporal crite-
rion for obligation must carefully distinguish prop-
erties that are influenced by the action from those
that will persist despite the action.

These issues are the primary focus of this paper. We
start by presenting a brief introduction to infinites-
imal probabilities and showing how actions, beliefs,
and causal relationships are represented by ranking
functions x(w) and causal networks I" (Section 2). In
Section 3 we present a summary of the formal results
obtained in this paper, including an assertability cri-
terion for conditional obligations. Sections 4 and 5
explicate the assumptions leading to the criterion
presented in Section 3. In Section 4 we introduce a
three-valued utility ranking p(w) and show how the
three components, k(w), ', and p(w), permit us to

!This has been an overriding assumption in both the
deontic logic and the preference logic literatures.



calculate, semi-qualitatively, the utility of an arbi-
trary proposition ¢, the utility of a given action A,
and whether we have an obligation to do A. Section
5 introduces conditional obligations, namely, state-
ments in which the obligation is contingent upon ob-
serving a condition C'. A calculus is then developed
for transforming the conditional ranking «(w|C) into
a new ranking x4 (w|C), representing the beliefs an
agent will possess after implementing action A, hav-
ing observed C'. These two ranking functions are
then combined with p(w) to form an assertability cri-
terion for the conditional deontic statement O(A|C'):
“We ought to do A, given C”. In Section 6 we com-
pare our formulation to other accounts of obligation
statements, in particular deontic logic, preference
logic, counterfactual conditionals, and quantitative
decision theory.

2 Preliminaries: Infinitesimal
probabilities, ranking functions,
causal networks, and actions

1. (Ranking Functions). Let Q be a set of worlds,
each world w € Q being a truth-value as-
signment to a finite set of atomic variables
(X1, X5, ..., X,) which in this paper we assume
to be bi-valued, namely, X; € {true, false}.
A belief ranking function k(w) is an assignment
of non-negative integers to the elements of Q
such that x(w) = 0 for at least one w € Q. In-
tuitively, k(w) represents the degree of surprise
associated with finding a world w realized, and
worlds assigned k = 0 are considered serious
possibilities [11]. &(w) can be considered an
order-of-magnitude approximation of a proba-
bility function P(w) by writing P(w) as a poly-
nomial of some small quantity ¢ and taking the
most significant term of that polynomial, i.e.,

Pw) = Ce'w) (1)

Treating € as an infinitesimal quantity induces a
conditional ranking function x(p|¥) on propo-
sitions which is governed by Spohn’s calculus

[20]:

k(Q)= 0
o= {0 oEs,
k(plY) = rlp AY) = () (2)

2. (Stratified Rankings and Causal Networks [8]).
A causal network is a directed acyclic graph
(dag) in which each node corresponds to an
atomic variable and each edge X; — Xj as-
serts that X; has a direct causal influence on
X;. Such networks provide a convenient data
structure for encoding two types of information:
how the initial ranking function k(w) is formed
given causal knowledge of the domain, and how
external actions would influence the agent’s be-
lief ranking #(w). Formally, causal networks are

defined in terms of two notions: stratification
and actions.

A ranking function k(w) is said to be stratified
relative to a dag T if

ww) = r(Xi(w)|pay(w)) (3)

(3

where pa;(w) are the parents of X; in I' evalu-
ated at state w. Given a ranking function &(w),
any edge-minimal dag T satisfying Eq. (3), is
called a Bayesian network of k(w) [15]. A dag
I' is said to be a causal network of k(w) if it is
Bayesian network of x(w) and, in addition, it
admits the following representation of actions.

3. (Actions) The effect of an atomic action
do(X; = true) is represented by adding to I' a
link DO; — X;, where DO; is a new variable
taking values in {do(z;), do(—x;), idle} and z;
stands for X; = true. Thus, the new parent set
of X; is pal = pa; U {DO;} and it is related to
Xz' by

K(Xi(w)|paj(w)) =
k(Xi(w)|pa;(w)) if DO; = idle
{ 00 if DO; = do(y) and X;(w) #y
0 if DO; = do(y) and X;(w) =y

(4)
The effect of performing action do(z;) is to

transform k(w) into a new belief ranking,
Kg,(w), given by

s () :{ w (wldofz:)) - for lezfl (5)

where k' is the ranking dictated by the aug-
mented network I' U {DO; — X;} and Egs.
(3) and (4).

This representation embodies the following as-
pects of actions:

(i) An action do(z;) can affect only the descen-
dants of X; in I

(i1) Fixing the value of pa; (by some appropri-
ate choice of actions) renders X; unaffected
by any external intervention do(z), k # i.

3 Summary of Results

The assertability condition we are about to develop
in this paper requires the specification of an epis-
temic state £S = (k(w), T', p(w)) which consists of
three components:

k(w) - an ordinal belief ranking function on Q.
I' - a causal network of x(w).

p(w) - a three-valued utility ranking of worlds,
where p(w) € { -1, 0, +1 } labels each world
as “very undesirable”, “bearable”, or “very de-
sirable” .



The main results of this paper can be summarized
as follows:

1. Let the sets of worlds that are assigned utility
ranks -1, 0, and +1 be represented by the for-
mulas W, W9 and W, respectively, and let
k'(w) denote the ranking function that prevails
after establishing the truth of event ¢, where
¢ is an arbitrary proposition (i.e., k'(-p) =
oo and &'(¢) = 0). The utility rank of ¢ is

given by
—1 if & (W-le)=0
L _ 0 if K'(W-VIWte)>0
e (W) =9 11 if & W=lp) >0

and &'(W*|p) =0

(6)
2. A conditional obligation statement O(A|C) is

assertable in ES iff
H(A; k4 (W|C)) > p(C k(w[C)) (7)

where A and C are arbitrary propositions and
the ranking k4 (w|C) (to be defined in step 3)
represents the beliefs that an agent anticipates
holding, after implementing action A, having

observed C.
3. If A is a conjunction of atomic propositions,
A= /\jEJ Aj, where each A; stands for either

X; = true or X; = false, then the post-action
ranking &4 (w|C) is given by the formula

ka(W|C) = K(w)— D K(Xi(w)|pa;(w)) +
iEJUR
ming [y Si(w,w’) + k(@'|C)] (8)
igJ
where R is the set of root nodes and

s; if Xj(w) # X;(w') and pa; =0

Silw, o) = #(~ X () [pag () = 0

0 otherwise

(9)
S(w,w’) represents persistence assumptions: It
is surprising (to degree s; > 1) to find X; change
from its pre-action value of X;(w’) to a post-
action value of X;(w) if there is no causal reason
for the change.
If Ais a disjunction of actions, A =/, Al
where each A’ is a conjunction of atomic propo-
sitions, then

KA(W|C)IH111III{A1(W|C) (10)
4 Decision Theoretic Deontics:
From Utilities and Beliefs to Goals
and Obligations

Given a proposition ¢ that describes some condition
or event in the world, what information is needed be-
fore we can evaluate the merit of obtaining ¢, or, at

s; if Xi(w) £ Xi(w'), pa; # 0 and

3

the least, whether 7 is “preferred” to @27 Pref-
erence logics [23] have assumed that regardless of
the reasons for our preferences, there are some basic
logical constraints that tie preferences among propo-
sitions to preferences among their constituents. For
example, von Wright has proposed (among others)
the constraint “If p is preferred to ¢ then one should
also prefer pA—q to ¢ A—p”. Decision theory, on the
other hand, insists that rational preferences should
be encoded in terms of the expected utility criterion,
namely, that any pattern of preferences is legitimate
as long as it evolves from some choice of probabilities
and utilities.

Clearly, if we are to apply the expected utility cri-
terion, we should define two measures on the set of
possible worlds, a probability measure P(w) and a
utility measure U(w). The first rates the likelihood
that a world w will be realized, while the second
measures the desirability of w or, more prosaically,
the degree of gratification an agent expects to obtain
once w is realized.

Unfortunately, probabilities and utilities in them-
selves are not sufficient for determining preferences
among propositions. The merit of obtaining ¢ de-
pends on at least two other factors: how the truth
of ¢ is established, and what control we possess over
which model of ¢ will eventually prevail. We will
demonstrate these two factors by example.

Consider the proposition ¢ = “The ground is wet”.
In the midst of a drought, the consequences of this
statement would depend critically on whether we
watered the ground (action) or we happened to find
the ground wet (observation). Thus, the utility of
a proposition ¢ clearly depends on how we came to
know ¢, by mere observation or by willful action. In
the first case, finding ¢ true may provide informa-
tion about the natural process that led to the ob-
servation ¢, and we should change the current prob-
ability from P(w) to P(w|p). In the second case,
our actions may perturb the natural flow of events,
and P(w) will change without shedding light on the
typical causes of ¢. We will denote the probability
resulting from externally enforcing the truth of ¢ by
P,(w), which will be further explicated in Section 5
in terms of the causal network I'.2

However, regardless of whether the probability func-
tion P(w|p) or P,(w) results from learning ¢, we
are still unable to evaluate the merit of ¢ unless we
understand what control we have over the oppor-
tunities offered by . Simply taking the expected
utility U(yp) = Ty [P(w]e)U(w)] amounts to assum-
ing that the agent is to remain totally passive until
Nature selects a world w with probability P(w|y),
as in a game of chance. It ignores subsequent ac-

®The difference between P(w|p) and P,(w) is pre-
cisely the difference between belief revision and belief
update [2, 10, 8] and also accounts for the difference be-
tween indicative and subjunctive conditionals — a topic
of much philosophical discussion [9].



tions which the agent might be able to take so as to
change this probability. For example, event ¢ might
provide the agent with the option of conducting fur-
ther tests so as to determine with greater certainty
which world would eventually be realized. Likewise,
in case ¢ stands for “Joe went to get his gun”, our
agent might possess the wisdom to protect itself by
escaping in the next taxicab.

In practical decision analysis the utility of being in a
situation ¢ is computed using a dynamic program-
ming approach, which assumes that subsequent to
realizing ¢ the agent will select the optimal sequence
of actions from those enabled by ¢. The utility of ev-
ery chance event is evaluated as the expectation over
the utilities of its immediate consequences, and the
utility of every choice situation is computed as the
maximum over the utilities of the available choices
[15, Chapter 6]. This computation is rather ex-
haustive and is often governed by some form of my-
opic approximation. For example, assuming at some
stage that the current action A is the last one per-
mitted, after which a world w will be chosen at ran-
dom, with probability P4(w). Deontic expressions
normally refer to a single action A, tacitly assuming
that the choice of subsequent actions, if available, is
rather obvious and their consequences are well un-
derstood. We say, for example, “You ought to get
some food”, assuming that the food would subse-
quently be eaten and not be left to rot in the car.
In our analysis, we will make a similar myopic ap-
proximation, assuming either that action A is termi-
nal or that the consequences of subsequent actions
(if available) are already embodied in the functions
P(w) and p(w). We should keep in mind, however,
that this myopic approximation is not adequate in
sequential planning situations, where actions may
be selected for the sole purpose of enabling certain
subsequent actions.

Denote by P’(w) the probability function that would
prevail after obtaining .3 Let us examine next how
the expected utility criterion U(p) = TP (w)U(w)
translates into the language of ranking functions.

Paralleling the infinitesimal approximation of prob-
abilities, we assume that U takes on values in
{=0(1/€),0(1),4+0(1/€)}, read as {very undesir-
able, bearable, very desirable}. For notational sim-
plicity, we can describe these linguistic labels as a
utility ranking function p(w) that takes on the val-
ues —1, 0, and 41, respectively. Our task, then, is to
evaluate the rank u(yp), as dictated by the expected
value of U(w) over the models of ¢.

Let the sets of worlds assigned the ranks
—1, 0, and 4 1 be represented by the for-
mulas W=, W° and W, respectively, and

let the intersections of these sets with ¢ be
represented by the formulas ¢, % and T,

?P'(w) = P(w|p) in case p is observed, and P'(w) =
P,(w) in case ¢ is enacted. In both cases P'(p) = 1.
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respectively.® The expected utility of ¢ is given by
—C_/e P(W™) + Co PI(W%) + Cy/e P(WT),
where C_, Cy, and C are some positive coeflicients.
Introducing now the infinitesimal approximation for
P’ in the form of the ranking function &', we obtain

—0(1/e) if &'(¢7)=0
and £'(¢*) > 0
O(1) if K'(p7)>0
L and x'(pt) >0
Ule) =\ 10(1/e) if #(p~) >0
and k'(p1) =0
ambiguous if £'(¢7) =0
and k'(pT) =0

(11)
The ambiguous status reflects a state of conflict
U(p) = —C_ /e + C4 /e, where there is a serious pos-
sibility of ending in either terrible disaster or enor-
mous success. Recognizing that obligation state-
ments are often intended to avert such situations
(e.g., “You ought to invest in something safer”),
we take a risk-averse attitude and rank ambiguous
states as low as U = —O(1/¢) (other attitudes are,
of course, perfectly legitimate).

This attitude, together with &'(¢) = 0, yields the
desired expression for u(p; £'(w)):

—1 if K(W~]p)=0
i _ 0 if K'(W-VIWte)>0
He K@) =9 41 it (W) > 0
and &' (WT|p) =

The three-level utility model is, of course, only a
coarse rating of desirability. In a multi-level model,
where VV;L and W,” are the formulas whose models
receive utility ranking +: and —¢, respectively, and
v = 0, 1, 2,..., the ranking of the expected utility
of ¢ is characterized by two integers

nt = max[0; i — &' (W A )]

n~ = max;[0; i — &'(W7 Ap)] (13)
and is given by

pl(p; K'(w)] :{

ifnt=n">0
otherwise

ambiguous
nt — n~

(14)

Having derived a formula for the utility rank of an
arbitrary proposition ¢, we are now in a position to
formulate our interpretation of the deontic expres-
sion O(A|C): “You ought to do A if C, iff the ex-
pected utility associated with doing A is much higher
than that associated with not doing A”. We start
with a belief ranking x(w) and a utility ranking p(w),

*In practice, the specification of U(w) is done by
defining a three-valued variable V' (connoting “value”) as
a function of a select set of atomic variables. W' would
correspond then to the assertion V =1, 1 € {—, 0, +}.



and we wish to assess the utilities associated with
doing A versus not doing A, given that we observe
C'. The observation C' would transform our current
k(w) into k(w|C). Doing A would further transform
k(w|C) into k'(w) = Ka(w|C), while not doing A
would render k(w|C') unaltered, so k'(w) = k(w|C).
Thus, the utility rank associated with doing A is
given by p(A; &’y (w|C)), while that associated with
not doing A is given by u(C'; k(w|C)). Consequently,
we can write the assertability criterion for condi-
tional obligations as

O(A|C) it p(A; ka(w|C)) > u(C; R(w]|C)) (15)

where the function u(p; x(w)) is given in Eq. (12).
We remark that the transformation from &(w|C') to
ka(w|C') requires causal knowledge of the domain,
which will be provided by the causal network T' (Sec-
tion 5). Once we are given I' it will be convenient to
encode both k(w) and p(w) using integer-valued la-
bels on the links of I'. Moreover, it is straightforward
to apply Eqgs. (14) and (15) to the usual decision
theoretic tasks of selecting an optimal action or an
optimal information-gathering strategy [15, Chapter
6].

Example 1:

To demonstrate the use of Eq. (15), let us examine
the assertability of “If it is cloudy you ought to take
an umbrella” [3]. We assume three atomic propo-
sitions, ¢ - “Cloudy”, r - “Rain”, and u - “Hav-
ing an Umbrella”, which form eight worlds, each
corresponding to a complete truth assignment to
¢, r, and u. To express our belief that rain does not
normally occur in a clear day, we assign a k value of
1 (indicating one unit of surprise) to any world sat-
isfying r A ¢ and a & value of 0 to all other worlds
(indicating a serious possibility that any such world
may be realized). To express the fear of finding our-
selves in the rain without an umbrella, we assign a
u value of —1 to worlds satisfying » A —u and a u
value of 0 to all other worlds. Thus, WT = false,
WO =—=(rA—-u),and W~ =7 A —u.

In this simple example, there is no difference be-
tween k4 (w) and £(w]A) because the act A = “Tak-
ing an umbrella” has the same causal consequences
as the finding “Having an umbrella”. Thus, to eval-
uate the two expressions in Eq. (15), with A = u
and C' = ¢, we first note that

k(W™ |u, ¢) = k(r A —ulu, ¢) = oo

k(W™ VIWT|u,¢) = o0

SO
(s (wlu, ) = 0
Similarly,
k(W™ |e) = k(r A—ule) =0
hence

(e w(iole)) = —1 (16)
Thus, O(ulc) is assertable according to the criterion

of Eq. (15).

Note that although x(w) does not assume that nor-
mally we do not have an umbrella with us (k(u) >
0), the advice to take an umbrella is still assertable,
since leaving u to pure chance might result in harsh
consequences (if it rains).

Using the same procedure, it is easy to show
that the example also sanctions the assertability of
O(—r|e, ~u), which stands for “If it is cloudy and you
don’t have an umbrella, then you ought to undo (or
stop) the rain”. This is certainly useless advice, as
it does not take into account one’s inability to con-
trol the weather. Controllability information is not
encoded in the ranking functions & and y; it should
be part of one’s causal theory and can be encoded in
the language of causal networks using costly precon-
ditions that, until satisfied, would forbid the action
do(A) from having any effect on A.5

5 Combining Actions and
Observations

In this section we develop a probabilistic account for
the term k4 (w|C'), which stands for the belief rank-
ing that would prevail if we act A after observing C,
i.e., the A-update of k(w|C'). First we note that this
update cannot be obtained by simply applying the
update formula developed in [8, Eq. (2.2)],

,‘fA(w) = { Koéw) K(AlpaA(w)) (: Ilz 1—4|A (17)
where pa 4 (w) are the parents (or immediate causes)
of A in the causal network I evaluated at w. The for-
mula above was derived under the assumption that
I is not loaded with any observations (e.g., C') and
renders k4(w) undefined for worlds w that are ex-
cluded by previous observations and reinstated by
A.

To motivate the proper transformation from x(w) to
ka(w|C), we consider two causal networks, I'V and T
respectively representing the agent’s epistemic states
before and after the action (see Figure 1). Although
the structures of the two networks are almost the
same (I' contains additional root nodes representing
the action do(A)), it is the interactions between the
corresponding variables that determine which be-
liefs are going to persist in I' and which are to be
“clipped” by the influence of action A.

Let every variable X/ in T’ be connected to the
corresponding variable X; in ' by a directed link
X] — X, that represents persistence by default,
namely, the natural tendency of properties to per-
sist, unless there is a cause for a change. Thus, the

°In decision theory it is customary to attribute direct
costs to actions, which renders p(w) action-dependent.
An alternative, which is more convenient when actions
are not enumerated explicitly, is to attribute costs to
preconditions that must be satisfied before (any) action
becomes effective.
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Figure 1: Persistence interactions between two
causal networks

parent set of each X; in I' has been augmented
with one more variable: X/. To specify the con-
ditional probability of X;, given its new parent set
{pay, UX/}, we need to balance the tendency of X;
to persist (i.e., be equal to X/) against its tendency
to obey the causal influence exerted by payx,. We
will assume that persistence forces yield to causal
forces and will perpetuate only those properties that
are not under any causal influence to terminate. In
terms of ranking functions, this assumption reads:

K(X;(w)lpa;(w), Xi(W')) =
S; if pa; =0 and X;(w) # Xi(w’l)
i+ R(Xi(w)pay()) i Xi(w) # X(") and
#(=Xi(w)|pa;(w)) =0
£(Xi(w)|pa;(w))

otherwise

(18)
where w’ and w specify the truth values of the vari-
ables in the corresponding networks, IV and T, and
s; > 1 is a constant characterizing the tendency of
X; to persist. Eq. (18) states that the past value
of X; may affect the normal relation between X;
and its parents only when it differs from the cur-
rent value and, at the same time, the parents of
X; do not compel the change. In such a case, the
inequality X;(w) # X/(w') contributes s; units of
surprise to the normal relation between X; and its
parents.® The unique feature of this model, unlike
the one proposed in [8], is that persistence defaults
can be violated by causal factors without forcing us
to conclude that such factors are abnormal.

Eq. (18) specifies the conditional rank x(X|payx)
for every variable X in the combined networks and,
hence, it provides a complete specification of the
joint rank k(w,w’).” The desired expression for the

5This is essentially the persistence model used by
Dean and Kanazawa [4], in which s; represents the sur-
vival function of X;. The use of ranking functions al-
lows us to distinguish crisply between changes that are
causally supported, (—X;(w)|pa;(w)) > 0, and those
that are unsupported, x(—X;(w)|pa;(w)) = 0.

"The expressions, familiar in probability theory,

HP

translate into the ranking expressions

(w,w’)|pa,(w,w'))

k(w,w') = E K(X;(w, w'))|paj (w,w"), K(w) = HLIUIIH K(w,w")

J

Zwa

post-action ranking & 4(w) can then be obtained by
marginalizing k(w,w’) over w’:

ka(w) = mink(w,w’) (19)

wl

We need, however, to account for the fact that some
variables in network I' are under the direct influ-
ence of the action A, and hence the parents of these
nodes are replaced by the action node do(A4). If A
consists of a conjunction of atomic propositions, A =
AjesAj, where each Aj; stands for either X; = true
or X; = false, then each X;, ¢ € J, should be ex-
empt from incurring the spontaneity penalty speci-
fied in Eq. (18). Additionally, in calculating &(w,w’)
we need to sum k(X;(w)|pa;(w), X/(w')) only over
i ¢ J, namely, over variables not under the direct
influence of A. Thus, collecting terms and writing
;(w)|pa;(w)), we obtain

Rw) = Y R(Xs
S w(Xi(w)lpag(w))+

ka(w|C) = k(w)—
i€JUR
ming > Si(w,w’) + &(W'|C)]  (20)
igJ
where R is the set of root nodes and
si if Xij(w) # X;(w’) and pa; =0
si if Xj(w) £ X;(w'), pa; # 0 and
K(—X;(w)|pa;(w)) =0

0 otherwise

Si(w,w') =

(21)

Eq. (20) demonstrates that the effect of observations
and actions can be computed as an updating opera-
tion on epistemic states, these states being organized
by a fixed causal network, with the only varying el-
ement being k, the belief ranking. Long streams
of observations and actions could therefore be pro-
cessed as a sequence of updates on some initial state,
without requiring analysis of long chains of tempo-
rally indexed networks, as in Dean and Kanazawa
[4].

To handle disjunctive actions such as “Paint the wall
either red or blue” one must decide between two in-
terpretations: “Paint the wall red or blue regardless
of its current color” or “Paint the wall either red or
blue but, if possible, do not change its current color”
(see [10] and [8]). We will adopt the former inter-
pretation, according to which “do(AV B)” is merely
a shorthand for “do(A4) V do(B)”. This interpreta-
tion is particularly convenient for ranking systems,
because for any two propositions, A and B, we have

k(A V B) = min[k(A); &(B)] (22)

hus, if we do not know which action, A or B, will
e implemented but consider either to be a serious
possibility, then

£avp(w) = min[ka(w); kp(w)] (23)

where 5 ranges over all variables in the two networks.



Accordingly, if A is a disjunction of actions, A =
V, A', where each A' is a conjunction of atomic
propositions, then

KA((.J|C)IInIiHKAz(w|C) (24)

Example 2

To demonstrate the interplay between actions and
observations, we will test the assertability of the fol-
lowing dialogue:

Robot 1: It is too dark in here.

Robot 2: Then you ought to push the switch up.
Robot 1: The switch is already up.

Robot 2: Then you ought to push the switch down.

The challenge would be to explain the reversal of
the “ought” statement in response to the new obser-
vation “The switch is already up”. The inferences
involved in this example revolve around identifying
the type of switch Robot 1 is facing, that is whether
it is normal (n) or abnormal (—n) (a normal switch
is one that should be pushed up (u) to turn the light
on (). The causal network, shown in Figure 2, in-
volves three variables:

L - the current state of the light ({ vs =),
S - the current position of the switch (u vs —u), and
T - the type of switch at hand (n vs —n).
The variable L stands in functional relationship to
S and T, via

l=(nAu)V (-nA-u) (25)

or, equivalently, & = oo unless [ satisfies the relation
above.

S: Switch Position T: Type of Switch

u (up) n (normal)

—u (down) —n (abnormal)

N/

L: Light
{ (on)

=l (not on)

Figure 2: Causal network for Example 2

Since initially the switch is believed to be normal,
we set k(—n) = 1, resulting in the following initial
ranking:

S T L kw)
u n { 0
—u n -l 0
1
1

We also assume that Robot 1 prefers light to dark-
ness, by setting
-1
0

The first statement of Robot 1 expresses an obser-
vation C' = =i, yielding

if w gl

i owlel (26)

plw) =

0 for w=—-uAnA-l
Kw|C) = { 1 for w=uA-nA=l (27)
oo for all other worlds

To evaluate k4(w|C) for A = u, we now invoke Eq.
(20), using the spontaneity functions

Sr(w,w') = 1if T(w) # T(w)
Sp(w,w") = 0if L(w) # L(w") (28)

because L(w), being functionally determined by
pay(w) is exempt from conforming to persistence
defaults. Moreover, for action A = u we also have
k(ulpay) = &(u) = 0, hence

ka(|C) = K@) — K(T(w))
i, {II7() # TW)] + (10},

(29)
where I[p] equals 1 (or 0) if p is true (or false), and

for w=wi,ws

—uAnA -l
uA—nA -l

uAnAl wi
uAN-nA=l W

Wi
w2

(30)
All other worlds are excluded by either A = u or
C=-l

Minimizing Eq. (20) over the two possible w’ worlds,
yields

. 0 for w = w;
meio) = {0 Ze e
We see that ws = uA-—-nA-lis penalized with one

unit of surprise for exhibiting an unexplained change
in switch type (initially believed to be normal).

It is worth noting how w1, which originally was ruled
out (with & = co0) by the observation =, is suddenly
reinstated after taking the action A = u. In fact, Eq.
(20) first restores all worlds to their original x(w)
value and then adjusts their value in three steps.
First it excludes worlds satisfying = A, then adjusts
the k(w) of the remaining worlds by an amount
k(Alpay(w)), and finally makes an additional ad-
justment for violation of persistence.

From Eqgs. (27) and (29), we see that k4({|C) =
0 < k(l|C) = o0, hence the action A = u meets
the assertability criterion of Eq. (15) and the first
statement, “You ought to push the switch up”, is
justified. At this point, Robot 2 receives a new piece
of evidence: S = u. As a result, k(w|-l) changes to
K(w|~l, u) and the calculation of k4(w|C) needs to
be repeated with a new set of observations, C' =
=l Au. Since k(w’|=l, u) permits only one possible



world w' = u A —n A —l, the minimization of Eq.

(20) can be skipped, yielding (for A = —u)

—uA-nAl
—uAnA -l

0forw =
lforw =

ka(w|C) = { (32)

which, in turn, justifies the opposite “ought” state-
ment (“Then you ought to push the switch down”).
Note that although finding a normal switch is less
surprising than finding an abnormal switch, a spon-
taneous transition to such a state would violate per-
sistence and is therefore penalized by obtaining a &
of 1.

6 Relations to Other Accounts

6.1 Deontic and Preference Logics
Obligation statements of the pragmatic variety have
been investigated in two branches of philosophy, de-
ontic logic and preference logic. Surprisingly, despite
an intense effort to establish a satisfactory account
of “ought” statements [23, 22, 12], the literature
of both logics is loaded with paradoxes and voids
of principle. This raises the question of whether
“ought” statements are destined to forever elude for-
malization or that the approach taken by deontic lo-
gicians has been misdirected. I believe the answer
involves a combination of both.

Exploratory reading of the literature reveals that
philosophers hoped to develop deontic logic as a sep-
arate branch of conditional logic, not as a synthetic
amalgam of logics of belief, action, and causation.®
In other words, they have attempted to capture
the meaning of “ought” using a single modal opera-
tor O(+), instead of exploring the couplings between
“ought” and other modalities, such as belief, action,
causation, and desire. The present paper shows that
such an isolationistic strategy has little chance of
succeeding. Whereas one can perhaps get by with-
out explicit reference to desire, it is absolutely nec-
essary to have both probabilistic knowledge about
the effect of observations on the likelihood of events
and causal knowledge about actions and their con-
sequences.

We have seen in Section 3 that to ratify the sentence
“Given C, you ought to do A”, we need to know not
merely the relative desirability of the worlds delin-
eated by the propositions A A C and —=A A C, but
also the feasibility or likelihood of reaching any one
of those worlds in the future, after making our choice

8The reluctance to connect obligations to causation
can perhaps be attributed to a general disappointment
with attempts to develop satisfactory accounts for ac-
tions and causation. For example, the Stalnaker-Lewis
logic of counterfactuals, which promised to capture some
aspects of causation (causal relationships invariably in-
vite counterfactuations), ended up as a faint version of
the logic of indicative conditionals [5], hiding rather than
revealing the rich structure of causation.
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of A.° We also saw that this likelihood depends crit-
ically on how C' is confirmed, by observation or by
action. Since this information cannot be obtained
from the logical content of A and C, it is not sur-
prising that “almost every principle which has been
proposed as fundamental to a preference logic has
been rejected by some other source” [14].

In fact, the decision theoretic account embodied in
Eq. (15) can be used to generate counterexamples
to most of the principles suggested in the literature,
simply by selecting a combination of k, p, and T’
that defies the proposed principle. Since any such
principle must be valid in all epistemic states and
since we have enormous freedom in choosing these
three components, it is not surprising that only weak
principles, such as O(4|C) = -0(—-A|C), survive
the test. Among the few that do survive, we find
the sure-thing principle:
O(A|CYANO(A|-C) = O(A4) (33)
read as “If you ought to doA given C' and you ought
to doA given =C', then you ought to do A without
examining C”. But one begins to wonder about the
value of assembling a logic from a sparse collection
of such impoverished survivors when, in practice, a
full specification of x, p, and I' would be required.

6.2 Counterfactual Conditionals

Stalnaker [21] was the first to make the connection
between actions and counterfactual statements, and
he proposed using the probability of the counter-
factual conditional (as opposed to the conditional
probability, which is more appropriate for indicative
conditionals) in the calculation of expected utilities.
Stalnaker’s theory does not provide an explicit con-
nection between subjunctive conditionals and causa-
tion, however. Although the selection function used
in the Stalnaker-Lewis nearest-world semantics can

°The developers of deontic logic were not oblivious
to the importance of likelihoods and/or control. Von
Wright [23], for example, mentions decision theory as an
exercise in the definition of subjective (numerical) prob-
abilities and utilities, hence, lying outside the province
of logical analysis. He fails to notice that three out
of his five axioms either stand in outright violation of
decision theory or make strong commitments to a par-
ticular assignment of probabilities to the possible out-
comes. Van Fraassen [22], likewise, acknowledges the
importance of likelihood, stating “But does this not ig-
nore the problem of likelihood? Is gambling the most
moral of pursuits if breaking the bank makes possible
unrivalled philanthropy? I don’t mean that of course.
In assigning values to possible outcomes, relative likeli-
hood must be taken into account; this is an old theme in
decision theory”. Unfortunately, in order to take likeli-
hood into account, we must abandon the simple relation
van Fraassen proposes between the value of A and the
values of the individual models of A, the former being
the maximum among the latter. Abandoning this rela-
tion yields a breakdown of almost all of van Fraassen’s
axioms, especially RC 2 (see the critique of H. Beatty,
following [22]).



be thought of as a generalization of, and a surrogate
for, causal knowledge, it is foo general, as it is not
constrained by the basic features of causal relation-
ships such as asymmetry, transitivity, and complic-
ity with temporal order. To the best of my knowl-
edge, there has been no attempt to translate causal
sentences into specifications of the Stalnaker-Lewis
selection function.!® Such specifications were par-
tially provided in [8], through the imaging function
w*, and are further refined in this paper by invoking
the persistence model (Eq. (20)). Note that a di-
rected acyclic graph is the only ingredient one needs
to add to the traditional notion of epistemic state so
as to specify a causality-based selection function.

From this vantage point, our calculus provides, in
essence, a new account of subjunctive conditionals
that is more reflective of those used in decision mak-
ing. The account is based on giving the subjunctive
the following causal interpretation: “Given C, if 1
were to perform A, then I believe B would come
about”, written A > B|C, which in the language of
ranking function reads

k(—B|C) =0 and k4(—B|C) >0 (34)
The equality states that —B is considered a se-
rious possibility, prior to performing A while the
inequality renders —B surprising after performing
A. This account, which we call Decision Mak-
ing Conditionals (DMC), avoids the CS and CSO
paradoxes of conditional logics (see [13]) by ratify-
ing only those conditionals A > B that reflect a
causal rather than an accidental connection between
A and B and by insisting that causal connections are
antisymmetric.!!

19Gibbard and Harper [6] develop a quantitative the-
ory of rational decisions that is based on Stalnaker’s
suggestion and explicitly attributes causal character to
counterfactual conditionals. However, they assume that
probabilities of counterfactuals are given in advance and
do not specify either how such probabilities are encoded
or how they relate to probabilities of ordinary proposi-
tions. Likewise, a criterion for accepting a counterfac-
tual conditional, given other counterfactuals and other
propositions, is not provided.

11CS stands for ANB = (A > B), according to which
reading the outcome of past US presidential elections
would lead us to conclude “If Nixon had been elected
president in 1972, then Betty Ford would have lived in
the White House in 1974” [13, p. 856]. CS is not valid
in our account because it does not satisfy Eq. (34) for
all epistemic states, e.g., if [' is empty. CSO stands for

(A>B)A(B>A)]=[A>C)= (B> ()]

which, paradoxically, leads one to conclude from “If the
bulb were lit (A), the battery would be good (C)” that
“If the switch were on (B), the battery would be good
(C)”. While CSO is a theorem in the DMS account, it
is a vacuous theorem; the antecedents (A > B) A (B >
A) could not both hold at the same time due to causal
antisymmetry. (Indeed, it is not quite right to say that
by making the bulb light (A), we cause the switch to
turn on (B). The bulb can be made to light by other
means, e.g., by short-circuiting the switch.)
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Our account also explains (see Example 2) why
the assertability of counterfactual conditionals is of-
ten dependent upon previous observations, a point
noted by Adams [1] and explained by Skyrms [19] in
terms of probabilities of propensities. Such propen-
sities are now given a concrete embodiment in the
form of the causal network I'.

While transitivity is a characteristic feature of cau-
sation, the transitive rule

(A>B)A(B>C)] = (A>C) (35)

is certainly not supported unconditionally by all
causal models. For example [13], George’s health
would improve (C') if he stopped smoking (B), and
George would stop smoking (B) if he contracted em-
phesyma (A), but surely George’s health is not im-
proved if he contracts emphesyma. Indeed, DMC
sanctions only weaker forms of transitivity, such as

[(A>B)A(B>C)= ~(C>A)

[(A>B)A(B>C)A-(AAB > ()] :>(A>(C%
36

But a greater advantage of the decision theoretic
account lies in uncovering the interrelationships be-
tween obligation statements, counterfactual condi-
tionals, and indicative conditionals. These three
types of expressions have till now been treated sep-
arately, with (unsuccessful) attempts to develop a
satisfactory logic for each. An example of such re-
lationship is the so called “Reichenbach Principle”:
(A— B)A(mA—=-B)A=(A>B)A=(B> A) =
(C > A)A(C > B) for some C, where A — B
stands for the indicative conditional (defined by
k(—B|A) > 0). Tt states that every dependence must
have a causal explanation, either direct or indirect
(via some common cause).

6.3 Other Decision Theoretic Accounts

Poole [16] has proposed a quantitative decision-
theoretic account of defaults, taking the utility of
A, given evidence e, to be

u(Ale) = S, p(w, A)P(w]e) (37)

This requires a specification of an action-dependent
preference function for each (w, A) pair. Our pro-
posal (in line with [21]) attributes the dependence
of ;t on A to beliefs about the possible consequences
of A, thereby keeping the utility of each consequence
constant. In this way, we see more clearly how the
structure of causal theories should affect obligations.
For example, suppose A and e are incompatible ( “If
the light is on (e), turn it off (A)”), taking (37) lit-
erally (without introducing temporal indices) would
yield absurd results. Additionally, Poole’s is a cal-
culus of incremental improvements of utility, while
ours is concerned with substantial improvements, as
is typical of obligation statements.

Boutilier [3] has developed a modal logic account of
obligations which embodies considerations similar to



ours. It remains to be seen whether causal relation-
ships such as those governing the interplay among
actions and observations can easily be encoded into
his formalism.
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